You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. #include <vector>
  2. #include "megdnn/dtype.h"
  3. #include "megdnn/opr_param_defs.h"
  4. #include "test/arm_common/fixture.h"
  5. #include "test/common/benchmarker.h"
  6. #include "test/common/checker.h"
  7. #include "test/common/pooling.h"
  8. #include "test/common/rng.h"
  9. #include "test/common/task_record_check.h"
  10. namespace megdnn {
  11. namespace test {
  12. /*********************** mutli threads *********************************/
  13. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  14. using Param = param::Pooling;
  15. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  16. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  17. for (size_t p : {1, 2}) {
  18. Param param;
  19. param.mode = Param::Mode::MAX;
  20. param.window_h = param.window_w = 3;
  21. param.stride_h = param.stride_w = 2;
  22. param.pad_h = param.pad_w = p;
  23. Checker<Pooling> checker(handle());
  24. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  25. param.mode = Param::Mode::AVERAGE;
  26. param.window_h = param.window_w = 3;
  27. param.stride_h = param.stride_w = 2;
  28. param.pad_h = param.pad_w = p;
  29. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  30. param.mode = Param::Mode::MAX;
  31. param.window_h = param.window_w = 4;
  32. param.stride_h = param.stride_w = 2;
  33. param.pad_h = param.pad_w = p;
  34. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  35. param.mode = Param::Mode::MAX;
  36. param.window_h = param.window_w = 5;
  37. param.stride_h = param.stride_w = 2;
  38. param.pad_h = param.pad_w = p;
  39. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  40. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  41. }
  42. }
  43. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_RECORD) {
  44. using Param = param::Pooling;
  45. TaskRecordChecker<Pooling> checker(0);
  46. for (size_t ih : {2, 3, 5, 7, 11, 13, 17})
  47. for (size_t iw : {2, 3, 5, 7, 11, 13, 17})
  48. for (size_t p : {1, 2}) {
  49. Param param;
  50. param.mode = Param::Mode::MAX;
  51. param.window_h = param.window_w = 3;
  52. param.stride_h = param.stride_w = 2;
  53. param.pad_h = param.pad_w = p;
  54. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  55. param.mode = Param::Mode::AVERAGE;
  56. param.window_h = param.window_w = 3;
  57. param.stride_h = param.stride_w = 2;
  58. param.pad_h = param.pad_w = p;
  59. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  60. param.mode = Param::Mode::MAX;
  61. param.window_h = param.window_w = 4;
  62. param.stride_h = param.stride_w = 2;
  63. param.pad_h = param.pad_w = p;
  64. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  65. param.mode = Param::Mode::MAX;
  66. param.window_h = param.window_w = 5;
  67. param.stride_h = param.stride_w = 2;
  68. param.pad_h = param.pad_w = p;
  69. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  70. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  71. }
  72. }
  73. std::vector<std::pair<param::Pooling, TensorShapeArray>> get_nchw44_pool_args(
  74. size_t filter, size_t stride) {
  75. constexpr size_t ic_step = 4;
  76. std::vector<std::pair<param::Pooling, TensorShapeArray>> args;
  77. for (size_t n : {1, 2})
  78. for (size_t c : {4, 8})
  79. for (size_t ih : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
  80. for (size_t iw : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
  81. for (size_t ph : {0, 1, 2})
  82. for (size_t pw : {0, 1, 2})
  83. for (auto mode :
  84. {param::Pooling::Mode::MAX,
  85. param::Pooling::Mode::AVERAGE})
  86. if (ih + 2 * ph >= filter && iw + 2 * pw >= filter &&
  87. filter > ph && filter > pw) {
  88. param::Pooling param;
  89. param.mode = mode;
  90. param.format = param::Pooling::Format::NCHW44;
  91. param.pad_h = ph;
  92. param.pad_w = pw;
  93. param.stride_h = param.stride_w = stride;
  94. param.window_h = param.window_w = filter;
  95. args.emplace_back(std::make_pair(
  96. param,
  97. TensorShapeArray{
  98. {n, c / ic_step, ih, iw, ic_step},
  99. {}}));
  100. }
  101. return args;
  102. }
  103. void run_pooling_check(
  104. Handle* handle, std::vector<std::pair<param::Pooling, TensorShapeArray>> args,
  105. bool is_int8) {
  106. Checker<Pooling> checker(handle);
  107. UniformIntRNG rng_int8{INT8_MIN >> 1, INT8_MAX >> 1};
  108. UniformIntRNG rng_fp32{-10, 10};
  109. if (is_int8) {
  110. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  111. checker.set_rng(0, &rng_int8);
  112. } else {
  113. checker.set_rng(0, &rng_fp32);
  114. }
  115. for (auto arg : args) {
  116. checker.set_param(arg.first).exec(arg.second);
  117. }
  118. }
  119. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_NCHW44_FP32) {
  120. for (auto filter : {2, 3, 4, 5})
  121. for (auto stride : {1, 2}) {
  122. run_pooling_check(handle(), get_nchw44_pool_args(filter, stride), false);
  123. }
  124. }
  125. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W9_w13_NCHW44) {
  126. UniformIntRNG rng{-10, 10};
  127. Checker<Pooling> checker(handle());
  128. checker.set_rng(0, &rng);
  129. // clang-format off
  130. for (size_t ih: {20, 15})
  131. for (size_t iw: {15, 20})
  132. for (size_t kernel: {9, 13})
  133. for (size_t pad: {4, 6})
  134. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  135. if (kernel > pad)
  136. {
  137. param::Pooling param;
  138. param.mode = mode;
  139. param.format = param::Pooling::Format::NCHW44;
  140. param.pad_h = pad;
  141. param.pad_w = pad;
  142. param.stride_h = param.stride_w = 1;
  143. param.window_h = param.window_w = kernel ;
  144. checker.set_param(param).exec(TensorShapeArray{{2, 8, ih, iw, 4}, {}});
  145. }
  146. // clang-format on
  147. }
  148. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W3x3_NCHW44) {
  149. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  150. Checker<Pooling> checker(handle());
  151. checker.set_rng(0, &rng);
  152. // clang-format off
  153. for (size_t ih: {3, 5, 10})
  154. for (size_t iw: {3, 5, 7, 9, 15, 20})
  155. for (size_t ph: {0, 1, 2})
  156. for (size_t pw: {0, 1, 2})
  157. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  158. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  159. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  160. {
  161. checker.set_dtype(0, data_type);
  162. param::Pooling param;
  163. param.mode = mode;
  164. param.format = param::Pooling::Format::NCHW44;
  165. param.pad_h = ph;
  166. param.pad_w = pw;
  167. param.stride_h = param.stride_w = 1;
  168. param.window_h = param.window_w = 3;
  169. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  170. param.stride_h = param.stride_w = 2;
  171. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  172. }
  173. // clang-format on
  174. }
  175. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W2x2_NCHW44) {
  176. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  177. Checker<Pooling> checker(handle());
  178. checker.set_rng(0, &rng);
  179. // clang-format off
  180. for (size_t ih: {2, 5, 10, 17})
  181. for (size_t iw: {2, 6, 8, 16, 26})
  182. for (size_t ph: {0, 1})
  183. for (size_t pw: {0, 1})
  184. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  185. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  186. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  187. {
  188. checker.set_dtype(0, data_type);
  189. checker.set_dtype(1, data_type);
  190. param::Pooling param;
  191. param.mode = mode;
  192. param.format = param::Pooling::Format::NCHW44;
  193. param.pad_h = ph;
  194. param.pad_w = pw;
  195. param.stride_h = param.stride_w = 1;
  196. param.window_h = param.window_w = 2;
  197. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  198. param.stride_h = param.stride_w = 2;
  199. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  200. }
  201. // clang-format on
  202. }
  203. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W4x4_NCHW44) {
  204. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  205. Checker<Pooling> checker(handle());
  206. checker.set_rng(0, &rng);
  207. // clang-format off
  208. for (size_t ih: {4, 10, 18, 25, 30})
  209. for (size_t iw: {4, 12, 17, 20, 25})
  210. for (size_t ph: {0, 1, 2})
  211. for (size_t pw: {0, 1, 2})
  212. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  213. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  214. if (ih+2*ph >= 4 && iw+2*pw >= 4)
  215. {
  216. checker.set_dtype(0, data_type);
  217. param::Pooling param;
  218. param.mode = mode;
  219. param.format = param::Pooling::Format::NCHW44;
  220. param.pad_h = ph;
  221. param.pad_w = pw;
  222. param.stride_h = param.stride_w = 1;
  223. param.window_h = param.window_w = 4;
  224. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  225. param.stride_h = param.stride_w = 2;
  226. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  227. }
  228. // clang-format on
  229. }
  230. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W5x5_NCHW44) {
  231. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  232. Checker<Pooling> checker(handle());
  233. checker.set_rng(0, &rng);
  234. // clang-format off
  235. for (size_t ih: {5, 9, 19, 20, 39})
  236. for (size_t iw: {5, 12, 23, 27, 39})
  237. for (size_t ph: {0, 1, 2})
  238. for (size_t pw: {0, 1, 2})
  239. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  240. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  241. if (ih+2*ph >= 5 && iw+2*pw >= 5)
  242. {
  243. checker.set_dtype(0, data_type);
  244. param::Pooling param;
  245. param.mode = mode;
  246. param.format = param::Pooling::Format::NCHW44;
  247. param.pad_h = ph;
  248. param.pad_w = pw;
  249. param.stride_h = param.stride_w = 1;
  250. param.window_h = param.window_w = 5;
  251. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  252. param.stride_h = param.stride_w = 2;
  253. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  254. }
  255. // clang-format on
  256. }
  257. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2) {
  258. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  259. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  260. for (size_t ph : {0, 1, 2})
  261. for (size_t pw : {0, 1, 2})
  262. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  263. Checker<Pooling> checker(handle());
  264. checker.set_dtype(0, dtype::Int8());
  265. param::Pooling param;
  266. param.mode = param::Pooling::Mode::MAX;
  267. param.pad_h = ph;
  268. param.pad_w = pw;
  269. param.stride_h = param.stride_w = 2;
  270. param.window_h = param.window_w = 3;
  271. checker.set_param(param).exec(
  272. TensorShapeArray{{2, 3, ih, iw}, {}});
  273. }
  274. }
  275. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2) {
  276. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  277. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  278. for (size_t ph : {0, 1})
  279. for (size_t pw : {0, 1})
  280. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  281. Checker<Pooling> checker(handle());
  282. checker.set_dtype(0, dtype::Int8());
  283. param::Pooling param;
  284. param.mode = param::Pooling::Mode::MAX;
  285. param.pad_h = ph;
  286. param.pad_w = pw;
  287. param.stride_h = param.stride_w = 2;
  288. param.window_h = param.window_w = 2;
  289. checker.set_param(param).exec(
  290. TensorShapeArray{{2, 3, ih, iw}, {}});
  291. }
  292. }
  293. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  294. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  295. Checker<Pooling> checker(handle());
  296. checker.set_dtype(0, dtype::Float16{})
  297. .set_dtype(1, dtype::Float16{})
  298. .set_epsilon(3e-3);
  299. using Param = param::Pooling;
  300. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  301. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  302. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  303. for (size_t window : {2, 3}) {
  304. Param param;
  305. param.mode = mode;
  306. param.window_h = param.window_w = window;
  307. param.stride_h = param.stride_w = 1;
  308. param.pad_h = param.pad_w = window / 2;
  309. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  310. //! == 3)
  311. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  312. //! test for SH = SW = 2 && FH = FW = 2
  313. param.stride_h = param.stride_w = 2;
  314. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  315. }
  316. }
  317. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  318. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  319. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  320. for (size_t ph : {0, 1, 2})
  321. for (size_t pw : {0, 1, 2})
  322. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  323. param::Pooling param;
  324. param.mode = param::Pooling::Mode::MAX;
  325. param.pad_h = ph;
  326. param.pad_w = pw;
  327. param.stride_h = param.stride_w = 2;
  328. param.window_h = param.window_w = 3;
  329. checker.set_param(param).exec(
  330. TensorShapeArray{{2, 3, ih, iw}, {}});
  331. }
  332. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  333. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  334. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  335. for (size_t p : {1, 2}) {
  336. Param param;
  337. param.mode = Param::Mode::MAX;
  338. param.window_h = param.window_w = 4;
  339. param.stride_h = param.stride_w = 2;
  340. param.pad_h = param.pad_w = p;
  341. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  342. }
  343. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  344. for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  345. for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  346. for (size_t p : {1, 2}) {
  347. Param param;
  348. param.mode = Param::Mode::MAX;
  349. param.window_h = param.window_w = 5;
  350. param.stride_h = param.stride_w = 2;
  351. param.pad_h = param.pad_w = p;
  352. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  353. }
  354. }
  355. #endif
  356. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  357. Checker<Pooling> checker(handle());
  358. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  359. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  360. using Param = param::Pooling;
  361. for (auto type : std::vector<DType>{
  362. dtype::QuantizedS8(1.1f),
  363. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  364. if (type.enumv() == DTypeEnum::QuantizedS8) {
  365. checker.set_rng(0, &rng1);
  366. } else {
  367. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  368. checker.set_rng(0, &rng2);
  369. }
  370. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  371. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  372. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  373. for (size_t window : {2, 3}) {
  374. Param param;
  375. param.mode = mode;
  376. param.window_h = param.window_w = window;
  377. param.stride_h = param.stride_w = 1;
  378. param.pad_h = param.pad_w = window / 2;
  379. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  380. //! FH
  381. //! == 3)
  382. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  383. //! test for SH = SW = 2 && FH = FW = 2
  384. param.stride_h = param.stride_w = 2;
  385. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  386. }
  387. }
  388. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  389. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  390. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  391. for (size_t ph : {0, 1, 2})
  392. for (size_t pw : {0, 1, 2})
  393. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  394. param::Pooling param;
  395. param.mode = param::Pooling::Mode::MAX;
  396. param.pad_h = ph;
  397. param.pad_w = pw;
  398. param.window_h = param.window_w = 3;
  399. param.stride_h = param.stride_w = 2;
  400. checker.set_param(param).exec(
  401. TensorShapeArray{{2, 3, ih, iw}, {}});
  402. }
  403. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  404. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  405. for (size_t iw :
  406. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  407. for (size_t p : {1, 2}) {
  408. Param param;
  409. param.mode = Param::Mode::MAX;
  410. param.window_h = param.window_w = 4;
  411. param.stride_h = param.stride_w = 2;
  412. param.pad_h = param.pad_w = p;
  413. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  414. }
  415. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  416. for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  417. for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  418. for (size_t p : {1, 2}) {
  419. Param param;
  420. param.mode = Param::Mode::MAX;
  421. param.window_h = param.window_w = 5;
  422. param.stride_h = param.stride_w = 2;
  423. param.pad_h = param.pad_w = p;
  424. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  425. }
  426. }
  427. }
  428. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  429. using Param = param::Pooling;
  430. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  431. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  432. for (size_t p : {1, 2}) {
  433. Param param;
  434. param.mode = Param::Mode::MAX;
  435. param.window_h = param.window_w = 3;
  436. param.stride_h = param.stride_w = 2;
  437. param.pad_h = param.pad_w = p;
  438. Checker<Pooling> checker(handle());
  439. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  440. }
  441. }
  442. #if MEGDNN_WITH_BENCHMARK
  443. namespace {
  444. template <typename Opr>
  445. void benchmark_impl(
  446. const typename Opr::Param& param, std::vector<SmallVector<TensorShape>> shapes,
  447. size_t RUNS, TaskExecutorConfig&& multi_thread_config,
  448. TaskExecutorConfig&& single_thread_config, DType data_type) {
  449. std::vector<float> multi_thread_times, single_thread_times;
  450. {
  451. auto multi_thread_hanle = create_cpu_handle(0, true, &multi_thread_config);
  452. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  453. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  454. benchmarker.set_dtype(0, data_type);
  455. for (auto shape : shapes) {
  456. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  457. }
  458. }
  459. {
  460. auto single_thread_handle = create_cpu_handle(0, true, &single_thread_config);
  461. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  462. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  463. benchmarker.set_dtype(0, data_type);
  464. for (auto shape : shapes) {
  465. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  466. }
  467. }
  468. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  469. printf("core_ids:");
  470. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  471. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  472. }
  473. printf(", Single thread core_id %zu\n", single_thread_config.affinity_core_set[0]);
  474. for (size_t i = 0; i < shapes.size(); i++) {
  475. auto shape = shapes[i];
  476. printf("Case: ");
  477. for (auto sh : shape)
  478. printf("%s ", sh.to_string().c_str());
  479. printf("%zu threads time: %f,\n single thread time: "
  480. "%f. spead up = %f, speedup/cores=%f\n",
  481. multi_thread_config.nr_thread, multi_thread_times[i],
  482. single_thread_times[i], single_thread_times[i] / multi_thread_times[i],
  483. single_thread_times[i] / multi_thread_times[i] /
  484. multi_thread_config.nr_thread);
  485. }
  486. }
  487. } // namespace
  488. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  489. constexpr size_t RUNS = 50;
  490. using Param = param::Pooling;
  491. Param param;
  492. param.window_h = param.window_w = 3;
  493. param.stride_h = param.stride_w = 2;
  494. param.pad_h = param.pad_w = 1;
  495. std::vector<SmallVector<TensorShape>> shapes;
  496. shapes.push_back({{32, 32, 215, 215}, {}});
  497. shapes.push_back({{32, 32, 128, 128}, {}});
  498. shapes.push_back({{8, 256, 100, 100}, {}});
  499. shapes.push_back({{1, 256, 100, 100}, {}});
  500. shapes.push_back({{1, 32, 100, 100}, {}});
  501. shapes.push_back({{1, 256, 80, 80}, {}});
  502. shapes.push_back({{1, 256, 60, 60}, {}});
  503. shapes.push_back({{1, 256, 30, 30}, {}});
  504. param.window_h = param.window_w = 3;
  505. param.stride_h = param.stride_w = 2;
  506. param.pad_h = param.pad_w = 1;
  507. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  508. param.window_w, param.stride_h, static_cast<int>(param.mode));
  509. benchmark_impl<Pooling>(
  510. param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32());
  511. benchmark_impl<Pooling>(
  512. param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32());
  513. benchmark_impl<Pooling>(
  514. param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32());
  515. }
  516. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) {
  517. constexpr size_t RUNS = 50;
  518. using Param = param::Pooling;
  519. Param param;
  520. param.pad_h = param.pad_w = 0;
  521. param.mode = Param::Mode::MAX;
  522. std::vector<SmallVector<TensorShape>> shapes;
  523. std::vector<std::vector<size_t>> filter_and_stride = {
  524. {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}};
  525. for (auto mode : {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) {
  526. for (auto filter : filter_and_stride) {
  527. shapes.push_back({{1, 32 * 4, 215, 215}, {}});
  528. shapes.push_back({{1, 32 * 4, 128, 128}, {}});
  529. shapes.push_back({{1, 16 * 4, 56, 56}, {}});
  530. param.mode = mode;
  531. param.window_h = param.window_w = filter[0];
  532. param.stride_h = param.stride_w = filter[1];
  533. param.format = Param::Format::NCHW;
  534. printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  535. param.window_h, param.window_h, param.stride_h,
  536. static_cast<int>(param.mode));
  537. benchmark_impl<Pooling>(
  538. param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
  539. dtype::QuantizedS8(1.1f));
  540. shapes.clear();
  541. shapes.push_back({{1, 32, 215, 215, 4}, {}});
  542. shapes.push_back({{1, 32, 128, 128, 4}, {}});
  543. shapes.push_back({{1, 16, 56, 56, 4}, {}});
  544. param.format = Param::Format::NCHW44;
  545. printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  546. param.window_h, param.window_w, param.stride_h,
  547. static_cast<int>(param.mode));
  548. benchmark_impl<Pooling>(
  549. param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
  550. dtype::QuantizedS8(1.1f));
  551. shapes.clear();
  552. }
  553. }
  554. }
  555. #endif
  556. } // namespace test
  557. } // namespace megdnn
  558. // vim: syntax=cpp.doxygen