You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

matrix_mul.cpp 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714
  1. #include "test/arm_common/fixture.h"
  2. #include "test/common/benchmarker.h"
  3. #include "test/common/checker.h"
  4. #include "test/common/matrix_mul.h"
  5. #include "test/common/rng.h"
  6. #include "test/common/task_record_check.h"
  7. #if MGB_ENABLE_CPUINFO
  8. #include "cpuinfo.h"
  9. #endif
  10. using namespace megdnn;
  11. using namespace test;
  12. TEST_F(ARM_COMMON, MATRIX_MUL_INT8x8x32) {
  13. matrix_mul::check_matrix_mul(
  14. dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle());
  15. }
  16. TEST_F(ARM_COMMON, MATRIX_MUL_INT8x8x16) {
  17. matrix_mul::check_matrix_mul(
  18. dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle());
  19. }
  20. TEST_F(ARM_COMMON, MATRIX_MUL_QUINT8) {
  21. matrix_mul::check_matrix_mul(
  22. dtype::Quantized8Asymm(1.2f, (uint8_t)127),
  23. dtype::Quantized8Asymm(1.3f, (uint8_t)129), {}, handle());
  24. }
  25. TEST_F(ARM_COMMON, MATRIX_MUL_FP32) {
  26. Checker<MatrixMul> checker(handle());
  27. using Param = MatrixMul::Param;
  28. auto run = [&](size_t M, size_t K, size_t N) {
  29. Param param;
  30. param.transposeA = false;
  31. param.transposeB = false;
  32. TensorShape A, B;
  33. A = TensorShape{M, K};
  34. B = TensorShape{K, N};
  35. checker.set_param(param)
  36. .set_dtype(0, dtype::Float32())
  37. .set_dtype(1, dtype::Float32())
  38. .set_dtype(2, dtype::Float32())
  39. .execs({A, B, {}});
  40. };
  41. checker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_F32_GEMV"));
  42. // M < 8
  43. for (size_t M : {1, 2, 3, 4, 5, 6, 7})
  44. for (size_t K : {7, 1024, 2048})
  45. for (size_t N : {7, 1024, 2056})
  46. run(M, K, N);
  47. // M = 8,K = 1, 2
  48. for (size_t M : {8})
  49. for (size_t K : {1, 2})
  50. for (size_t N : {7, 1024, 2056})
  51. run(M, K, N);
  52. // N = 1
  53. for (size_t M : {1, 2, 3, 4, 5, 6, 7})
  54. for (size_t K : {7, 1024, 2048})
  55. for (size_t N : {1})
  56. run(M, K, N);
  57. }
  58. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  59. TEST_F(ARM_COMMON, MATRIX_MUL_FP16) {
  60. Checker<MatrixMul> checker(handle());
  61. checker.set_epsilon(1e-2);
  62. NormalRNG rng(2.f);
  63. checker.set_rng(0, &rng).set_rng(1, &rng);
  64. using Param = MatrixMul::Param;
  65. auto args = matrix_mul::get_matmul_args_no_mask();
  66. for (auto& arg : args) {
  67. size_t m = arg.m, n = arg.n, k = arg.k;
  68. Param param;
  69. param.transposeA = false;
  70. param.transposeB = false;
  71. TensorShape A, B;
  72. A = TensorShape{m, k};
  73. B = TensorShape{k, n};
  74. checker.set_param(param)
  75. .set_dtype(0, dtype::Float16())
  76. .set_dtype(1, dtype::Float16())
  77. .set_dtype(2, dtype::Float16())
  78. .execs({A, B, {}});
  79. }
  80. }
  81. TEST_F(ARM_COMMON, MATRIX_MUL_FP16_TEST) {
  82. Checker<MatrixMul> checker(handle());
  83. using Param = MatrixMul::Param;
  84. checker.set_epsilon(1e-2);
  85. NormalRNG rng(2.f);
  86. checker.set_rng(0, &rng).set_rng(1, &rng);
  87. auto run = [&](size_t M, size_t K, size_t N) {
  88. Param param;
  89. param.transposeA = false;
  90. param.transposeB = false;
  91. TensorShape A, B;
  92. A = TensorShape{M, K};
  93. B = TensorShape{K, N};
  94. checker.set_param(param)
  95. .set_dtype(0, dtype::Float16())
  96. .set_dtype(1, dtype::Float16())
  97. .set_dtype(2, dtype::Float16())
  98. .execs({A, B, {}});
  99. };
  100. checker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_F16_GEMV"));
  101. // M = 1, 2, 3, 4
  102. for (size_t M : {1, 2, 3, 4})
  103. for (size_t K : {7, 512, 1024})
  104. for (size_t N : {13, 1024, 2048})
  105. run(M, K, N);
  106. // N = 1
  107. for (size_t M : {1, 2, 3, 4})
  108. for (size_t K : {7, 512, 1024})
  109. for (size_t N : {1})
  110. run(M, K, N);
  111. }
  112. #endif
  113. TEST_F(ARM_COMMON, QINT8x8x32_GEMV) {
  114. Checker<MatrixMul> checker(handle());
  115. using Param = MatrixMul::Param;
  116. checker.set_before_exec_callback(
  117. AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEMV"));
  118. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
  119. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  120. auto run = [&](size_t M, size_t K, size_t N) {
  121. Param param;
  122. param.transposeA = false;
  123. param.transposeB = false;
  124. TensorShape A, B;
  125. A = TensorShape{M, K};
  126. B = TensorShape{K, N};
  127. checker.set_param(param)
  128. .set_dtype(0, dtype::QuantizedS8(2.5f))
  129. .set_dtype(1, dtype::QuantizedS8(2.5f))
  130. .set_dtype(2, dtype::QuantizedS32(6.25f))
  131. .execs({A, B, {}});
  132. };
  133. // N = 1
  134. for (size_t M : {1, 10, 16, 33, 64})
  135. for (size_t K : {7, 512, 1024})
  136. for (size_t N : {1})
  137. run(M, K, N);
  138. }
  139. TEST_F(ARM_COMMON, QINT8x8x32_GEMV_MK4) {
  140. Checker<MatrixMul> checker(handle());
  141. using Param = MatrixMul::Param;
  142. checker.set_before_exec_callback(
  143. AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEMV_MK4"));
  144. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
  145. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  146. auto run = [&](size_t M, size_t K, size_t N) {
  147. MEGDNN_MARK_USED_VAR(N);
  148. Param param;
  149. param.format = param::MatrixMul::Format::MK4;
  150. param.transposeA = false;
  151. param.transposeB = false;
  152. TensorShape A, B;
  153. A = TensorShape{M / 4, K / 4, 4, 4};
  154. B = TensorShape{K / 4, 1, 4};
  155. checker.set_param(param)
  156. .set_dtype(0, dtype::QuantizedS8(2.5f))
  157. .set_dtype(1, dtype::QuantizedS8(2.5f))
  158. .set_dtype(2, dtype::QuantizedS32(6.25f))
  159. .execs({A, B, {}});
  160. };
  161. // N = 1
  162. for (size_t M : {4, 16, 128, 1024})
  163. for (size_t K : {4, 8, 12, 16, 20, 24, 256, 1024})
  164. run(M, K, 1);
  165. }
  166. #if MGB_ENABLE_DOT
  167. TEST_F(ARM_COMMON, QINT8x8x32_GEMV_MK4_DOT) {
  168. Checker<MatrixMul> checker(handle());
  169. using Param = MatrixMul::Param;
  170. checker.set_before_exec_callback(
  171. AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEMV_MK4_DOT"));
  172. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
  173. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  174. auto run = [&](size_t M, size_t K, size_t N) {
  175. Param param;
  176. param.format = param::MatrixMul::Format::MK4_DOT;
  177. param.transposeA = false;
  178. param.transposeB = false;
  179. TensorShape A, B;
  180. A = TensorShape{M / 4, K / 4, 4, 4};
  181. B = TensorShape{K / 4, 1, 4};
  182. checker.set_param(param)
  183. .set_dtype(0, dtype::QuantizedS8(2.5f))
  184. .set_dtype(1, dtype::QuantizedS8(2.5f))
  185. .set_dtype(2, dtype::QuantizedS32(6.25f))
  186. .execs({A, B, {}});
  187. };
  188. // N = 1
  189. for (size_t M : {4, 16, 128, 1024})
  190. for (size_t K : {4, 8, 12, 16, 20, 24, 256, 1024})
  191. run(M, K, 1);
  192. }
  193. TEST_F(ARM_COMMON, QINT8x8x32_GEVM_DOT) {
  194. Checker<MatrixMul> checker(handle());
  195. using Param = MatrixMul::Param;
  196. auto algo_ck = AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEVM_DOT");
  197. checker.set_before_exec_callback(algo_ck);
  198. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-30, 30);
  199. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  200. Param param;
  201. param.format = Param::Format::DEFAULT;
  202. param.transposeA = false;
  203. param.transposeB = false;
  204. auto run = [&](size_t M, size_t N, size_t K) {
  205. TensorShape A, B;
  206. A = TensorShape{M, K};
  207. B = TensorShape{K, N};
  208. checker.set_param(param)
  209. .set_dtype(0, dtype::Int8())
  210. .set_dtype(1, dtype::Int8())
  211. .set_dtype(2, dtype::Int32())
  212. .execs({A, B, {}});
  213. };
  214. run(1, 32, 4);
  215. for (int n = 7; n < 43; n += 3) {
  216. for (int k = 1; k < 33; k += 3) {
  217. run(1, n, k);
  218. }
  219. }
  220. }
  221. TEST_F(ARM_COMMON, QINT8x8x32_GEVM_N32K4_DOT) {
  222. Checker<MatrixMul> checker(handle());
  223. using Param = MatrixMul::Param;
  224. auto algo_ck = AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEVM_N32K4_DOT");
  225. checker.set_before_exec_callback(algo_ck);
  226. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-30, 30);
  227. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  228. Param param;
  229. param.format = Param::Format::N32K4_DOT;
  230. param.transposeA = false;
  231. param.transposeB = false;
  232. auto run = [&](size_t M, size_t N, size_t K) {
  233. TensorShape A, B;
  234. A = TensorShape{M, K};
  235. B = TensorShape{N / 32, K / 4, 32, 4};
  236. checker.set_param(param)
  237. .set_dtype(0, dtype::Int8())
  238. .set_dtype(1, dtype::Int8())
  239. .set_dtype(2, dtype::Int32())
  240. .execs({A, B, {}});
  241. };
  242. run(1, 32, 4);
  243. for (int n = 32; n < 65; n += 32) {
  244. for (int k = 4; k < 39; k += 4) {
  245. run(1, n, k);
  246. }
  247. }
  248. }
  249. #if MEGDNN_WITH_BENCHMARK
  250. TEST_F(ARM_COMMON, BENCHMARK_QINT8x8x32_GEVM_N32K4_DOT) {
  251. using Param = MatrixMul::Param;
  252. auto algo_ck = AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEVM_N32K4_DOT");
  253. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-30, 30);
  254. Param param;
  255. param.format = Param::Format::N32K4_DOT;
  256. param.transposeA = false;
  257. param.transposeB = false;
  258. constexpr size_t RUNS = 2000;
  259. Benchmarker<MatrixMul> benchmarker_int(handle());
  260. benchmarker_int.set_times(RUNS)
  261. .set_dtype(0, dtype::Int8{})
  262. .set_dtype(1, dtype::Int8{})
  263. .set_dtype(2, dtype::Int32{})
  264. .set_param(param)
  265. .set_before_exec_callback(algo_ck)
  266. .set_display(false);
  267. Benchmarker<MatrixMul> benchmarker_float(handle());
  268. benchmarker_float.set_display(false).set_times(RUNS);
  269. auto bench = [&](size_t M, size_t N, size_t K) {
  270. auto int_used =
  271. benchmarker_int.exec({{M, K}, {N / 32, K / 4, 32, 4}, {}}) / RUNS;
  272. auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
  273. float computations = 2.f * M * K * N * 1e-6;
  274. float through_put = (M * K + N * K + M * N) * 1e-6;
  275. printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
  276. "%f Gflops speedup: %f, through put %f G\n",
  277. M, K, N, float_used, computations / float_used, int_used,
  278. computations / int_used, float_used / int_used, through_put / int_used);
  279. };
  280. bench(1, 256, 512);
  281. bench(1, 256, 1024);
  282. bench(1, 512, 512);
  283. bench(1, 512, 1024);
  284. }
  285. #endif
  286. #endif
  287. TEST_F(ARM_COMMON, QINT8x8x32_GEVM) {
  288. Checker<MatrixMul> checker(handle());
  289. using Param = MatrixMul::Param;
  290. checker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_GEVM"));
  291. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
  292. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  293. auto run = [&](size_t M, size_t K, size_t N) {
  294. Param param;
  295. param.transposeA = false;
  296. param.transposeB = true;
  297. TensorShape A, B;
  298. A = TensorShape{M, K};
  299. B = TensorShape{N, K};
  300. checker.set_param(param)
  301. .set_dtype(0, dtype::QuantizedS8(2.5f))
  302. .set_dtype(1, dtype::QuantizedS8(2.5f))
  303. .set_dtype(2, dtype::QuantizedS32(6.25f))
  304. .execs({A, B, {}});
  305. };
  306. // M = 1
  307. for (size_t N : {1, 10, 16, 33, 64})
  308. for (size_t K : {7, 512, 1024})
  309. for (size_t M : {1})
  310. run(M, K, N);
  311. }
  312. TEST_F(ARM_COMMON, FP32_GEVM) {
  313. Checker<MatrixMul> checker(handle());
  314. using Param = MatrixMul::Param;
  315. checker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_GEVM"));
  316. checker.set_epsilon(1e-2);
  317. auto run = [&](size_t M, size_t K, size_t N) {
  318. Param param;
  319. param.transposeA = false;
  320. param.transposeB = true;
  321. TensorShape A, B;
  322. A = TensorShape{M, K};
  323. B = TensorShape{N, K};
  324. checker.set_param(param).execs({A, B, {}});
  325. };
  326. // M = 1
  327. for (size_t M : {1})
  328. for (size_t K : {1000, 4096})
  329. for (size_t N : {1000, 4096})
  330. run(M, K, N);
  331. }
  332. TEST_F(ARM_COMMON, MATRIX_MUL_RECORD) {
  333. TaskRecordChecker<MatrixMul> checker(0);
  334. checker.set_epsilon(1e-2);
  335. NormalRNG rng(2.f);
  336. checker.set_rng(0, &rng).set_rng(1, &rng);
  337. using Param = MatrixMul::Param;
  338. auto args = matrix_mul::get_matmul_args_no_mask();
  339. for (auto& arg : args) {
  340. size_t m = arg.m, n = arg.n, k = arg.k;
  341. Param param;
  342. param.transposeA = false;
  343. param.transposeB = false;
  344. TensorShape A, B;
  345. A = TensorShape{m, k};
  346. B = TensorShape{k, n};
  347. checker.set_param(param)
  348. .set_dtype(0, dtype::Float32())
  349. .set_dtype(1, dtype::Float32())
  350. .set_dtype(2, dtype::Float32())
  351. .execs({A, B, {}});
  352. }
  353. }
  354. #if MEGDNN_WITH_BENCHMARK
  355. TEST_F(ARM_COMMON, BENCHMARK_SGEMV) {
  356. int exec_times = 10;
  357. Benchmarker<MatrixMul> benchmarker(handle());
  358. benchmarker.set_times(exec_times);
  359. auto run = [&](size_t M, size_t K, size_t N) {
  360. printf("SGEMV: (%zu, %zu, %zu)\n", M, K, N);
  361. benchmarker.set_dtype(0, dtype::Float32()).set_dtype(1, dtype::Float32());
  362. auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
  363. auto computations = 2.f * M * K * N * 1e-6;
  364. auto perf = computations / time;
  365. printf("gemv fp32, Performance is %f Gflops\n", perf);
  366. };
  367. printf("warm up:\n");
  368. for (int i = 0; i < 50; i++) {
  369. benchmarker.set_dtype(0, dtype::Float32())
  370. .set_dtype(1, dtype::Float32())
  371. .set_display(false)
  372. .exec({{2, 1024}, {1024, 512}, {}});
  373. benchmarker.set_display(true);
  374. }
  375. // run gemv
  376. for (size_t M : {1, 2, 4, 8})
  377. for (size_t K : {1024, 1536, 2048})
  378. for (size_t N : {512, 1024})
  379. run(M, K, N);
  380. for (size_t M : {4, 64, 1024, 4096})
  381. for (size_t K : {128, 256, 1024, 4096})
  382. run(M, K, 1);
  383. }
  384. TEST_F(ARM_COMMON, BENCHMARK_SGEMV_FP32) {
  385. int exec_times = 50;
  386. Benchmarker<MatrixMul> benchmarker(handle());
  387. benchmarker.set_times(exec_times);
  388. benchmarker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_F32_GEMV"));
  389. auto run = [&](size_t M, size_t K, size_t N) {
  390. printf("SGEMV: (%zu, %zu, %zu)\n", M, K, N);
  391. benchmarker.set_dtype(0, dtype::Float32())
  392. .set_dtype(1, dtype::Float32())
  393. .set_dtype(2, dtype::Float32());
  394. auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
  395. auto computations = 2 * M * K * N * 1e-6;
  396. auto perf = computations / time;
  397. printf("gemv fp32, Performance is %f Gflops\n", perf);
  398. };
  399. printf("warm up:\n");
  400. for (int i = 0; i < 50; i++) {
  401. benchmarker.set_dtype(0, dtype::Float32())
  402. .set_dtype(1, dtype::Float32())
  403. .set_display(false)
  404. .exec({{2, 1024}, {1024, 512}, {}});
  405. benchmarker.set_display(true);
  406. }
  407. // run gemv
  408. run(12, 48, 1);
  409. run(48, 12, 1);
  410. run(32, 128, 1);
  411. run(128, 32, 1);
  412. run(64, 256, 1);
  413. run(256, 64, 1);
  414. run(128, 512, 1);
  415. run(512, 128, 1);
  416. run(256, 1024, 1);
  417. run(1024, 256, 1);
  418. }
  419. TEST_F(ARM_COMMON, BENCHMARK_SGEMV_MK4) {
  420. int exec_times = 10;
  421. using Param = MatrixMul::Param;
  422. Param param;
  423. param.format = param::MatrixMul::Format::MK4;
  424. param.transposeA = false;
  425. param.transposeB = false;
  426. Benchmarker<MatrixMul> benchmarker(handle());
  427. benchmarker.set_times(exec_times);
  428. benchmarker.set_dtype(0, dtype::Float32())
  429. .set_dtype(1, dtype::Float32())
  430. .set_param(param);
  431. auto run = [&](size_t M, size_t K) {
  432. printf("SGEMV_MK4: (%zu, %zu, 1)\n", M, K);
  433. TensorShape A, B;
  434. A = TensorShape{M / 4, K / 4, 4, 4};
  435. B = TensorShape{K / 4, 1, 4};
  436. auto time = benchmarker.exec({A, B, {}}) / exec_times;
  437. auto computations = 2.f * M * K * 1e-6;
  438. auto perf = computations / time;
  439. printf("gemv mk4 fp32, Performance is %f Gflops\n", perf);
  440. };
  441. printf("warm up:\n");
  442. for (int i = 0; i < 50; i++) {
  443. benchmarker.set_dtype(0, dtype::Float32())
  444. .set_dtype(1, dtype::Float32())
  445. .set_dtype(2, dtype::Float32())
  446. .set_display(false)
  447. .exec({{4, 256, 4, 4}, {256, 1, 4}, {}});
  448. }
  449. // run gemv mk4
  450. for (size_t M : {4, 64, 1024, 4096})
  451. for (size_t K : {128, 1024, 4096})
  452. run(M, K);
  453. }
  454. TEST_F(ARM_COMMON, BENCHMARK_SGEMV_FP16) {
  455. int exec_times = 50;
  456. Benchmarker<MatrixMul> benchmarker(handle());
  457. benchmarker.set_times(exec_times);
  458. benchmarker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_F16_GEMV"));
  459. auto run = [&](size_t M, size_t K, size_t N) {
  460. printf("SGEMV_FP16: (%zu, %zu, %zu)\n", M, K, N);
  461. benchmarker.set_dtype(0, dtype::Float16())
  462. .set_dtype(1, dtype::Float16())
  463. .set_dtype(2, dtype::Float16());
  464. auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
  465. auto computations = 2 * M * K * N * 1e-6;
  466. auto perf = computations / time;
  467. printf("gemv fp16, Performance is %f Gflops\n", perf);
  468. };
  469. printf("warm up:\n");
  470. for (int i = 0; i < 50; i++) {
  471. benchmarker.set_dtype(0, dtype::Float16())
  472. .set_dtype(1, dtype::Float16())
  473. .set_dtype(2, dtype::Float16())
  474. .set_display(false)
  475. .exec({{2, 1024}, {1024, 512}, {}});
  476. benchmarker.set_display(true);
  477. }
  478. // run gemv
  479. for (size_t M : {1, 2, 3, 4})
  480. for (size_t K : {1024, 1536, 2048})
  481. for (size_t N : {512, 1024})
  482. run(M, K, N);
  483. }
  484. TEST_F(ARM_COMMON, BENCHMARK_SGEMM) {
  485. int exec_times = 10;
  486. Benchmarker<MatrixMul> benchmarker(handle());
  487. benchmarker.set_times(exec_times);
  488. float mod = 1000 * exec_times / 1e9;
  489. auto run = [&](size_t M, size_t K, size_t N) {
  490. float time = 1.f, perf = 1.f;
  491. printf("SGEMM: (%zu, %zu, %zu)\n", M, K, N);
  492. benchmarker.set_dtype(0, dtype::Float32()).set_dtype(1, dtype::Float32());
  493. time = benchmarker.exec({{M, K}, {K, N}, {}});
  494. perf = 2.f * M * K * N / time * mod;
  495. printf("gemm, Performance is %f Gflops\n", perf);
  496. };
  497. printf("warm up:\n");
  498. for (int i = 0; i < 50; i++) {
  499. benchmarker.set_dtype(0, dtype::Float32())
  500. .set_dtype(1, dtype::Float32())
  501. .set_display(false)
  502. .exec({{2, 1024}, {1024, 512}, {}});
  503. benchmarker.set_display(true);
  504. }
  505. run(256, 12 * 24, 256);
  506. //////////////////////// gemv //////////////////////////
  507. for (size_t M : {8, 64, 112, 256}) {
  508. for (size_t K : {8, 64, 112, 256}) {
  509. run(M, 1, K);
  510. }
  511. }
  512. //////////////////////// gemm //////////////////////////
  513. for (size_t M : {8, 64, 112, 256}) {
  514. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  515. for (size_t N : {8, 64, 112, 256}) {
  516. run(M, N, K);
  517. }
  518. }
  519. }
  520. }
  521. TEST_F(ARM_COMMON, BENCHMARK_MATRIX_MUL_INT8x8x32) {
  522. constexpr size_t RUNS = 50;
  523. param::MatrixMul param;
  524. Benchmarker<MatrixMul> benchmarker_int(handle());
  525. benchmarker_int.set_times(RUNS)
  526. .set_dtype(0, dtype::Int8{})
  527. .set_dtype(1, dtype::Int8{})
  528. .set_dtype(2, dtype::Int32{})
  529. .set_param(param)
  530. .set_display(false);
  531. Benchmarker<MatrixMul> benchmarker_float(handle());
  532. benchmarker_float.set_display(false).set_times(RUNS);
  533. auto run = [&](size_t M, size_t N, size_t K) {
  534. auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS;
  535. auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
  536. float computations = 2.f * M * K * N * 1e-6;
  537. printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
  538. "%f Gflops speedup: %f\n",
  539. M, K, N, float_used, computations / float_used, int_used,
  540. computations / int_used, float_used / int_used);
  541. };
  542. run(256, 12 * 24, 256);
  543. //////////////////////// gemv //////////////////////////
  544. for (size_t M : {8, 64, 112, 256}) {
  545. for (size_t K : {8, 64, 112, 256}) {
  546. run(M, 1, K);
  547. }
  548. }
  549. //////////////////////// gemm //////////////////////////
  550. for (size_t M : {8, 64, 112, 256}) {
  551. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  552. for (size_t N : {8, 64, 112, 256}) {
  553. run(M, N, K);
  554. }
  555. }
  556. }
  557. }
  558. TEST_F(ARM_COMMON, BENCHMARK_MATRIX_MUL_QUINT8) {
  559. constexpr size_t RUNS = 50;
  560. param::MatrixMul param;
  561. Benchmarker<MatrixMul> benchmarker_int(handle());
  562. benchmarker_int.set_times(RUNS)
  563. .set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
  564. .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
  565. .set_dtype(2, {})
  566. .set_param(param)
  567. .set_display(false);
  568. Benchmarker<MatrixMul> benchmarker_float(handle());
  569. benchmarker_float.set_display(false).set_times(RUNS);
  570. auto run = [&](size_t M, size_t N, size_t K) {
  571. auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS;
  572. auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
  573. float computations = 2.f * M * K * N * 1e-6;
  574. printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
  575. "%f Gflops speedup: %f\n",
  576. M, K, N, float_used, computations / float_used, int_used,
  577. computations / int_used, float_used / int_used);
  578. };
  579. run(256, 12 * 24, 256);
  580. for (size_t M : {8, 64, 112, 256}) {
  581. for (size_t K : {8, 64, 112, 256}) {
  582. for (size_t N : {8, 64, 112, 256}) {
  583. run(M, N, K);
  584. }
  585. }
  586. }
  587. }
  588. TEST_F(ARM_COMMON, BENCHMARK_TRANSPOSED_MATRIX_MUL_QUINT8) {
  589. constexpr size_t RUNS = 50;
  590. param::MatrixMul param;
  591. param.transposeA = param.transposeB = true;
  592. Benchmarker<MatrixMul> benchmarker_int(handle());
  593. benchmarker_int.set_times(RUNS)
  594. .set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
  595. .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
  596. .set_dtype(2, {})
  597. .set_param(param)
  598. .set_display(false);
  599. Benchmarker<MatrixMul> benchmarker_float(handle());
  600. benchmarker_float.set_param(param).set_display(false).set_times(RUNS);
  601. auto run = [&](size_t M, size_t N, size_t K) {
  602. auto int_used = benchmarker_int.exec({{K, M}, {N, K}, {}}) / RUNS;
  603. auto float_used = benchmarker_float.exec({{K, M}, {N, K}, {}}) / RUNS;
  604. float computations = 2.f * M * K * N * 1e-6;
  605. printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
  606. "%f Gflops speedup: %f\n",
  607. M, K, N, float_used, computations / float_used, int_used,
  608. computations / int_used, float_used / int_used);
  609. };
  610. run(256, 12 * 24, 256);
  611. for (size_t M : {8, 64, 112, 256}) {
  612. for (size_t K : {8, 64, 112, 256}) {
  613. for (size_t N : {8, 64, 112, 256}) {
  614. run(M, N, K);
  615. }
  616. }
  617. }
  618. }
  619. #endif
  620. // vim: syntax=cpp.doxygen