You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 53 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. #include "lite_build_config.h"
  2. #if LITE_BUILD_WITH_MGE
  3. #include "./test_common.h"
  4. #include "megbrain/tensor.h"
  5. #ifndef WIN32
  6. #include <dirent.h>
  7. #include <string.h>
  8. #endif
  9. #include <chrono>
  10. #include <memory>
  11. #include <random>
  12. #include <unordered_map>
  13. using namespace lite;
  14. namespace {
  15. class CheckAllocator : public lite::Allocator {
  16. public:
  17. //! allocate memory of size in the given device with the given align
  18. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  19. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  20. m_nr_left++;
  21. m_nr_allocated++;
  22. #ifdef WIN32
  23. return _aligned_malloc(size, align);
  24. #elif defined(__ANDROID__) || defined(ANDROID)
  25. return memalign(align, size);
  26. #else
  27. void* ptr = nullptr;
  28. auto err = posix_memalign(&ptr, align, size);
  29. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  30. return ptr;
  31. #endif
  32. };
  33. //! free the memory pointed by ptr in the given device
  34. void free(LiteDeviceType device, int, void* ptr) override {
  35. m_nr_left--;
  36. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  37. #ifdef WIN32
  38. _aligned_free(ptr);
  39. #else
  40. ::free(ptr);
  41. #endif
  42. };
  43. std::atomic_size_t m_nr_left{0};
  44. std::atomic_size_t m_nr_allocated{0};
  45. };
  46. } // namespace
  47. TEST(TestNetWork, Basic) {
  48. Config config;
  49. auto lite_tensor = get_input_data("./input_data.npy");
  50. std::string model_path = "./shufflenet.mge";
  51. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  52. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  53. compare_lite_tensor<float>(result_lite, result_mgb);
  54. }
  55. TEST(TestNetWork, RefCount) {
  56. Config config;
  57. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  58. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  59. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  60. std::shared_ptr<Network> network_s = std::make_shared<Network>(config);
  61. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 2);
  62. network.reset();
  63. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  64. network_s.reset();
  65. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  66. }
  67. TEST(TestNetWork, SetDeviceId) {
  68. Config config;
  69. auto lite_tensor = get_input_data("./input_data.npy");
  70. std::string model_path = "./shufflenet.mge";
  71. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  72. network->set_device_id(4);
  73. network->load_model(model_path);
  74. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  75. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  76. network->forward();
  77. network->wait();
  78. ASSERT_EQ(input_tensor->get_device_id(), 4);
  79. ASSERT_EQ(output_tensor->get_device_id(), 4);
  80. }
  81. TEST(TestNetWork, GetAllName) {
  82. Config config;
  83. auto lite_tensor = get_input_data("./input_data.npy");
  84. std::string model_path = "./shufflenet.mge";
  85. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  86. network->load_model(model_path);
  87. auto input_names = network->get_all_input_name();
  88. auto output_names = network->get_all_output_name();
  89. auto output_tensor = network->get_output_tensor(0);
  90. auto out_layout = output_tensor->get_layout();
  91. ASSERT_EQ(out_layout.ndim, 2);
  92. ASSERT_EQ(out_layout.shapes[0], 1);
  93. ASSERT_EQ(out_layout.shapes[1], 1000);
  94. ASSERT_EQ(input_names.size(), 1);
  95. ASSERT_EQ(output_names.size(), 1);
  96. ASSERT_TRUE(input_names[0] == "data");
  97. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  98. }
  99. TEST(TestNetWork, GetAllIoInfoAhead) {
  100. Config config;
  101. std::string model_path = "./shufflenet.mge";
  102. auto ios = Runtime::get_model_io_info(model_path);
  103. FILE* fin = fopen(model_path.c_str(), "rb");
  104. ASSERT_TRUE(fin);
  105. fseek(fin, 0, SEEK_END);
  106. size_t size = ftell(fin);
  107. fseek(fin, 0, SEEK_SET);
  108. void* ptr = malloc(size);
  109. std::shared_ptr<void> buf{ptr, ::free};
  110. auto nr = fread(buf.get(), 1, size, fin);
  111. LITE_ASSERT(nr == size);
  112. fclose(fin);
  113. auto ios_mem = Runtime::get_model_io_info(ptr, size);
  114. ASSERT_EQ(ios.inputs.size(), ios_mem.inputs.size());
  115. ASSERT_EQ(ios.inputs.size(), 1);
  116. ASSERT_EQ(ios.outputs.size(), ios_mem.outputs.size());
  117. ASSERT_EQ(ios.outputs.size(), 1);
  118. ASSERT_TRUE(ios.inputs[0].name == "data");
  119. ASSERT_TRUE(ios.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  120. ASSERT_TRUE(ios_mem.inputs[0].name == "data");
  121. ASSERT_TRUE(
  122. ios_mem.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  123. ASSERT_EQ(ios.inputs[0].config_layout.ndim, 4);
  124. ASSERT_EQ(ios.inputs[0].config_layout.shapes[1], 3);
  125. ASSERT_EQ(ios.inputs[0].config_layout.shapes[2], 224);
  126. ASSERT_EQ(ios.outputs[0].config_layout.ndim, 2);
  127. ASSERT_EQ(ios.outputs[0].config_layout.shapes[0], 1);
  128. ASSERT_EQ(ios.outputs[0].config_layout.shapes[1], 1000);
  129. ASSERT_EQ(ios_mem.inputs[0].config_layout.ndim, 4);
  130. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[1], 3);
  131. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[2], 224);
  132. ASSERT_EQ(ios_mem.outputs[0].config_layout.ndim, 2);
  133. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[0], 1);
  134. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[1], 1000);
  135. }
  136. TEST(TestNetWork, LoadFBSModel) {
  137. Config config;
  138. std::string model_path = "./ax.mge";
  139. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  140. network->load_model(model_path);
  141. auto output_tensor = network->get_output_tensor(0);
  142. auto out_layout = output_tensor->get_layout();
  143. ASSERT_EQ(out_layout.ndim, 4);
  144. ASSERT_EQ(out_layout.shapes[0], 1);
  145. ASSERT_EQ(out_layout.shapes[1], 1);
  146. ASSERT_EQ(out_layout.shapes[2], 40);
  147. ASSERT_EQ(out_layout.shapes[3], 180);
  148. }
  149. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  150. Config config;
  151. auto lite_tensor = get_input_data("./input_data.npy");
  152. std::string model_path = "./shufflenet.mge";
  153. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  154. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  155. Runtime::set_cpu_inplace_mode(network);
  156. network->load_model(model_path);
  157. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  158. int affinity_set = false;
  159. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  160. ASSERT_EQ(id, 0);
  161. affinity_set = true;
  162. });
  163. auto src_ptr = lite_tensor->get_memory_ptr();
  164. auto src_layout = lite_tensor->get_layout();
  165. input_tensor->reset(src_ptr, src_layout);
  166. //! inplace mode not support async mode
  167. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  168. network->forward();
  169. network->wait();
  170. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  171. ASSERT_EQ(affinity_set, true);
  172. compare_lite_tensor<float>(output_tensor, result_mgb);
  173. }
  174. namespace {
  175. void test_multi_thread(bool multi_thread_compnode) {
  176. Config config;
  177. auto lite_tensor = get_input_data("./input_data.npy");
  178. std::string model_path = "./shufflenet.mge";
  179. size_t nr_threads = 2;
  180. std::vector<size_t> thread_ids_user(nr_threads);
  181. std::vector<size_t> thread_ids_worker(nr_threads);
  182. auto runner = [&](size_t i) {
  183. thread_ids_user[i] = std::hash<std::thread::id>{}(std::this_thread::get_id());
  184. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  185. Runtime::set_cpu_inplace_mode(network);
  186. if (multi_thread_compnode) {
  187. Runtime::set_cpu_threads_number(network, 2);
  188. }
  189. network->load_model(model_path);
  190. Runtime::set_runtime_thread_affinity(
  191. network, [&multi_thread_compnode, &thread_ids_worker, i](int id) {
  192. if (multi_thread_compnode) {
  193. if (id == 1) {
  194. thread_ids_worker[i] = std::hash<std::thread::id>{}(
  195. std::this_thread::get_id());
  196. }
  197. } else {
  198. thread_ids_worker[i] = std::hash<std::thread::id>{}(
  199. std::this_thread::get_id());
  200. }
  201. });
  202. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  203. auto src_ptr = lite_tensor->get_memory_ptr();
  204. auto src_layout = lite_tensor->get_layout();
  205. input_tensor->reset(src_ptr, src_layout);
  206. network->forward();
  207. network->wait();
  208. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  209. };
  210. std::vector<std::thread> threads;
  211. for (size_t i = 0; i < nr_threads; i++) {
  212. threads.emplace_back(runner, i);
  213. threads[i].join();
  214. }
  215. for (size_t i = 0; i < nr_threads; i++) {
  216. ASSERT_EQ(thread_ids_user[i], thread_ids_worker[i]);
  217. }
  218. }
  219. } // namespace
  220. TEST(TestNetWork, InplaceAndUserMultithreadThread) {
  221. test_multi_thread(false);
  222. }
  223. TEST(TestNetWork, InplaceAndMultithread) {
  224. test_multi_thread(true);
  225. }
  226. TEST(TestNetWork, NetworkShareWeights) {
  227. Config config;
  228. auto lite_tensor = get_input_data("./input_data.npy");
  229. std::string model_path = "./shufflenet.mge";
  230. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  231. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  232. network->load_model(model_path);
  233. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  234. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  235. Runtime::set_cpu_inplace_mode(network2);
  236. Runtime::shared_weight_with_network(network2, network);
  237. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  238. auto src_ptr = lite_tensor->get_memory_ptr();
  239. auto src_layout = lite_tensor->get_layout();
  240. input_tensor->reset(src_ptr, src_layout);
  241. input_tensor2->reset(src_ptr, src_layout);
  242. ASSERT_NE(input_tensor, input_tensor2);
  243. network->forward();
  244. network->wait();
  245. network2->forward();
  246. network2->wait();
  247. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  248. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  249. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  250. compare_lite_tensor<float>(output_tensor, result_mgb);
  251. compare_lite_tensor<float>(output_tensor2, result_mgb);
  252. }
  253. TEST(TestNetWork, SharedRuntimeMem) {
  254. Config config;
  255. auto lite_tensor = get_input_data("./input_data.npy");
  256. std::string model_path = "./shufflenet.mge";
  257. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  258. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  259. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  260. Runtime::share_runtime_memory_with(network_dst, network_src);
  261. network_src->load_model(model_path);
  262. network_dst->load_model(model_path);
  263. }
  264. TEST(TestNetWork, UserAllocator) {
  265. auto allocator = std::make_shared<CheckAllocator>();
  266. {
  267. Config config;
  268. auto lite_tensor = get_input_data("./input_data.npy");
  269. std::string model_path = "./shufflenet.mge";
  270. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  271. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  272. Runtime::set_memory_allocator(network, allocator);
  273. network->load_model(model_path);
  274. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  275. auto src_ptr = lite_tensor->get_memory_ptr();
  276. auto src_layout = lite_tensor->get_layout();
  277. input_tensor->reset(src_ptr, src_layout);
  278. network->forward();
  279. network->wait();
  280. ASSERT_GE(allocator->m_nr_allocated, 1);
  281. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  282. compare_lite_tensor<float>(output_tensor, result_mgb);
  283. }
  284. ASSERT_EQ(allocator->m_nr_left, 0);
  285. }
  286. TEST(TestNetWork, BasicMultiThread) {
  287. Config config;
  288. auto lite_tensor = get_input_data("./input_data.npy");
  289. std::string model_path = "./shufflenet.mge";
  290. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  291. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  292. Runtime::set_cpu_threads_number(network, 2);
  293. network->load_model(model_path);
  294. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  295. auto src_ptr = lite_tensor->get_memory_ptr();
  296. auto src_layout = lite_tensor->get_layout();
  297. input_tensor->reset(src_ptr, src_layout);
  298. network->forward();
  299. network->wait();
  300. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  301. compare_lite_tensor<float>(output_tensor, result_mgb);
  302. }
  303. TEST(TestNetWork, ThreadAffinity) {
  304. size_t nr_threads = 4;
  305. Config config;
  306. auto lite_tensor = get_input_data("./input_data.npy");
  307. std::string model_path = "./shufflenet.mge";
  308. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  309. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  310. Runtime::set_cpu_threads_number(network, nr_threads);
  311. ASSERT_THROW(
  312. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  313. network->load_model(model_path);
  314. std::vector<std::thread::id> thread_ids(nr_threads);
  315. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  316. Runtime::set_runtime_thread_affinity(network, affinity);
  317. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  318. auto src_ptr = lite_tensor->get_memory_ptr();
  319. auto src_layout = lite_tensor->get_layout();
  320. input_tensor->reset(src_ptr, src_layout);
  321. network->forward();
  322. network->wait();
  323. for (size_t i = 0; i < nr_threads; i++) {
  324. for (size_t j = i + 1; j < nr_threads; j++) {
  325. ASSERT_NE(thread_ids[i], thread_ids[j]);
  326. }
  327. }
  328. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  329. compare_lite_tensor<float>(output_tensor, result_mgb);
  330. }
  331. TEST(TestNetWork, BasicCryptAes) {
  332. Config config;
  333. auto lite_tensor = get_input_data("./input_data.npy");
  334. std::string model_path = "./shufflenet.mge";
  335. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  336. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  337. config.bare_model_cryption_name = "AES_default";
  338. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  339. compare_lite_tensor<float>(result_lite, result_mgb);
  340. }
  341. TEST(TestNetWork, BasicCryptRc4) {
  342. Config config;
  343. auto lite_tensor = get_input_data("./input_data.npy");
  344. std::string model_path = "./shufflenet.mge";
  345. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  346. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  347. config.bare_model_cryption_name = "RC4_default";
  348. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  349. compare_lite_tensor<float>(result_lite, result_mgb);
  350. }
  351. TEST(TestNetWork, PackedCryptRc4) {
  352. Config config;
  353. auto lite_tensor = get_input_data("./input_data.npy");
  354. std::string model_path = "./shufflenet.mge";
  355. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  356. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  357. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  358. compare_lite_tensor<float>(result_lite, result_mgb);
  359. }
  360. TEST(TestNetWork, BasicCryptSfRc4) {
  361. Config config;
  362. auto lite_tensor = get_input_data("./input_data.npy");
  363. std::string model_path = "./shufflenet.mge";
  364. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  365. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  366. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  367. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  368. compare_lite_tensor<float>(result_lite, result_mgb);
  369. }
  370. TEST(TestNetWork, ResetInput) {
  371. Config config;
  372. auto tensor = get_input_data("./input_data.npy");
  373. std::string model_path = "./shufflenet.mge";
  374. std::string input_name = "data";
  375. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  376. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  377. network->load_model(model_path);
  378. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  379. auto src_ptr = tensor->get_memory_ptr();
  380. auto src_layout = tensor->get_layout();
  381. input_tensor->reset(src_ptr, src_layout);
  382. network->forward();
  383. network->wait();
  384. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  385. compare_lite_tensor<float>(output_tensor, result_mgb);
  386. }
  387. TEST(TestNetWork, ChangeInputShape) {
  388. Config config;
  389. auto tensor = get_input_data("./input_data.npy");
  390. std::string model_path = "./shufflenet.mge";
  391. std::string input_name = "data";
  392. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  393. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  394. network->load_model(model_path);
  395. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  396. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  397. input_tensor->set_layout(src_layout);
  398. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  399. //! Check memory is equal
  400. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  401. network->forward();
  402. network->wait();
  403. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  404. auto output_layout = output_tensor->get_layout();
  405. ASSERT_EQ(output_layout.shapes[0], 2);
  406. ASSERT_EQ(output_layout.shapes[1], 1000);
  407. }
  408. TEST(TestNetWork, ResetOutput) {
  409. Config config;
  410. auto tensor = get_input_data("./input_data.npy");
  411. std::string model_path = "./shufflenet.mge";
  412. std::string input_name = "data";
  413. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  414. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  415. network->load_model(model_path);
  416. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  417. auto src_ptr = tensor->get_memory_ptr();
  418. auto src_layout = tensor->get_layout();
  419. input_tensor->reset(src_ptr, src_layout);
  420. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  421. auto result_tensor = std::make_shared<Tensor>(
  422. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  423. void* out_data = result_tensor->get_memory_ptr();
  424. output_tensor->reset(out_data, result_tensor->get_layout());
  425. network->forward();
  426. network->wait();
  427. compare_lite_tensor<float>(output_tensor, result_mgb);
  428. }
  429. namespace {
  430. void test_output_no_copy(int record) {
  431. Config config;
  432. config.options.force_output_use_user_specified_memory = true;
  433. config.options.comp_node_seq_record_level = record;
  434. auto tensor = get_input_data("./input_data.npy");
  435. std::string model_path = "./shufflenet.mge";
  436. std::string input_name = "data";
  437. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  438. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  439. network->load_model(model_path);
  440. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  441. auto src_ptr = tensor->get_memory_ptr();
  442. auto src_layout = tensor->get_layout();
  443. input_tensor->reset(src_ptr, src_layout);
  444. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  445. size_t times = 5;
  446. std::vector<std::shared_ptr<Tensor>> result_tensors;
  447. for (size_t i = 0; i < times; i++) {
  448. auto tmp = std::make_shared<Tensor>(
  449. LiteDeviceType::LITE_CPU,
  450. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  451. result_tensors.push_back(tmp);
  452. }
  453. for (size_t i = 0; i < times; i++) {
  454. void* out_data = result_tensors[i]->get_memory_ptr();
  455. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  456. network->forward();
  457. network->wait();
  458. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  459. compare_lite_tensor<float>(output_tensor, result_mgb);
  460. }
  461. for (size_t i = 0; i < times; i++) {
  462. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  463. }
  464. }
  465. void test_input_no_copy(int record) {
  466. Config config;
  467. config.options.force_output_use_user_specified_memory = true;
  468. config.options.comp_node_seq_record_level = record;
  469. std::string model_path = "./shufflenet.mge";
  470. std::string input_name = "data";
  471. Layout layout_in{{1, 3, 224, 224}, 4};
  472. std::vector<std::shared_ptr<Tensor>> inputs;
  473. std::vector<std::shared_ptr<Tensor>> outputs;
  474. for (int i = 0; i < 3; i++) {
  475. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, layout_in);
  476. auto ptr = static_cast<float*>(tmp_in->get_memory_ptr());
  477. for (size_t id = 0; id < 2 * 224 * 224; id++) {
  478. ptr[id] = i + 1;
  479. }
  480. inputs.push_back(tmp_in);
  481. outputs.push_back(mgb_lar(model_path, config, input_name, tmp_in));
  482. }
  483. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  484. network->load_model(model_path);
  485. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  486. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  487. for (int i = 0; i < 3; i++) {
  488. auto ptr = inputs[i]->get_memory_ptr();
  489. input_tensor->reset(ptr, layout_in);
  490. auto tmp_out = std::make_shared<Tensor>(
  491. LiteDeviceType::LITE_CPU,
  492. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  493. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  494. network->forward();
  495. network->wait();
  496. compare_lite_tensor<float>(output_tensor, outputs[i]);
  497. }
  498. }
  499. void test_io_no_copy_ax(std::string model_name, int record = 1) {
  500. std::string model_path = model_name;
  501. std::vector<std::string> input_names, output_names;
  502. std::vector<std::vector<std::shared_ptr<Tensor>>> inputs;
  503. std::vector<std::vector<std::shared_ptr<Tensor>>> outputs;
  504. Config config;
  505. config.options.graph_opt_level = 0;
  506. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  507. network->load_model(model_path);
  508. input_names = network->get_all_input_name();
  509. output_names = network->get_all_output_name();
  510. // prepare test data
  511. for (int i = 0; i < 3; i++) {
  512. std::vector<std::shared_ptr<Tensor>> net_inputs;
  513. std::vector<std::shared_ptr<Tensor>> net_outputs;
  514. for (size_t j = 0; j < input_names.size(); j++) {
  515. auto in_tesnor = network->get_io_tensor(input_names[j]);
  516. auto in_layout = in_tesnor->get_layout();
  517. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, in_layout);
  518. auto size = in_tesnor->get_tensor_total_size_in_byte() /
  519. in_layout.get_elem_size();
  520. if (in_layout.data_type == LiteDataType::LITE_INT16) {
  521. auto ptr = static_cast<short*>(tmp_in->get_memory_ptr());
  522. for (size_t id = 0; id < size; id++) {
  523. ptr[id] = i + 1;
  524. }
  525. } else if (in_layout.data_type == LiteDataType::LITE_UINT8) {
  526. auto ptr = static_cast<uint8_t*>(tmp_in->get_memory_ptr());
  527. for (size_t id = 0; id < size; id++) {
  528. ptr[id] = i + 1;
  529. }
  530. }
  531. net_inputs.push_back(tmp_in);
  532. in_tesnor->copy_from(*tmp_in);
  533. }
  534. inputs.push_back(net_inputs);
  535. network->forward();
  536. network->wait();
  537. for (size_t j = 0; j < output_names.size(); j++) {
  538. auto out_tesnor = network->get_io_tensor(output_names[j]);
  539. auto out_layout = out_tesnor->get_layout();
  540. auto tmp_out =
  541. std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, out_layout);
  542. tmp_out->copy_from(*out_tesnor);
  543. net_outputs.push_back(tmp_out);
  544. }
  545. outputs.push_back(net_outputs);
  546. }
  547. config.options.force_output_use_user_specified_memory = true;
  548. config.options.comp_node_seq_record_level = record;
  549. config.options.const_shape = true;
  550. config.options.graph_opt_level = 2;
  551. std::shared_ptr<Network> network_record = std::make_shared<Network>(config);
  552. network_record->load_model(model_path);
  553. for (int i = 0; i < 3; i++) {
  554. for (size_t j = 0; j < inputs[i].size(); j++) {
  555. auto input_tensor = network_record->get_io_tensor(input_names[j]);
  556. input_tensor->reset(
  557. inputs[i][j]->get_memory_ptr(), inputs[i][j]->get_layout());
  558. }
  559. std::vector<std::shared_ptr<Tensor>> net_outputs;
  560. for (size_t j = 0; j < outputs[i].size(); j++) {
  561. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  562. auto tmp_out = std::make_shared<Tensor>(
  563. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  564. output_tensor->reset(
  565. tmp_out->get_memory_ptr(), output_tensor->get_layout());
  566. net_outputs.push_back(tmp_out);
  567. }
  568. network_record->forward();
  569. network_record->wait();
  570. for (size_t j = 0; j < outputs[i].size(); j++) {
  571. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  572. compare_lite_tensor<float>(output_tensor, outputs[i][j]);
  573. }
  574. }
  575. printf("profile the model %s run\n", model_path.c_str());
  576. std::vector<std::shared_ptr<Tensor>> net_outputs;
  577. for (size_t j = 0; j < outputs[0].size(); j++) {
  578. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  579. auto tmp_out = std::make_shared<Tensor>(
  580. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  581. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  582. net_outputs.push_back(tmp_out);
  583. }
  584. lite::Timer timer("profile");
  585. for (int i = 0; i < 10; i++) {
  586. network_record->forward();
  587. network_record->wait();
  588. }
  589. auto sum_time = timer.get_used_time();
  590. printf("model %s used time average %f ms\n", model_path.c_str(), sum_time / 10);
  591. }
  592. } // namespace
  593. TEST(TestNetWork, OutputNoCopy) {
  594. test_output_no_copy(0);
  595. }
  596. TEST(TestNetWork, OutputNoCopyRecord) {
  597. test_output_no_copy(1);
  598. }
  599. TEST(TestNetWork, IONoCopy) {
  600. test_input_no_copy(0);
  601. }
  602. TEST(TestNetWork, IONoCopyRecord) {
  603. test_input_no_copy(1);
  604. }
  605. TEST(TestNetWork, IONoCopyRecordAx) {
  606. std::vector<std::string> file_names;
  607. #ifndef WIN32
  608. DIR* dirptr = NULL;
  609. struct dirent* dirp;
  610. std::string model_dir = "./ax_models";
  611. dirptr = opendir(model_dir.c_str());
  612. while (dirptr != NULL && (dirp = readdir(dirptr)) != NULL) {
  613. std::string file_name(dirp->d_name);
  614. if (file_name.find(".axe", 0) != std::string::npos) {
  615. file_names.push_back(model_dir + "/" + file_name);
  616. }
  617. }
  618. closedir(dirptr);
  619. #endif
  620. for (auto file_name : file_names) {
  621. printf("test model: %s\n", file_name.c_str());
  622. test_io_no_copy_ax(file_name);
  623. }
  624. }
  625. TEST(TestNetWork, OutputDynamicAlloc) {
  626. Config config;
  627. config.options.force_output_dynamic_alloc = true;
  628. auto tensor = get_input_data("./input_data.npy");
  629. std::string model_path = "./shufflenet.mge";
  630. std::string input_name = "data";
  631. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  632. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  633. network->load_model(model_path);
  634. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  635. auto src_ptr = tensor->get_memory_ptr();
  636. auto src_layout = tensor->get_layout();
  637. input_tensor->reset(src_ptr, src_layout);
  638. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  639. size_t times = 5;
  640. for (size_t i = 0; i < times; i++) {
  641. network->forward();
  642. network->wait();
  643. compare_lite_tensor<float>(output_tensor, result_mgb);
  644. }
  645. }
  646. TEST(TestNetWork, AsyncExec) {
  647. Config config;
  648. config.options.var_sanity_check_first_run = false;
  649. auto tensor = get_input_data("./input_data.npy");
  650. std::string model_path = "./shufflenet.mge";
  651. std::string input_name = "data";
  652. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  653. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  654. network->load_model(model_path);
  655. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  656. auto src_ptr = tensor->get_memory_ptr();
  657. auto src_layout = tensor->get_layout();
  658. input_tensor->reset(src_ptr, src_layout);
  659. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  660. auto result_tensor = std::make_shared<Tensor>(
  661. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  662. void* out_data = result_tensor->get_memory_ptr();
  663. output_tensor->reset(out_data, result_tensor->get_layout());
  664. //! set async mode and callback
  665. volatile bool finished = false;
  666. network->set_async_callback([&finished]() { finished = true; });
  667. network->forward();
  668. size_t count = 0;
  669. while (finished == false) {
  670. count++;
  671. }
  672. ASSERT_GT(count, 0);
  673. compare_lite_tensor<float>(output_tensor, result_mgb);
  674. }
  675. TEST(TestNetWork, CPUDeviceInput) {
  676. auto tensor = get_input_data("./input_data.npy");
  677. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  678. std::string model_path = "./shufflenet.mge";
  679. std::string input_name = "data";
  680. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  681. NetworkIO IO;
  682. bool is_host = false;
  683. IO.inputs.push_back({input_name, is_host});
  684. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  685. network->load_model(model_path);
  686. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  687. auto src_ptr = tensor->get_memory_ptr();
  688. input_tensor->reset(src_ptr, layout);
  689. network->forward();
  690. network->wait();
  691. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  692. compare_lite_tensor<float>(output_tensor, result_mgb);
  693. }
  694. TEST(TestNetWork, ShareTensorWith) {
  695. auto tensor = get_input_data("./input_data.npy");
  696. std::string model_path = "./shufflenet.mge";
  697. std::string input_name = "data";
  698. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  699. std::shared_ptr<Network> network = std::make_shared<Network>();
  700. network->load_model(model_path);
  701. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  702. input_tensor->share_memory_with(*tensor);
  703. network->forward();
  704. network->wait();
  705. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  706. compare_lite_tensor<float>(output_tensor, result_mgb);
  707. }
  708. TEST(TestNetWork, InputCallBack) {
  709. auto tensor = get_input_data("./input_data.npy");
  710. std::string model_path = "./shufflenet.mge";
  711. std::string input_name = "data";
  712. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  713. NetworkIO ios;
  714. bool is_host = false;
  715. ios.inputs.push_back({input_name, is_host});
  716. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  717. network->load_model(model_path);
  718. volatile bool finised_check_input = false;
  719. auto input_callback =
  720. [&tensor, &finised_check_input,
  721. input_name](const std::unordered_map<
  722. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  723. input_map) {
  724. ASSERT_EQ(input_map.size(), 1);
  725. auto tensor_input = input_map.at(input_name).second;
  726. compare_lite_tensor<float>(tensor_input, tensor);
  727. finised_check_input = true;
  728. };
  729. network->set_start_callback(input_callback);
  730. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  731. input_tensor->share_memory_with(*tensor);
  732. network->forward();
  733. network->wait();
  734. ASSERT_TRUE(finised_check_input);
  735. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  736. compare_lite_tensor<float>(output_tensor, result_mgb);
  737. }
  738. TEST(TestNetWork, OutputCallBack) {
  739. auto tensor = get_input_data("./input_data.npy");
  740. std::string model_path = "./shufflenet.mge";
  741. std::string input_name = "data";
  742. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  743. std::shared_ptr<Network> network = std::make_shared<Network>();
  744. network->load_model(model_path);
  745. auto output_name = network->get_output_name(0);
  746. volatile bool finised_check_output = false;
  747. auto output_callback =
  748. [&result_mgb, &finised_check_output,
  749. output_name](const std::unordered_map<
  750. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  751. output_map) {
  752. ASSERT_EQ(output_map.size(), 1);
  753. auto tensor_output = output_map.at(output_name).second;
  754. compare_lite_tensor<float>(tensor_output, result_mgb);
  755. finised_check_output = true;
  756. };
  757. network->set_finish_callback(output_callback);
  758. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  759. input_tensor->share_memory_with(*tensor);
  760. network->forward();
  761. network->wait();
  762. ASSERT_TRUE(finised_check_output);
  763. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  764. compare_lite_tensor<float>(output_tensor, result_mgb);
  765. }
  766. TEST(TestNetWork, OutputShapeOnly) {
  767. auto tensor = get_input_data("./input_data.npy");
  768. std::string model_path = "./shufflenet.mge";
  769. std::string input_name = "data";
  770. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  771. NetworkIO IO;
  772. bool is_host = true;
  773. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  774. Config config;
  775. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  776. network->load_model(model_path);
  777. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  778. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  779. auto src_ptr = tensor->get_memory_ptr();
  780. auto src_layout = tensor->get_layout();
  781. input_tensor->reset(src_ptr, src_layout);
  782. network->forward();
  783. network->wait();
  784. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  785. }
  786. TEST(TestNetWork, ProfileIOdump) {
  787. auto tensor = get_input_data("./input_data.npy");
  788. std::string model_path = "./shufflenet.mge";
  789. std::string input_name = "data";
  790. NetworkIO IO;
  791. Config config;
  792. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  793. network->enable_profile_performance("./profile.json");
  794. network->load_model(model_path);
  795. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  796. auto src_ptr = tensor->get_memory_ptr();
  797. auto src_layout = tensor->get_layout();
  798. input_tensor->reset(src_ptr, src_layout);
  799. network->forward();
  800. network->wait();
  801. ASSERT_TRUE(fopen("./profile.json", "r"));
  802. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  803. network->forward();
  804. network->wait();
  805. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  806. }
  807. TEST(TestNetWork, LoadPackedModel) {
  808. auto tensor = get_input_data("./input_data.npy");
  809. std::string model_path = "./test_packed_model.lite";
  810. std::string input_name = "data";
  811. NetworkIO IO;
  812. Config config;
  813. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  814. network->load_model(model_path);
  815. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  816. auto src_ptr = tensor->get_memory_ptr();
  817. auto src_layout = tensor->get_layout();
  818. input_tensor->reset(src_ptr, src_layout);
  819. network->forward();
  820. network->wait();
  821. }
  822. TEST(TestNetWork, LoadPackedCacheModel) {
  823. auto tensor = get_input_data("./input_data.npy");
  824. std::string model_path = "./test_pack_cache_to_model.lite";
  825. std::string input_name = "data";
  826. NetworkIO IO;
  827. Config config;
  828. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  829. network->load_model(model_path);
  830. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  831. auto src_ptr = tensor->get_memory_ptr();
  832. auto src_layout = tensor->get_layout();
  833. input_tensor->reset(src_ptr, src_layout);
  834. network->forward();
  835. network->wait();
  836. }
  837. TEST(TestNetWork, GlabalLayoutTransform) {
  838. auto tensor = get_input_data("./input_data.npy");
  839. std::string model_path = "./shufflenet.mge";
  840. std::string input_name = "data";
  841. std::string dump_model_name = "./shufflenet_after_trans.mge";
  842. NetworkIO IO;
  843. Config config;
  844. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  845. Runtime::enable_global_layout_transform(network);
  846. network->load_model(model_path);
  847. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  848. auto src_ptr = tensor->get_memory_ptr();
  849. auto src_layout = tensor->get_layout();
  850. input_tensor->reset(src_ptr, src_layout);
  851. Runtime::dump_layout_transform_model(network, dump_model_name);
  852. network->forward();
  853. network->wait();
  854. ASSERT_TRUE(fopen(dump_model_name.c_str(), "r"));
  855. remove(dump_model_name.c_str());
  856. }
  857. TEST(TestNetWork, GetDeviceType) {
  858. auto tensor = get_input_data("./input_data.npy");
  859. std::string model_path = "./shufflenet.mge";
  860. Config config;
  861. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  862. network->load_model(model_path);
  863. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  864. }
  865. TEST(TestNetWork, GetModelExtraInfo) {
  866. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  867. Config config;
  868. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  869. network->load_model(model_path);
  870. auto& extra_info = network->get_model_extra_info();
  871. ASSERT_TRUE(extra_info.size() > 0);
  872. printf("extra_info %s \n", extra_info.c_str());
  873. }
  874. #ifndef __IN_TEE_ENV__
  875. #if MGB_ENABLE_JSON
  876. TEST(TestNetWork, GetMemoryInfo) {
  877. Config config;
  878. auto lite_tensor = get_input_data("./input_data.npy");
  879. std::string model_path = "./shufflenet.mge";
  880. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  881. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  882. Runtime::set_cpu_threads_number(network, 2);
  883. network->load_model(model_path);
  884. network->get_static_memory_alloc_info();
  885. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  886. auto src_ptr = lite_tensor->get_memory_ptr();
  887. auto src_layout = lite_tensor->get_layout();
  888. input_tensor->reset(src_ptr, src_layout);
  889. network->forward();
  890. network->wait();
  891. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  892. compare_lite_tensor<float>(output_tensor, result_mgb);
  893. }
  894. #endif
  895. #endif
  896. #if LITE_WITH_CUDA
  897. TEST(TestNetWork, BasicDevice) {
  898. auto lite_tensor = get_input_data("./input_data.npy");
  899. Config config;
  900. config.device_type = LiteDeviceType::LITE_CUDA;
  901. std::string model_path = "./shufflenet.mge";
  902. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  903. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  904. compare_lite_tensor<float>(result_lite, result_mgb);
  905. }
  906. TEST(TestNetWork, DeviceInput) {
  907. auto tensor = get_input_data("./input_data.npy");
  908. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  909. std::string model_path = "./shufflenet.mge";
  910. std::string input_name = "data";
  911. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  912. NetworkIO IO;
  913. bool is_host = false;
  914. IO.inputs.push_back({input_name, is_host});
  915. Config config;
  916. config.device_type = LiteDeviceType::LITE_CUDA;
  917. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  918. network->load_model(model_path);
  919. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  920. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  921. tensor_cuda.copy_from(*tensor);
  922. auto src_ptr = tensor_cuda.get_memory_ptr();
  923. input_tensor->reset(src_ptr, layout);
  924. network->forward();
  925. network->wait();
  926. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  927. compare_lite_tensor<float>(output_tensor, result_mgb);
  928. }
  929. TEST(TestNetWork, ChangeInputShapeDevice) {
  930. Config config;
  931. auto tensor = get_input_data("./input_data.npy");
  932. std::string model_path = "./shufflenet.mge";
  933. std::string input_name = "data";
  934. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  935. config.device_type = LiteDeviceType::LITE_CUDA;
  936. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  937. network->load_model(model_path);
  938. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  939. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  940. input_tensor->set_layout(src_layout);
  941. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  942. //! Check memory is equal
  943. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  944. network->forward();
  945. network->wait();
  946. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  947. auto output_layout = output_tensor->get_layout();
  948. ASSERT_EQ(output_layout.shapes[0], 2);
  949. ASSERT_EQ(output_layout.shapes[1], 1000);
  950. }
  951. TEST(TestNetWork, DeviceOutput) {
  952. auto tensor = get_input_data("./input_data.npy");
  953. std::string model_path = "./shufflenet.mge";
  954. std::string input_name = "data";
  955. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  956. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  957. NetworkIO IO;
  958. bool is_host = false;
  959. IO.outputs.push_back({output_name, is_host});
  960. Config config;
  961. config.device_type = LiteDeviceType::LITE_CUDA;
  962. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  963. network->load_model(model_path);
  964. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  965. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  966. auto src_ptr = tensor->get_memory_ptr();
  967. auto src_layout = tensor->get_layout();
  968. input_tensor->reset(src_ptr, src_layout);
  969. network->forward();
  970. network->wait();
  971. auto output_tensor = std::make_shared<Tensor>();
  972. output_tensor->copy_from(*output_tensor_cuda);
  973. compare_lite_tensor<float>(output_tensor, result_mgb);
  974. }
  975. TEST(TestNetWork, WrongIONameDevice) {
  976. auto tensor = get_input_data("./input_data.npy");
  977. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  978. std::string model_path = "./shufflenet.mge";
  979. std::string input_name = "data";
  980. std::string input_name_wrong = "data0";
  981. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  982. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  983. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  984. NetworkIO IO;
  985. bool is_host = false;
  986. IO.inputs.push_back({input_name, is_host});
  987. IO.outputs.push_back({output_name, is_host});
  988. IO.outputs.push_back({output_name_wrong, is_host});
  989. Config config;
  990. config.device_type = LiteDeviceType::LITE_CUDA;
  991. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  992. network->load_model(model_path);
  993. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  994. tensor_cuda.copy_from(*tensor);
  995. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  996. auto src_ptr = tensor_cuda.get_memory_ptr();
  997. auto src_layout = tensor_cuda.get_layout();
  998. input_tensor->reset(src_ptr, src_layout);
  999. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  1000. network->forward();
  1001. network->wait();
  1002. auto output_tensor = std::make_shared<Tensor>();
  1003. output_tensor->copy_from(*output_tensor_cuda);
  1004. compare_lite_tensor<float>(output_tensor, result_mgb);
  1005. }
  1006. TEST(TestNetWork, ConfigIONameDevice) {
  1007. std::string model_path = "./model.mgb";
  1008. NetworkIO IO;
  1009. bool is_host = false;
  1010. IO.outputs.push_back({"clsfy", is_host});
  1011. Config config;
  1012. config.device_type = LiteDeviceType::LITE_CUDA;
  1013. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1014. network->compute_only_configured_output();
  1015. network->load_model(model_path);
  1016. ASSERT_EQ(network->get_all_output_name().size(), 1);
  1017. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  1018. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  1019. network2->load_model(model_path);
  1020. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  1021. }
  1022. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  1023. #if LITE_WITH_CUDA
  1024. if (get_device_count(LITE_CUDA) <= 1)
  1025. return;
  1026. #endif
  1027. std::string model_path = "./model.mgb";
  1028. NetworkIO IO;
  1029. bool is_host = false;
  1030. IO.inputs.push_back({"data", is_host});
  1031. IO.outputs.push_back({"clsfy", is_host});
  1032. Config config;
  1033. config.device_type = LiteDeviceType::LITE_CUDA;
  1034. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1035. network->set_device_id(1);
  1036. network->load_model(model_path);
  1037. auto inputs_names = network->get_all_input_name();
  1038. for (auto name : inputs_names) {
  1039. auto tensor = network->get_io_tensor(name);
  1040. ASSERT_EQ(tensor->get_device_id(), 1);
  1041. if (name == "idx") {
  1042. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1043. for (int i = 0; i < 23; i++) {
  1044. index_ptr[i] = i % 3;
  1045. }
  1046. }
  1047. if (name == "landmark") {
  1048. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1049. for (int i = 0; i < 23 * 18 * 2; i++) {
  1050. landmakrk_ptr[i] = 0.1f;
  1051. }
  1052. }
  1053. }
  1054. auto outputs_names = network->get_all_output_name();
  1055. for (auto name : outputs_names) {
  1056. auto tensor = network->get_io_tensor(name);
  1057. ASSERT_EQ(tensor->get_device_id(), 1);
  1058. }
  1059. network->forward();
  1060. network->wait();
  1061. }
  1062. TEST(TestNetWork, SetStreamIdDeviceTest) {
  1063. std::string model_path = "./model.mgb";
  1064. NetworkIO IO;
  1065. bool is_host = false;
  1066. IO.inputs.push_back({"data", is_host});
  1067. IO.outputs.push_back({"clsfy", is_host});
  1068. Config config;
  1069. config.device_type = LiteDeviceType::LITE_CUDA;
  1070. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1071. network->set_stream_id(1);
  1072. network->load_model(model_path);
  1073. auto inputs_names = network->get_all_input_name();
  1074. for (auto name : inputs_names) {
  1075. auto tensor = network->get_io_tensor(name);
  1076. if (name == "idx") {
  1077. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1078. for (int i = 0; i < 23; i++) {
  1079. index_ptr[i] = i % 3;
  1080. }
  1081. }
  1082. if (name == "landmark") {
  1083. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1084. for (int i = 0; i < 23 * 18 * 2; i++) {
  1085. landmakrk_ptr[i] = 0.1f;
  1086. }
  1087. }
  1088. }
  1089. network->forward();
  1090. network->wait();
  1091. }
  1092. #if CUDART_VERSION >= 10000
  1093. TEST(TestNetWork, DeviceAsyncExec) {
  1094. auto tensor = get_input_data("./input_data.npy");
  1095. Config config;
  1096. config.device_type = LiteDeviceType::LITE_CUDA;
  1097. config.options.var_sanity_check_first_run = false;
  1098. std::string model_path = "./shufflenet.mge";
  1099. std::string input_name = "data";
  1100. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  1101. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  1102. network->load_model(model_path);
  1103. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  1104. auto src_ptr = tensor->get_memory_ptr();
  1105. auto src_layout = tensor->get_layout();
  1106. input_tensor->reset(src_ptr, src_layout);
  1107. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1108. auto result_tensor = std::make_shared<Tensor>(
  1109. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  1110. void* out_data = result_tensor->get_memory_ptr();
  1111. output_tensor->reset(out_data, result_tensor->get_layout());
  1112. //! set async mode and callback
  1113. volatile bool finished = false;
  1114. network->set_async_callback([&finished]() { finished = true; });
  1115. network->forward();
  1116. size_t count = 0;
  1117. while (finished == false) {
  1118. count++;
  1119. }
  1120. ASSERT_GT(count, 0);
  1121. compare_lite_tensor<float>(output_tensor, result_mgb);
  1122. }
  1123. #endif
  1124. #endif
  1125. #if MGB_ATLAS || MGB_CAMBRICON
  1126. namespace {
  1127. void load_no_device(LiteDeviceType device_type, const std::string& model_path) {
  1128. lite::Config config;
  1129. config.device_type = device_type;
  1130. auto network = std::make_shared<lite::Network>(config);
  1131. network->load_model(model_path);
  1132. network->forward();
  1133. network->wait();
  1134. }
  1135. void load_device_input(
  1136. LiteDeviceType device_type, const std::string& model_path,
  1137. const std::vector<std::string>& inputs) {
  1138. lite::NetworkIO networkio;
  1139. lite::IO input_data_io = {};
  1140. input_data_io.name = inputs[0];
  1141. input_data_io.is_host = false;
  1142. networkio.inputs.emplace_back(input_data_io);
  1143. lite::IO input_input0_io = {};
  1144. input_input0_io.name = inputs[1];
  1145. input_input0_io.is_host = false;
  1146. networkio.inputs.emplace_back(input_input0_io);
  1147. lite::Config config;
  1148. config.device_type = device_type;
  1149. auto network = std::make_shared<lite::Network>(config, networkio);
  1150. network->load_model(model_path);
  1151. network->forward();
  1152. network->wait();
  1153. }
  1154. void load_device_id(
  1155. LiteDeviceType device_type, int device_id, const std::string& model_path) {
  1156. lite::Config config;
  1157. config.device_type = device_type;
  1158. auto network = std::make_shared<lite::Network>(config);
  1159. network->set_device_id(device_id);
  1160. network->load_model(model_path);
  1161. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  1162. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1163. network->forward();
  1164. network->wait();
  1165. ASSERT_EQ(output_tensor->get_device_id(), device_id);
  1166. }
  1167. } // namespace
  1168. #endif
  1169. #if MGB_ATLAS
  1170. TEST(TestNetWork, AtlasLoadNoDevice) {
  1171. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb");
  1172. }
  1173. TEST(TestNetWork, AtlasLoadDeviceInput) {
  1174. load_device_input(
  1175. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb",
  1176. {"data", "input0"});
  1177. }
  1178. TEST(TestNetWork, AtlasLoadAtlas) {
  1179. load_no_device(LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb");
  1180. }
  1181. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  1182. load_device_input(
  1183. LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb", {"data", "input0"});
  1184. }
  1185. TEST(TestNetWork, AtlasDeviceID) {
  1186. load_device_id(LiteDeviceType::LITE_ATLAS, 1, "./model_atlas.mgb");
  1187. }
  1188. #endif
  1189. #if MGB_CAMBRICON
  1190. TEST(TestNetWork, CambriconLoadNoDevice) {
  1191. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb");
  1192. }
  1193. TEST(TestNetWork, CambriconLoadDeviceInput) {
  1194. load_device_input(
  1195. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb",
  1196. {"data", "input0"});
  1197. }
  1198. TEST(TestNetWork, CambriconLoadCambricon) {
  1199. load_no_device(LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb");
  1200. }
  1201. TEST(TestNetWork, CambriconLoadCambriconDeviceInput) {
  1202. load_device_input(
  1203. LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb",
  1204. {"data", "input0"});
  1205. }
  1206. TEST(TestNetWork, CambriconDeviceID) {
  1207. load_device_id(LiteDeviceType::LITE_CAMBRICON, 0, "./model_magicmind.mgb");
  1208. }
  1209. #endif
  1210. #endif
  1211. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}