You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 5.1 kB

4 years ago
4 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. # MegEngine
  2. <p align="center">
  3. <img width="202" height="118" src="logo.svg">
  4. </p>
  5. <h3> <a href="https://www.megengine.org.cn/doc/stable/en/user-guide/index.html"> Documentation </a> | <a href="https://www.megengine.org.cn/doc/stable/zh/user-guide/index.html"> 中文文档 </a> </h3>
  6. [![](https://img.shields.io/badge/English-%E4%B8%AD%E6%96%87-green.svg)](README_CN.md) [![](https://img.shields.io/badge/Website-MegEngine-green.svg)](https://megengine.org.cn/) [![](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE) [![](https://img.shields.io/badge/Chat-on%20QQ-green.svg?logo=tencentqq)](https://jq.qq.com/?_wv=1027&k=jJcBU1xi) [![](https://img.shields.io/badge/Discuss-on%20Zhihu-8A2BE2.svg?labelColor=00BFFF&logo=zhihu)](https://www.zhihu.com/people/megengine-bot)
  7. MegEngine is a fast, scalable, and user friendly deep learning framework with 3 key features.
  8. * **Unified framework for both training and inference**
  9. * Quantization, dynamic shape/image pre-processing, and even derivation with a single model.
  10. * After training, put everything into your model to inference on any platform with speed and precision. Check [here](https://www.megengine.org.cn/doc/stable/zh/user-guide/model-development/traced_module/index.html) for a quick guide.
  11. * **The lowest hardware requirements**
  12. * The memory usage of the GPU can be reduced to one-third of the original memory usage when [DTR algorithm](https://www.megengine.org.cn/doc/stable/zh/user-guide/model-development/dtr/index.html) is enabled.
  13. * Inference models with the lowest memory usage by leveraging our Pushdown memory planner.
  14. * **Inference efficiently on all platforms**
  15. * Inference with speed and high-precision on x86, Arm, CUDA, and RoCM.
  16. * Supports Linux, Windows, iOS, Android, TEE, etc.
  17. * Optimize performance and memory usage by leveraging our [advanced features](https://www.megengine.org.cn/doc/stable/zh/user-guide/deployment/lite/advance/index.html).
  18. ------
  19. ## Installation
  20. **NOTE:** MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl) or install the Windows distribution directly. Many other platforms are supported for inference.
  21. ### Binaries
  22. To install the pre-built binaries via pip wheels:
  23. ```bash
  24. python3 -m pip install --upgrade pip
  25. python3 -m pip install megengine -f https://megengine.org.cn/whl/mge.html
  26. ```
  27. ## Building from Source
  28. * CMake build details. please refer to [BUILD_README.md](scripts/cmake-build/BUILD_README.md)
  29. * Python binding build details, Please refer to [BUILD_PYTHON_WHL_README.md](scripts/whl/BUILD_PYTHON_WHL_README.md)
  30. ## How to Contribute
  31. * MegEngine adopts [Contributor Covenant](https://contributor-covenant.org) as a guideline to run our community. Please read the [Code of Conduct](CODE_OF_CONDUCT.md).
  32. * Every contributor of MegEngine must sign a [Contributor License Agreement (CLA)](CONTRIBUTOR_LICENSE_AGREEMENT.md) to clarify the intellectual property license granted with the contributions.
  33. * You can help to improve MegEngine in many ways:
  34. * Write code.
  35. * Improve [documentation](https://github.com/MegEngine/Docs).
  36. * Answer questions on [MegEngine Forum](https://discuss.megengine.org.cn), or Stack Overflow.
  37. * Contribute new models in [MegEngine Model Hub](https://github.com/megengine/hub).
  38. * Try a new idea on [MegStudio](https://studio.brainpp.com).
  39. * Report or investigate [bugs and issues](https://github.com/MegEngine/MegEngine/issues).
  40. * Review [Pull Requests](https://github.com/MegEngine/MegEngine/pulls).
  41. * Star MegEngine repo.
  42. * Cite MegEngine in your papers and articles.
  43. * Recommend MegEngine to your friends.
  44. * Any other form of contribution is welcomed.
  45. We strive to build an open and friendly community. We aim to power humanity with AI.
  46. ## How to Contact Us
  47. * Issue: [github.com/MegEngine/MegEngine/issues](https://github.com/MegEngine/MegEngine/issues)
  48. * Email: [megengine-support@megvii.com](mailto:megengine-support@megvii.com)
  49. * Forum: [discuss.megengine.org.cn](https://discuss.megengine.org.cn)
  50. * QQ Group: 1029741705
  51. ## Resources
  52. - [MegEngine](https://megengine.org.cn)
  53. - [MegStudio](https://studio.brainpp.com)
  54. - mirror repo
  55. - OPENI: [openi.org.cn/MegEngine](https://www.openi.org.cn/html/2020/Framework_0325/18.html)
  56. - Gitee: [gitee.com/MegEngine/MegEngine](https://gitee.com/MegEngine/MegEngine)
  57. ## License
  58. MegEngine is licensed under the Apache License, Version 2.0
  59. ## Citation
  60. If you use MegEngine in your publication,please cite it by using the following BibTeX entry.
  61. ```
  62. @Misc{MegEngine,
  63. institution = {megvii},
  64. title = {MegEngine:A fast, scalable and easy-to-use deep learning framework},
  65. howpublished = {\url{https://github.com/MegEngine/MegEngine}},
  66. year = {2020}
  67. }
  68. ```
  69. Copyright (c) 2014-2021 Megvii Inc. All rights reserved.