You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_trace_dump.py 4.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import contextlib
  9. import os
  10. import tempfile
  11. import numpy as np
  12. import pytest
  13. import megengine as mge
  14. import megengine.functional as F
  15. import megengine.module as M
  16. import megengine.optimizer as optim
  17. from megengine import tensor
  18. from megengine.autodiff import GradManager
  19. from megengine.jit import trace
  20. from megengine.traced_module import trace_module
  21. @contextlib.contextmanager
  22. def mkstemp():
  23. fd, path = tempfile.mkstemp()
  24. try:
  25. os.close(fd)
  26. yield path
  27. finally:
  28. os.remove(path)
  29. def minibatch_generator(batch_size):
  30. while True:
  31. inp_data = np.zeros((batch_size, 2))
  32. label = np.zeros(batch_size, dtype=np.int32)
  33. for i in range(batch_size):
  34. inp_data[i, :] = np.random.rand(2) * 2 - 1
  35. label[i] = 1 if np.prod(inp_data[i]) < 0 else 0
  36. yield {"data": inp_data.astype(np.float32), "label": label.astype(np.int32)}
  37. class XORNet(M.Module):
  38. def __init__(self):
  39. self.mid_dim = 14
  40. self.num_class = 2
  41. super().__init__()
  42. self.fc0 = M.Linear(self.num_class, self.mid_dim, bias=True)
  43. self.bn0 = M.BatchNorm1d(self.mid_dim)
  44. self.fc1 = M.Linear(self.mid_dim, self.mid_dim, bias=True)
  45. self.bn1 = M.BatchNorm1d(self.mid_dim)
  46. self.fc2 = M.Linear(self.mid_dim, self.num_class, bias=True)
  47. def forward(self, x):
  48. x = self.fc0(x)
  49. x = self.bn0(x)
  50. x = F.tanh(x)
  51. x = self.fc1(x)
  52. x = self.bn1(x)
  53. x = F.tanh(x)
  54. x = self.fc2(x)
  55. return x
  56. def test_xornet_trace_dump():
  57. net = XORNet()
  58. opt = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
  59. gm = GradManager().attach(net.parameters())
  60. batch_size = 64
  61. train_dataset = minibatch_generator(batch_size)
  62. val_dataset = minibatch_generator(batch_size)
  63. @trace
  64. def train_fun(data, label):
  65. with gm:
  66. net.train()
  67. pred = net(data)
  68. loss = F.nn.cross_entropy(pred, label)
  69. gm.backward(loss)
  70. return pred, loss
  71. @trace
  72. def val_fun(data, label):
  73. net.eval()
  74. pred = net(data)
  75. loss = F.nn.cross_entropy(pred, label)
  76. return pred, loss
  77. @trace(symbolic=True, capture_as_const=True)
  78. def pred_fun(data):
  79. net.eval()
  80. pred = net(data)
  81. pred_normalized = F.softmax(pred)
  82. return pred_normalized
  83. train_loss = []
  84. val_loss = []
  85. for step, minibatch in enumerate(train_dataset):
  86. if step > 100:
  87. break
  88. data = tensor(minibatch["data"])
  89. label = tensor(minibatch["label"])
  90. opt.clear_grad()
  91. _, loss = train_fun(data, label)
  92. train_loss.append((step, loss.numpy()))
  93. if step % 50 == 0:
  94. minibatch = next(val_dataset)
  95. _, loss = val_fun(data, label)
  96. loss = loss.numpy()
  97. val_loss.append((step, loss))
  98. print("Step: {} loss={}".format(step, loss))
  99. opt.step()
  100. test_data = np.array(
  101. [
  102. (0.5, 0.5),
  103. (0.3, 0.7),
  104. (0.1, 0.9),
  105. (-0.5, -0.5),
  106. (-0.3, -0.7),
  107. (-0.9, -0.1),
  108. (0.5, -0.5),
  109. (0.3, -0.7),
  110. (0.9, -0.1),
  111. (-0.5, 0.5),
  112. (-0.3, 0.7),
  113. (-0.1, 0.9),
  114. ]
  115. )
  116. data = tensor(test_data.astype(np.float32))
  117. out = pred_fun(data)
  118. with mkstemp() as out:
  119. pred_fun.dump(out, arg_names=["data"], output_names=["label"])
  120. def test_dump_bn_train_mode():
  121. @trace(symbolic=True, capture_as_const=True)
  122. def bn_train(data):
  123. pred = M.BatchNorm2d(10)(data).sum()
  124. return pred
  125. data = mge.tensor(np.random.random((10, 10, 10, 10)))
  126. bn_train(data)
  127. with pytest.raises(AssertionError):
  128. bn_train.dump("test.mge")

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台