You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv_bias.cpp 65 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666
  1. #include "test/common/conv_bias.h"
  2. #include "megdnn/opr_param_defs.h"
  3. #include "src/common/utils.h"
  4. #include "test/common/benchmarker.h"
  5. namespace megdnn {
  6. namespace test {
  7. namespace conv_bias {
  8. namespace {
  9. void convert_arg_from_nchw4_to_chwn4(TestArg& arg) {
  10. arg.param.format = param::ConvBias::Format::CHWN4;
  11. arg.src = TensorShape{arg.src[1], arg.src[2], arg.src[3], arg.src[0], 4};
  12. arg.filter =
  13. TensorShape{arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0], 4};
  14. arg.bias = TensorShape{arg.bias[1], arg.bias[2], arg.bias[3], arg.bias[0], 4};
  15. }
  16. } // namespace
  17. std::vector<TestArg> get_args() {
  18. std::vector<TestArg> args;
  19. param::ConvBias cur_param;
  20. using NLMode = param::ConvBias::NonlineMode;
  21. // clang-format off
  22. for (auto nlmode :
  23. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  24. for (size_t i : {9, 63}) {
  25. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  26. cur_param.nonlineMode = nlmode;
  27. // fallback case
  28. args.emplace_back(cur_param, TensorShape{10, 1, i, i},
  29. TensorShape{1, 1, 8, 8}, TensorShape{1, 1, 1, 1});
  30. args.emplace_back(cur_param, TensorShape{10, 4, i, i},
  31. TensorShape{3, 4, 4, 4}, TensorShape{1, 3, 1, 1});
  32. cur_param.mode = param::ConvBias::Mode::CONVOLUTION;
  33. args.emplace_back(cur_param, TensorShape{10, 4, i, i},
  34. TensorShape{1, 4, 3, 3}, TensorShape{1, 1, 1, 1});
  35. args.emplace_back(cur_param, TensorShape{1, 4, i, i},
  36. TensorShape{5, 4, 3, 3}, TensorShape{1, 5, 1, 1});
  37. } }
  38. // clang-format on
  39. return args;
  40. }
  41. std::vector<TestArg> get_chanwise_args() {
  42. std::vector<TestArg> args;
  43. param::ConvBias cur_param;
  44. using NLMode = param::ConvBias::NonlineMode;
  45. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  46. cur_param.sparse = ConvBias::Param::Sparse::GROUP;
  47. for (auto nlmode :
  48. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  49. cur_param.nonlineMode = nlmode;
  50. // simple case
  51. for (uint32_t s : {1, 2})
  52. for (uint32_t p : {0, 1, 2, 3})
  53. for (size_t f : {2, 3, 5, 7})
  54. for (size_t ocpg : {1, 3}) {
  55. cur_param.pad_h = cur_param.pad_w = p;
  56. cur_param.stride_h = cur_param.stride_w = s;
  57. args.emplace_back(
  58. cur_param, TensorShape{2, 3, 16, 16},
  59. TensorShape{3, ocpg, 1, f, f},
  60. TensorShape{1, 3 * ocpg, 1, 1});
  61. }
  62. args.emplace_back(
  63. cur_param, TensorShape{32, 12, 20, 10}, TensorShape{12, 2, 1, 4, 5},
  64. TensorShape{1, 24, 1, 1});
  65. // padding larger than kern
  66. args.emplace_back(
  67. cur_param, TensorShape{32, 12, 20, 10}, TensorShape{12, 2, 1, 4, 5},
  68. TensorShape{1, 24, 1, 1});
  69. }
  70. return args;
  71. }
  72. std::vector<TestArg> get_args_1x1() {
  73. std::vector<TestArg> args;
  74. param::ConvBias cur_param;
  75. using NLMode = param::ConvBias::NonlineMode;
  76. for (auto nlmode :
  77. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  78. cur_param.nonlineMode = nlmode;
  79. for (size_t i : {16, 19}) {
  80. cur_param.mode = param::ConvBias::Mode::CONVOLUTION;
  81. args.emplace_back(
  82. cur_param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 1, 1},
  83. TensorShape{1, 30, 1, 1});
  84. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  85. args.emplace_back(
  86. cur_param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 1, 1},
  87. TensorShape{1, 30, 1, 1});
  88. }
  89. }
  90. return args;
  91. }
  92. std::vector<TestArg> get_winograd_args(size_t kernel_size) {
  93. std::vector<TestArg> args;
  94. param::ConvBias cur_param;
  95. using NLMode = param::ConvBias::NonlineMode;
  96. // clang-format off
  97. for (auto nlmode :
  98. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  99. for (size_t ic : {1, 3, 4, 7}) {
  100. for (size_t oc : {1, 3, 4, 7}) {
  101. for (size_t i : {9, 63}) {
  102. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  103. cur_param.nonlineMode = nlmode;
  104. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  105. cur_param.pad_h = cur_param.pad_w = 0;
  106. //! no bias
  107. args.emplace_back(cur_param, TensorShape{1, ic, i, i},
  108. TensorShape{oc, ic, kernel_size, kernel_size},
  109. TensorShape{});
  110. //! bias
  111. args.emplace_back(
  112. cur_param, TensorShape{2, ic, i, i},
  113. TensorShape{oc, ic, kernel_size, kernel_size},
  114. TensorShape{2, oc, (i + cur_param.pad_h * 2 - kernel_size) + 1,
  115. (i + cur_param.pad_w * 2 - kernel_size) + 1});
  116. //! bias channel
  117. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  118. TensorShape{oc, ic, kernel_size, kernel_size},
  119. TensorShape{1, oc, 1, 1});
  120. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  121. args.emplace_back(
  122. cur_param, TensorShape{2, 2 * ic, i, i},
  123. TensorShape{2, oc, ic, kernel_size, kernel_size},
  124. TensorShape{2, 2 * oc,
  125. (i + cur_param.pad_h * 2 - kernel_size) + 1,
  126. (i + cur_param.pad_w * 2 - kernel_size) + 1});
  127. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  128. TensorShape{2, oc, ic, kernel_size, kernel_size},
  129. TensorShape{1, 2 * oc, 1, 1});
  130. } } } }
  131. // clang-format on
  132. //! test for multi-thread OC parallel
  133. for (size_t i : {9, 63}) {
  134. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  135. cur_param.pad_h = cur_param.pad_w = 1;
  136. args.emplace_back(
  137. cur_param, TensorShape{1, 8, i, i},
  138. TensorShape{128, 8, kernel_size, kernel_size},
  139. TensorShape{1, 128, 1, 1});
  140. args.emplace_back(
  141. cur_param, TensorShape{2, 8, i, i},
  142. TensorShape{128, 8, kernel_size, kernel_size},
  143. TensorShape{1, 128, 1, 1});
  144. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  145. args.emplace_back(
  146. cur_param, TensorShape{2, 2 * 8, i, i},
  147. TensorShape{2, 128, 8, kernel_size, kernel_size},
  148. TensorShape{1, 2 * 128, 1, 1});
  149. }
  150. return args;
  151. }
  152. std::vector<TestArg> get_winograd_mk_packed_args(size_t pack_size) {
  153. std::vector<TestArg> args;
  154. param::ConvBias cur_param;
  155. using NLMode = param::ConvBias::NonlineMode;
  156. // clang-format off
  157. for (auto nlmode :
  158. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  159. for (size_t ic : {pack_size, 2 * pack_size}) {
  160. for (size_t oc : {pack_size, 2 * pack_size}) {
  161. for (size_t i : {9, 63}) {
  162. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  163. cur_param.nonlineMode = nlmode;
  164. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  165. cur_param.pad_h = cur_param.pad_w = 1;
  166. args.emplace_back(cur_param, TensorShape{1, pack_size, 3, 3},
  167. TensorShape{pack_size, pack_size, 3, 3},
  168. TensorShape{1, pack_size, 1, 1});
  169. //! no bias
  170. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  171. TensorShape{oc, ic, 3, 3}, TensorShape{});
  172. //! bias
  173. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  174. TensorShape{oc, ic, 3, 3}, TensorShape{2, oc, i, i});
  175. //! bias channel
  176. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  177. TensorShape{oc, ic, 3, 3}, TensorShape{1, oc, 1, 1});
  178. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  179. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  180. TensorShape{2, oc, ic, 3, 3},
  181. TensorShape{2, 2 * oc, i, i});
  182. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  183. TensorShape{2, oc, ic, 3, 3},
  184. TensorShape{1, 2 * oc, 1, 1});
  185. } } } }
  186. // clang-format on
  187. //! test for multi-thread OC parallel
  188. for (size_t i : {9, 63}) {
  189. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  190. cur_param.pad_h = cur_param.pad_w = 1;
  191. args.emplace_back(
  192. cur_param, TensorShape{1, 8, i, i}, TensorShape{128, 8, 3, 3},
  193. TensorShape{1, 128, 1, 1});
  194. args.emplace_back(
  195. cur_param, TensorShape{2, 8, i, i}, TensorShape{128, 8, 3, 3},
  196. TensorShape{1, 128, 1, 1});
  197. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  198. args.emplace_back(
  199. cur_param, TensorShape{2, 2 * 8, i, i}, TensorShape{2, 128, 8, 3, 3},
  200. TensorShape{1, 2 * 128, 1, 1});
  201. }
  202. return args;
  203. }
  204. std::vector<TestArg> get_quantized_winograd_mk_packed_args(
  205. size_t pack_size, bool compute_float32) {
  206. std::vector<TestArg> args;
  207. param::ConvBias cur_param;
  208. using NLMode = param::ConvBias::NonlineMode;
  209. // clang-format off
  210. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  211. for (size_t ic : {pack_size, 2 * pack_size}) {
  212. for (size_t oc : {pack_size, 2 * pack_size}) {
  213. for (size_t i : {9, 63}) {
  214. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  215. cur_param.nonlineMode = nlmode;
  216. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  217. cur_param.pad_h = cur_param.pad_w = 1;
  218. if(compute_float32){
  219. cur_param.compute_mode = param::ConvBias::ComputeMode::FLOAT32;
  220. }
  221. args.emplace_back(cur_param, TensorShape{1, pack_size, 3, 3},
  222. TensorShape{pack_size, pack_size, 3, 3},
  223. TensorShape{1, pack_size, 1, 1});
  224. //! no bias
  225. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  226. TensorShape{oc, ic, 3, 3}, TensorShape{});
  227. //! bias
  228. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  229. TensorShape{oc, ic, 3, 3}, TensorShape{2, oc, i, i});
  230. //! bias channel
  231. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  232. TensorShape{oc, ic, 3, 3}, TensorShape{1, oc, 1, 1});
  233. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  234. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  235. TensorShape{2, oc, ic, 3, 3},
  236. TensorShape{2, 2 * oc, i, i});
  237. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  238. TensorShape{2, oc, ic, 3, 3},
  239. TensorShape{1, 2 * oc, 1, 1});
  240. } } } }
  241. // clang-format on
  242. //! test for multi-thread OC parallel
  243. for (size_t i : {9, 63}) {
  244. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  245. cur_param.pad_h = cur_param.pad_w = 1;
  246. args.emplace_back(
  247. cur_param, TensorShape{1, 8, i, i}, TensorShape{128, 8, 3, 3},
  248. TensorShape{1, 128, 1, 1});
  249. args.emplace_back(
  250. cur_param, TensorShape{2, 8, i, i}, TensorShape{128, 8, 3, 3},
  251. TensorShape{1, 128, 1, 1});
  252. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  253. args.emplace_back(
  254. cur_param, TensorShape{2, 2 * 8, i, i}, TensorShape{2, 128, 8, 3, 3},
  255. TensorShape{1, 2 * 128, 1, 1});
  256. }
  257. return args;
  258. }
  259. std::vector<TestArg> get_quantized_args_with_nlmode(
  260. param::ConvBias::NonlineMode nlmode) {
  261. std::vector<TestArg> args;
  262. param::ConvBias cur_param;
  263. // clang-format off
  264. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION,
  265. param::ConvBias::Mode::CONVOLUTION}) {
  266. for (size_t ic : {1, 2, 3, 4, 5, 7}) {
  267. for (size_t oc : {1, 2, 3, 4, 5, 7}) {
  268. for (size_t i : {9, 63}) {
  269. cur_param.mode = mode;
  270. cur_param.nonlineMode = nlmode;
  271. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  272. cur_param.pad_h = cur_param.pad_w = 1;
  273. //! no bias
  274. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  275. TensorShape{oc, ic, 3, 3}, TensorShape{});
  276. //! bias
  277. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  278. TensorShape{oc, ic, 3, 3}, TensorShape{2, oc, i, i});
  279. //! bias channel
  280. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  281. TensorShape{oc, ic, 3, 3}, TensorShape{1, oc, 1, 1});
  282. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  283. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  284. TensorShape{2, oc, ic, 3, 3},
  285. TensorShape{2, 2 * oc, i, i});
  286. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  287. TensorShape{2, oc, ic, 3, 3},
  288. TensorShape{1, 2 * oc, 1, 1});
  289. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  290. cur_param.pad_h = cur_param.pad_w = 0;
  291. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  292. TensorShape{oc, ic, 1, 1}, TensorShape{});
  293. } } } }
  294. // clang-format on
  295. return args;
  296. }
  297. std::vector<TestArg> get_quantized_args() {
  298. using NLMode = param::ConvBias::NonlineMode;
  299. auto arg_p1 = get_quantized_args_with_nlmode(NLMode::IDENTITY),
  300. arg_p2 = get_quantized_args_with_nlmode(NLMode::RELU),
  301. arg_p3 = get_quantized_args_with_nlmode(NLMode::H_SWISH);
  302. std::vector<TestArg> args;
  303. args.insert(args.end(), arg_p1.begin(), arg_p1.end());
  304. args.insert(args.end(), arg_p2.begin(), arg_p2.end());
  305. args.insert(args.end(), arg_p3.begin(), arg_p3.end());
  306. return args;
  307. }
  308. std::vector<TestArg> get_int8_nchw4_args(size_t kernel_size) {
  309. std::vector<TestArg> args;
  310. param::ConvBias cur_param;
  311. using NLMode = param::ConvBias::NonlineMode;
  312. // clang-format off
  313. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  314. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  315. for (size_t b : {64, 16}) {
  316. for (size_t ic : {16, 32}) {
  317. for (size_t oc : {16, 32}) {
  318. for (size_t h : {8}) {
  319. for (size_t w : {8, 11}) {
  320. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  321. for (size_t s : {2, 1}) {
  322. if (kernel_size == 7) {
  323. b = std::min(b, 32_z);
  324. }
  325. size_t f = kernel_size;
  326. cur_param.mode = mode;
  327. cur_param.nonlineMode = nlmode;
  328. cur_param.format = param::ConvBias::Format::NCHW4;
  329. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  330. cur_param.pad_h = cur_param.pad_w = p;
  331. cur_param.stride_h = cur_param.stride_w = s;
  332. //! bias channel
  333. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  334. TensorShape{oc, ic / 4, f, f, 4},
  335. TensorShape{1, oc / 4, 1, 1, 4});
  336. } } } } } } } } }
  337. // clang-format on
  338. return args;
  339. }
  340. std::vector<TestArg> get_int8_nchw44_args(
  341. size_t kernel_size, size_t pack_size, bool compute_float32, bool group_mode) {
  342. std::vector<TestArg> args;
  343. param::ConvBias cur_param;
  344. megdnn_assert(pack_size > 0, "not support pack_size");
  345. megdnn_assert(kernel_size > 0, "not support kernel_size");
  346. using NLMode = param::ConvBias::NonlineMode;
  347. // clang-format off
  348. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  349. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  350. for (size_t b : {1,2}) {
  351. for (size_t ic : {8,16}) {
  352. for (size_t oc : {8,16}) {
  353. for (size_t h : {9,23}) {
  354. for (size_t w : {9,23}) {
  355. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  356. for (size_t s : {1}) {
  357. if (kernel_size == 7) {
  358. b = std::min(b, 32_z);
  359. }
  360. size_t f = kernel_size;
  361. cur_param.mode = mode;
  362. cur_param.nonlineMode = nlmode;
  363. if (pack_size == 4){
  364. cur_param.format = param::ConvBias::Format::NCHW44;
  365. } else if(pack_size == 8){
  366. cur_param.format = param::ConvBias::Format::NCHW88;
  367. }
  368. if(compute_float32){
  369. cur_param.compute_mode =
  370. param::ConvBias::ComputeMode::FLOAT32;
  371. }
  372. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  373. cur_param.pad_h = cur_param.pad_w = p;
  374. cur_param.stride_h = cur_param.stride_w = s;
  375. if (!group_mode) {
  376. //! no bias
  377. args.emplace_back(cur_param,
  378. TensorShape{b, ic / pack_size, h, w, pack_size},
  379. TensorShape{oc / pack_size, ic / pack_size, f, f,
  380. pack_size, pack_size},
  381. TensorShape{});
  382. //! bias channel
  383. args.emplace_back(cur_param,
  384. TensorShape{b, ic / pack_size, h, w, pack_size},
  385. TensorShape{oc / pack_size, ic / pack_size, f, f,
  386. pack_size, pack_size},
  387. TensorShape{1, oc / pack_size, 1, 1, pack_size});
  388. //! bias
  389. args.emplace_back(
  390. cur_param, TensorShape{b, ic / pack_size, h, w, pack_size},
  391. TensorShape{oc / pack_size, ic / pack_size, f, f, pack_size,
  392. pack_size},
  393. TensorShape{b, oc / pack_size, (h - f + 2 * p) / s + 1,
  394. (w - f + 2 * p) / s + 1, pack_size});
  395. } else {
  396. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  397. args.emplace_back(
  398. cur_param,
  399. TensorShape{2, 2 * ic / pack_size, h, w, pack_size},
  400. TensorShape{2, oc / pack_size, ic / pack_size, 3, 3,
  401. pack_size, pack_size},
  402. TensorShape{2, 2 * oc / pack_size, (h - f + 2 * p) / s + 1,
  403. (w - f + 2 * p) / s + 1, pack_size});
  404. args.emplace_back(
  405. cur_param,
  406. TensorShape{2, 2 * ic / pack_size, h, w, pack_size},
  407. TensorShape{2, oc / pack_size, ic / pack_size, f, f,
  408. pack_size, pack_size},
  409. TensorShape{1, 2 * oc / pack_size, 1, 1, pack_size});
  410. args.emplace_back(
  411. cur_param,
  412. TensorShape{2, 2 * ic / pack_size, h, w, pack_size},
  413. TensorShape{2, oc / pack_size, ic / pack_size, f, f,
  414. pack_size, pack_size},
  415. TensorShape{});
  416. }
  417. } } } } } } } } }
  418. // clang-format on
  419. return args;
  420. }
  421. std::vector<TestArg> get_int8_nchw4_args_check_bounds(size_t kernel_size) {
  422. std::vector<TestArg> args;
  423. param::ConvBias cur_param;
  424. using NLMode = param::ConvBias::NonlineMode;
  425. // clang-format off
  426. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  427. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  428. for (size_t b : {7, 8, 4, 1}) {
  429. for (size_t ic : {16, 32}) {
  430. for (size_t oc : {16, 8, 4}) {
  431. for (size_t h : {8}) {
  432. for (size_t w : {8, 11}) {
  433. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  434. for (size_t s : {1, 2}) {
  435. size_t f = kernel_size;
  436. cur_param.mode = mode;
  437. cur_param.nonlineMode = nlmode;
  438. cur_param.format = param::ConvBias::Format::NCHW4;
  439. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  440. cur_param.pad_h = cur_param.pad_w = p;
  441. cur_param.stride_h = cur_param.stride_w = s;
  442. //! bias channel
  443. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  444. TensorShape{oc, ic / 4, f, f, 4},
  445. TensorShape{1, oc / 4, 1, 1, 4});
  446. } } } } } } } } }
  447. // clang-format on
  448. return args;
  449. }
  450. std::vector<TestArg> get_int4_nchw64_args_ptx(size_t kernel_size, bool is_uint4) {
  451. std::vector<TestArg> args;
  452. param::ConvBias cur_param;
  453. using NLMode = param::ConvBias::NonlineMode;
  454. // clang-format off
  455. for (auto nlmode : {NLMode::RELU, NLMode::IDENTITY}) {//{NLMode::H_SWISH} are not currently supported
  456. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  457. for (size_t b : {3, 7}) {
  458. for (size_t ic : {64, 128}) {
  459. for (size_t oc : {64, 320}) {
  460. for (size_t h : {13}) {
  461. for (size_t w : {28}) {
  462. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  463. for (size_t s : {1, 2}) {
  464. if (is_uint4 && nlmode == NLMode::H_SWISH) continue;
  465. size_t f = kernel_size;
  466. cur_param.mode = mode;
  467. cur_param.nonlineMode = nlmode;
  468. cur_param.format = param::ConvBias::Format::NCHW64;
  469. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  470. cur_param.pad_h = cur_param.pad_w = p;
  471. cur_param.stride_h = cur_param.stride_w = s;
  472. //! bias channel
  473. args.emplace_back(cur_param, TensorShape{b, ic / 64, h, w, 64},
  474. TensorShape{oc, ic / 64, f, f, 64},
  475. TensorShape{1, oc / 64, 1, 1, 64});
  476. } } } } } } } } }
  477. // clang-format on
  478. return args;
  479. }
  480. std::vector<TestArg> get_int8_nchw4_args_small_batch(size_t kernel_size) {
  481. std::vector<TestArg> args;
  482. param::ConvBias cur_param;
  483. using NLMode = param::ConvBias::NonlineMode;
  484. // clang-format off
  485. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  486. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  487. for (size_t b : {12, 8, 4}) {
  488. for (size_t ic : {16, 32}) {
  489. for (size_t oc : {16, 8, 4}) {
  490. for (size_t h : {8}) {
  491. for (size_t w : {8, 9, 10, 11, 12, 13, 14, 15, 16}) {
  492. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  493. for (size_t s : {1, 2}) {
  494. size_t f = kernel_size;
  495. cur_param.mode = mode;
  496. cur_param.nonlineMode = nlmode;
  497. cur_param.format = param::ConvBias::Format::NCHW4;
  498. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  499. cur_param.pad_h = cur_param.pad_w = p;
  500. cur_param.stride_h = cur_param.stride_w = s;
  501. //! bias channel
  502. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  503. TensorShape{oc, ic / 4, f, f, 4},
  504. TensorShape{1, oc / 4, 1, 1, 4});
  505. } } } } } } } } }
  506. // clang-format on
  507. return args;
  508. }
  509. std::vector<TestArg> get_int8_nchw4_small_channel_args(size_t kernel_size) {
  510. std::vector<TestArg> args;
  511. param::ConvBias cur_param;
  512. using NLMode = param::ConvBias::NonlineMode;
  513. // clang-format off
  514. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  515. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  516. for (size_t b : {64, 16}) {
  517. for (size_t ic : {4, 12}) {
  518. for (size_t oc : {128, 32}) {
  519. for (size_t h : {8}) {
  520. for (size_t w : {8, 11}) {
  521. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  522. for (size_t s : {1, 2}) {
  523. size_t f = kernel_size;
  524. cur_param.mode = mode;
  525. cur_param.nonlineMode = nlmode;
  526. cur_param.format =
  527. param::ConvBias::Format::NCHW4;
  528. cur_param.sparse =
  529. param::ConvBias::Sparse::DENSE;
  530. cur_param.pad_h = cur_param.pad_w = p;
  531. cur_param.stride_h =
  532. cur_param.stride_w = s;
  533. //! bias channel
  534. args.emplace_back(
  535. cur_param,
  536. TensorShape{b, ic / 4, h, w, 4},
  537. TensorShape{oc, ic / 4, f, f,
  538. 4},
  539. TensorShape{1, oc / 4, 1, 1,
  540. 4});
  541. } } } } } } } } }
  542. // clang-format on
  543. return args;
  544. }
  545. std::vector<TestArg> get_int8_nchw4_small_channel_args_check_bounds(
  546. size_t kernel_size) {
  547. std::vector<TestArg> args;
  548. param::ConvBias cur_param;
  549. using NLMode = param::ConvBias::NonlineMode;
  550. // clang-format off
  551. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  552. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  553. for (size_t b : {8, 7, 4, 1}) {
  554. for (size_t ic : {4, 12}) {
  555. for (size_t oc : {16, 8, 12, 4}) {
  556. for (size_t h : {8}) {
  557. for (size_t w : {8, 11}) {
  558. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  559. for (size_t s : {1, 2}) {
  560. size_t f = kernel_size;
  561. cur_param.mode = mode;
  562. cur_param.nonlineMode = nlmode;
  563. cur_param.format = param::ConvBias::Format::NCHW4;
  564. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  565. cur_param.pad_h = cur_param.pad_w = p;
  566. cur_param.stride_h = cur_param.stride_w = s;
  567. //! bias channel
  568. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  569. TensorShape{oc, ic / 4, f, f, 4},
  570. TensorShape{1, oc / 4, 1, 1, 4});
  571. } } } } } } } } }
  572. // clang-format on
  573. return args;
  574. }
  575. std::vector<TestArg> get_int8_chwn4_args(size_t kernel_size) {
  576. auto args = get_int8_nchw4_args(kernel_size);
  577. for (auto& arg : args) {
  578. convert_arg_from_nchw4_to_chwn4(arg);
  579. }
  580. return args;
  581. }
  582. std::vector<TestArg> get_int8_chwn4_args_check_bounds(size_t kernel_size) {
  583. auto args = get_int8_nchw4_args_check_bounds(kernel_size);
  584. for (auto& arg : args) {
  585. convert_arg_from_nchw4_to_chwn4(arg);
  586. }
  587. return args;
  588. }
  589. std::vector<TestArg> get_int8_chwn4_small_channel_args(size_t kernel_size) {
  590. auto args = get_int8_nchw4_small_channel_args(kernel_size);
  591. for (auto& arg : args) {
  592. convert_arg_from_nchw4_to_chwn4(arg);
  593. }
  594. return args;
  595. }
  596. std::vector<TestArg> get_int8_chwn4_small_channel_args_check_bounds(
  597. size_t kernel_size) {
  598. auto args = get_int8_nchw4_small_channel_args_check_bounds(kernel_size);
  599. for (auto& arg : args) {
  600. convert_arg_from_nchw4_to_chwn4(arg);
  601. }
  602. return args;
  603. }
  604. std::vector<TestArg> get_int8_chwn4_args_small_batch(size_t kernel_size) {
  605. auto args = get_int8_nchw4_args_small_batch(kernel_size);
  606. for (auto& arg : args) {
  607. convert_arg_from_nchw4_to_chwn4(arg);
  608. }
  609. return args;
  610. }
  611. std::vector<TestArg> get_int8_nchw4_tensorcore_args(size_t kernel_size) {
  612. std::vector<TestArg> args;
  613. param::ConvBias cur_param;
  614. using NLMode = param::ConvBias::NonlineMode;
  615. // clang-format off
  616. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  617. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  618. size_t b = 64, oc = 128;
  619. for (size_t ic : {32, 64}) {
  620. for (size_t h : {8}) {
  621. for (size_t w : {11}) {
  622. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  623. for (size_t s : {1, 2}) {
  624. size_t f = kernel_size;
  625. cur_param.mode = mode;
  626. cur_param.nonlineMode = nlmode;
  627. cur_param.format = param::ConvBias::Format::NCHW4;
  628. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  629. cur_param.pad_h = cur_param.pad_w = p;
  630. cur_param.stride_h = cur_param.stride_w = s;
  631. //! bias channel
  632. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  633. TensorShape{oc, ic / 4, f, f, 4},
  634. TensorShape{1, oc / 4, 1, 1, 4});
  635. } } } } }
  636. } }
  637. // clang-format on
  638. return args;
  639. }
  640. std::vector<TestArg> get_int8_chwn4_tensorcore_args(size_t kernel_size) {
  641. auto args = get_int8_nchw4_tensorcore_args(kernel_size);
  642. for (auto& arg : args) {
  643. convert_arg_from_nchw4_to_chwn4(arg);
  644. }
  645. return args;
  646. }
  647. void check_conv_bias(
  648. DType src_dtype, DType filter_dtype, DType bias_dtype, DType dst_dtype,
  649. Handle* handle, const char* algo, param::ConvBias::Format format,
  650. const std::vector<TestArg>& args, bool fuse_z, bool stable_test) {
  651. megdnn_assert(
  652. (src_dtype.enumv() == filter_dtype.enumv()) ||
  653. (src_dtype.enumv() == DTypeEnum::Quantized4Asymm &&
  654. filter_dtype.enumv() == DTypeEnum::QuantizedS4));
  655. Checker<ConvBiasForward> checker(handle, !stable_test);
  656. if (algo) {
  657. checker.set_before_exec_callback(ConvBiasAlgoChecker<ConvBiasForward>(algo));
  658. }
  659. std::unique_ptr<RNG> rng;
  660. std::unique_ptr<RNG> flt_rng;
  661. std::unique_ptr<RNG> bias_rng;
  662. std::unique_ptr<RNG> const_rng;
  663. std::unique_ptr<RNG> zero_rng;
  664. // TODO: check range of rng
  665. if (src_dtype.enumv() == DTypeEnum::QuantizedS8) {
  666. rng = std::make_unique<UniformIntRNG>(-3, 3);
  667. flt_rng = std::make_unique<UniformIntRNG>(-3, 3);
  668. const_rng = std::make_unique<UniformIntRNG>(1, 1);
  669. zero_rng = std::make_unique<UniformIntRNG>(0, 0);
  670. megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32);
  671. bias_rng = std::make_unique<UniformIntRNG>(-50, 50);
  672. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1).set_max_avg_biased_error(
  673. 1e-3);
  674. } else if (src_dtype.enumv() == DTypeEnum::Quantized4Asymm) {
  675. rng = std::make_unique<UniformIntRNG>(0, 6);
  676. flt_rng = std::make_unique<UniformIntRNG>(-3, 3);
  677. const_rng = std::make_unique<UniformIntRNG>(1, 1);
  678. zero_rng = std::make_unique<UniformIntRNG>(0, 0);
  679. megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32);
  680. bias_rng = std::make_unique<UniformIntRNG>(-50, 50);
  681. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1).set_max_avg_biased_error(
  682. 1e-3);
  683. } else if (src_dtype.enumv() == DTypeEnum::QuantizedS4) {
  684. rng = std::make_unique<UniformIntRNG>(-3, 3);
  685. flt_rng = std::make_unique<UniformIntRNG>(-3, 3);
  686. const_rng = std::make_unique<UniformIntRNG>(1, 1);
  687. zero_rng = std::make_unique<UniformIntRNG>(0, 0);
  688. megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32);
  689. bias_rng = std::make_unique<UniformIntRNG>(-50, 50);
  690. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1).set_max_avg_biased_error(
  691. 1e-3);
  692. } else if (src_dtype.enumv() == DTypeEnum::Float16) {
  693. rng = std::make_unique<NormalRNG>(2.f);
  694. flt_rng = std::make_unique<NormalRNG>(2.f);
  695. megdnn_assert(bias_dtype.enumv() == DTypeEnum::Float16);
  696. bias_rng = std::make_unique<NormalRNG>(2.f);
  697. checker.set_epsilon(1e-2);
  698. } else if (src_dtype.enumv() == DTypeEnum::Float32) {
  699. rng = std::make_unique<NormalRNG>(2.f);
  700. flt_rng = std::make_unique<NormalRNG>(2.f);
  701. megdnn_assert(bias_dtype.enumv() == DTypeEnum::Float32);
  702. bias_rng = std::make_unique<NormalRNG>(2.f);
  703. }
  704. using Param = param::ConvBias;
  705. using Format = Param::Format;
  706. auto get_z_shape = [&fuse_z, &format](TestArg arg) -> TensorShape {
  707. TensorShape z{};
  708. if (fuse_z) {
  709. size_t hi, wi, sh, sw, ph, pw, fh, fw;
  710. z = arg.src;
  711. size_t spatial_idx = 2;
  712. if (format == Format::NCHW4) {
  713. hi = arg.src[2];
  714. wi = arg.src[3];
  715. fh = arg.filter[2];
  716. fw = arg.filter[3];
  717. z[1] = arg.filter[0] / 4;
  718. } else if (format == Format::NCHW32) {
  719. hi = arg.src[2];
  720. wi = arg.src[3];
  721. fh = arg.filter[2];
  722. fw = arg.filter[3];
  723. z[1] = arg.filter[0] / 32;
  724. } else if (format == Format::NCHW64) {
  725. hi = arg.src[2];
  726. wi = arg.src[3];
  727. fh = arg.filter[2];
  728. fw = arg.filter[3];
  729. z[1] = arg.filter[0] / 64;
  730. } else {
  731. megdnn_assert(format == Format::CHWN4);
  732. hi = arg.src[1];
  733. wi = arg.src[2];
  734. fh = arg.filter[1];
  735. fw = arg.filter[2];
  736. z[0] = arg.filter[3] / 4;
  737. spatial_idx = 1;
  738. }
  739. sh = arg.param.stride_h;
  740. sw = arg.param.stride_w;
  741. ph = arg.param.pad_h;
  742. pw = arg.param.pad_w;
  743. size_t ho = infer_conv_shape(hi, fh, sh, ph);
  744. size_t wo = infer_conv_shape(wi, fw, sw, pw);
  745. z[spatial_idx] = ho;
  746. z[spatial_idx + 1] = wo;
  747. }
  748. return z;
  749. };
  750. megdnn_assert(rng != nullptr && flt_rng != nullptr && bias_rng != nullptr);
  751. checker.set_rng(0, rng.get())
  752. .set_rng(1, flt_rng.get())
  753. .set_rng(2, bias_rng.get())
  754. .set_rng(3, rng.get());
  755. if (stable_test) {
  756. checker.set_stable_check(true);
  757. checker.set_no_naive_check(true);
  758. }
  759. if (args.empty()) {
  760. std::vector<TestArg> default_args;
  761. if (format == Format::NCHW4) {
  762. default_args = get_int8_nchw4_args(3);
  763. } else if (format == Format::CHWN4) {
  764. default_args = get_int8_chwn4_args(3);
  765. }
  766. for (auto&& arg : default_args) {
  767. auto z = get_z_shape(arg);
  768. checker.set_dtype(0, src_dtype)
  769. .set_dtype(1, filter_dtype)
  770. .set_dtype(2, bias_dtype)
  771. .set_dtype(3, dst_dtype)
  772. .set_dtype(4, dst_dtype)
  773. .set_param(arg.param)
  774. .execs({arg.src, arg.filter, arg.bias, z, {}});
  775. }
  776. } else {
  777. for (auto&& arg : args) {
  778. auto z = get_z_shape(arg);
  779. checker.set_dtype(0, src_dtype)
  780. .set_dtype(1, filter_dtype)
  781. .set_dtype(2, bias_dtype)
  782. .set_dtype(3, dst_dtype)
  783. .set_dtype(4, dst_dtype)
  784. .set_param(arg.param)
  785. .execs({arg.src, arg.filter, arg.bias, z, {}});
  786. }
  787. }
  788. }
  789. #if MEGDNN_WITH_BENCHMARK
  790. std::vector<conv_bias::TestArg> get_winograd_benchmark_args(
  791. size_t kernel, size_t pack_size, size_t io_pack_size) {
  792. megdnn_assert(io_pack_size == 1 || io_pack_size == 4);
  793. std::vector<conv_bias::TestArg> args;
  794. auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
  795. if (ic % pack_size != 0 || oc % pack_size != 0)
  796. return;
  797. if (w + 2 * p < kernel || h + 2 * p < kernel)
  798. return;
  799. param::ConvBias param;
  800. param.stride_h = 1;
  801. param.stride_w = 1;
  802. param.pad_h = p;
  803. param.pad_w = p;
  804. if (io_pack_size == 4) {
  805. param.format = param::ConvBias::Format::NCHW44;
  806. args.push_back(conv_bias::TestArg{
  807. param,
  808. TensorShape{1, ic / 4, h, w, 4},
  809. TensorShape{oc / 4, ic / 4, kernel, kernel, 4, 4},
  810. {1, oc / 4, 1, 1, 4}});
  811. } else {
  812. args.push_back(conv_bias::TestArg{
  813. param,
  814. TensorShape{1, ic, h, w},
  815. TensorShape{oc, ic, kernel, kernel},
  816. {1, oc, 1, 1}});
  817. }
  818. };
  819. for (size_t ic : {8, 16, 32, 64}) {
  820. for (size_t oc : {8, 16, 32, 64}) {
  821. pack(oc, ic, 56, 56, kernel, kernel / 2);
  822. pack(oc, ic, 128, 128, kernel, kernel / 2);
  823. pack(oc, ic, 256, 256, kernel, kernel / 2);
  824. }
  825. }
  826. //! conv in vgg16
  827. pack(512, 512, 15, 15, kernel, kernel / 2);
  828. pack(512, 256, 15, 15, kernel, kernel / 2);
  829. pack(256, 256, 29, 29, kernel, kernel / 2);
  830. pack(256, 128, 29, 29, kernel, kernel / 2);
  831. pack(128, 128, 57, 57, kernel, kernel / 2);
  832. pack(128, 64, 57, 57, kernel, kernel / 2);
  833. pack(64, 64, 123, 123, kernel, kernel / 2);
  834. pack(64, 24, 123, 123, kernel, kernel / 2);
  835. pack(24, 24, 224, 224, kernel, kernel / 2);
  836. //! conv in resnet18
  837. pack(64, 64, 56, 56, kernel, kernel / 2);
  838. pack(128, 128, 28, 28, kernel, kernel / 2);
  839. pack(256, 256, 14, 14, kernel, kernel / 2);
  840. pack(512, 512, 7, 7, kernel, kernel / 2);
  841. return args;
  842. }
  843. void benchmark_winograd(
  844. const char* algo_name, Handle* handle, size_t kernel, size_t pack_size,
  845. size_t io_pack_size) {
  846. auto&& args = get_winograd_benchmark_args(kernel, pack_size, io_pack_size);
  847. using namespace conv_bias;
  848. constexpr size_t RUN = 10;
  849. Benchmarker<Convolution> benchmark(handle);
  850. benchmark.set_display(false);
  851. benchmark.set_times(RUN);
  852. Benchmarker<ConvBias> benchmark_winograd(handle);
  853. benchmark_winograd.set_display(false);
  854. benchmark_winograd.set_times(RUN);
  855. for (auto&& arg : args) {
  856. TensorLayout dst_layout;
  857. auto opr = handle->create_operator<ConvBias>();
  858. opr->param() = arg.param;
  859. opr->deduce_layout(
  860. {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
  861. {arg.bias, dtype::Float32()}, {}, dst_layout);
  862. float computations = 0.0;
  863. if (io_pack_size == 1) {
  864. //! dst.nr_elems * IC * FH * FW * 2
  865. computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] *
  866. arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3;
  867. } else {
  868. //! dst.nr_elems * IC/4 * FH * FW * 4 * 2
  869. computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] *
  870. arg.filter[3] * arg.filter[4] * 2.0 / (1024 * 1024 * 1024) *
  871. 1e3;
  872. }
  873. param::Convolution conv_param;
  874. conv_param.pad_h = arg.param.pad_h;
  875. conv_param.pad_w = arg.param.pad_w;
  876. conv_param.stride_h = arg.param.stride_h;
  877. conv_param.stride_w = arg.param.stride_w;
  878. auto used =
  879. benchmark.set_param(conv_param).exec({arg.src, arg.filter, {}}) / RUN;
  880. benchmark_winograd.set_param(arg.param);
  881. auto used_winograd = algo_benchmark<ConvBias>(
  882. benchmark_winograd,
  883. {arg.src, arg.filter, {}, {}, {}}, algo_name) /
  884. RUN;
  885. printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops "
  886. "speedup: "
  887. "%f\n",
  888. arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used,
  889. computations / used, used_winograd, computations / used_winograd,
  890. used / used_winograd);
  891. }
  892. }
  893. // usage of weight pre-processing for winograd benchmark
  894. void benchmark_winograd_weight_preprocess(
  895. const char* algo_name, megdnn::Handle* handle, size_t kernel, size_t pack_size,
  896. size_t io_pack_size) {
  897. auto&& args = get_winograd_benchmark_args(kernel, pack_size, io_pack_size);
  898. using namespace conv_bias;
  899. constexpr size_t RUN = 10;
  900. //! here!!!
  901. Benchmarker<ConvBias, Timer, OprWeightPreprocessBenchmarkProxy<ConvBias>>
  902. benchmark_winograd(handle);
  903. benchmark_winograd.set_display(false);
  904. benchmark_winograd.set_times(RUN);
  905. for (auto&& arg : args) {
  906. TensorLayout dst_layout;
  907. auto opr = handle->create_operator<ConvBias>();
  908. opr->param() = arg.param;
  909. opr->deduce_layout(
  910. {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
  911. {arg.bias, dtype::Float32()}, {}, dst_layout);
  912. float computations = 0.0;
  913. if (io_pack_size == 1) {
  914. //! dst.nr_elems * IC * FH * FW * 2
  915. computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] *
  916. arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3;
  917. } else {
  918. //! dst.nr_elems * IC/4 * FH * FW * 4 * 2
  919. computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] *
  920. arg.filter[3] * arg.filter[4] * 2.0 / (1024 * 1024 * 1024) *
  921. 1e3;
  922. }
  923. benchmark_winograd.set_param(arg.param);
  924. auto used_winograd =
  925. algo_benchmark<
  926. ConvBias, OprWeightPreprocessBenchmarkProxy<ConvBias>, Timer>(
  927. benchmark_winograd, {arg.src, arg.filter, {}, {}, {}},
  928. algo_name) /
  929. RUN;
  930. printf("%s %s: %s: %f ms %f Gflops\n", arg.src.to_string().c_str(),
  931. arg.filter.to_string().c_str(), algo_name, used_winograd,
  932. computations / used_winograd);
  933. }
  934. }
  935. void benchmark_winograd_compare(
  936. const char* algoA_name, const char* algoB_name, megdnn::Handle* handle,
  937. size_t kernel, size_t pack_size, size_t io_pack_size) {
  938. auto&& args = get_winograd_benchmark_args(kernel, pack_size, io_pack_size);
  939. using namespace conv_bias;
  940. constexpr size_t RUN = 10;
  941. Benchmarker<ConvBias, Timer, OprWeightPreprocessBenchmarkProxy<ConvBias>>
  942. benchmark_winograd(handle);
  943. benchmark_winograd.set_display(false);
  944. benchmark_winograd.set_times(RUN);
  945. for (auto&& arg : args) {
  946. TensorLayout dst_layout;
  947. auto opr = handle->create_operator<ConvBias>();
  948. opr->param() = arg.param;
  949. opr->deduce_layout(
  950. {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
  951. {arg.bias, dtype::Float32()}, {}, dst_layout);
  952. float computations = 0.0;
  953. if (io_pack_size == 1) {
  954. //! dst.nr_elems * IC * FH * FW * 2
  955. computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] *
  956. arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3;
  957. } else {
  958. //! dst.nr_elems * IC/4 * FH * FW * 4 * 2
  959. computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] *
  960. arg.filter[3] * arg.filter[4] * 2.0 / (1024 * 1024 * 1024) *
  961. 1e3;
  962. }
  963. benchmark_winograd.set_param(arg.param);
  964. auto used_winograd1 =
  965. algo_benchmark<
  966. ConvBias, OprWeightPreprocessBenchmarkProxy<ConvBias>, Timer>(
  967. benchmark_winograd, {arg.src, arg.filter, {}, {}, {}},
  968. algoA_name) /
  969. RUN;
  970. auto used_winograd2 =
  971. algo_benchmark<
  972. ConvBias, OprWeightPreprocessBenchmarkProxy<ConvBias>, Timer>(
  973. benchmark_winograd, {arg.src, arg.filter, {}, {}, {}},
  974. algoB_name) /
  975. RUN;
  976. printf("%s %s: %s: %f ms %f Gflops %s: %f ms %f GFlops "
  977. "speedup: "
  978. "%f\n",
  979. arg.src.to_string().c_str(), arg.filter.to_string().c_str(), algoA_name,
  980. used_winograd1, computations / used_winograd1, algoB_name,
  981. used_winograd2, computations / used_winograd2,
  982. used_winograd2 / used_winograd1);
  983. }
  984. }
  985. #endif // MEGDNN_WITH_BENCHMARK
  986. template <class Checker>
  987. void check_winograd(
  988. const char* algo_name, Checker& checker,
  989. const std::vector<conv_bias::TestArg>& args, param::MatrixMul::Format format,
  990. param::ConvBias::Format layout) {
  991. const char* matmul_name;
  992. #if MEGDNN_AARCH64
  993. if (format == param::MatrixMul::Format::MK4) {
  994. matmul_name = "AARCH64_F32_MK4_4x16";
  995. } else if (format == param::MatrixMul::Format::MK8) {
  996. matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
  997. } else {
  998. matmul_name = "AARCH64_F32K8X12X1";
  999. }
  1000. #elif MEGDNN_ARMV7
  1001. if (format == param::MatrixMul::Format::MK4) {
  1002. matmul_name = "ARMV7_F32_MK4_4x8";
  1003. } else if (format == param::MatrixMul::Format::MK8) {
  1004. matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
  1005. } else {
  1006. matmul_name = "ARMV7_F32";
  1007. }
  1008. #else
  1009. if (format == param::MatrixMul::Format::MK4) {
  1010. matmul_name = "FB_GI_F32_MK4_4x8";
  1011. } else {
  1012. matmul_name = "FB_GI_F32_4x12";
  1013. }
  1014. #endif
  1015. std::string winograd_algo_name;
  1016. if (layout == megdnn::param::ConvBias::Format::NCHW) {
  1017. winograd_algo_name = ssprintf("WINOGRAD:%s:%s", matmul_name, algo_name);
  1018. } else if (layout == megdnn::param::ConvBias::Format::NCHW44) {
  1019. winograd_algo_name = ssprintf("WINOGRAD_NCHW44:%s:%s", matmul_name, algo_name);
  1020. } else {
  1021. megdnn_throw("Invalid layout");
  1022. }
  1023. checker.set_before_exec_callback(
  1024. conv_bias::ConvBiasAlgoChecker<ConvBias>(winograd_algo_name.c_str()));
  1025. for (auto&& arg : args) {
  1026. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  1027. }
  1028. }
  1029. template void check_winograd<megdnn::test::Checker<megdnn::ConvBias>>(
  1030. const char* algo_name, megdnn::test::Checker<megdnn::ConvBias>& checker,
  1031. const std::vector<conv_bias::TestArg>& args, param::MatrixMul::Format format,
  1032. param::ConvBias::Format layout);
  1033. using WeightPreprocessChecker = megdnn::test::Checker<
  1034. megdnn::ConvBias, megdnn::test::OprWeightPreprocessProxy<megdnn::ConvBias>>;
  1035. template void check_winograd<WeightPreprocessChecker>(
  1036. const char* algo_name, WeightPreprocessChecker& checker,
  1037. const std::vector<conv_bias::TestArg>& args, param::MatrixMul::Format format,
  1038. param::ConvBias::Format layout);
  1039. std::vector<conv_bias::TestArg> get_conv_bias_args(
  1040. std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
  1041. bool no_nonlinemode, bool quantized_nlmod, bool only_broadcast_bias) {
  1042. using namespace conv_bias;
  1043. using Param = param::ConvBias;
  1044. using NLMode = param::ConvBias::NonlineMode;
  1045. std::vector<TestArg> args;
  1046. auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
  1047. size_t stride, NLMode nlmode) {
  1048. Param param;
  1049. param.stride_h = stride;
  1050. param.stride_w = stride;
  1051. if (!no_pad) {
  1052. param.pad_h = kernel / 2;
  1053. param.pad_w = kernel / 2;
  1054. } else {
  1055. param.pad_h = 0;
  1056. param.pad_w = 0;
  1057. }
  1058. param.nonlineMode = nlmode;
  1059. args.emplace_back(
  1060. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
  1061. TensorShape{});
  1062. if (!no_bias) {
  1063. args.emplace_back(
  1064. param, TensorShape{n, ic, h, w},
  1065. TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1});
  1066. if (!only_broadcast_bias) {
  1067. args.emplace_back(
  1068. param, TensorShape{n, ic, h, w},
  1069. TensorShape{oc, ic, kernel, kernel},
  1070. TensorShape{
  1071. n, oc, (h + 2 * param.pad_h - kernel) / stride + 1,
  1072. (w + 2 * param.pad_h - kernel) / stride + 1});
  1073. }
  1074. }
  1075. param.sparse = param::ConvBias::Sparse::GROUP;
  1076. args.emplace_back(
  1077. param, TensorShape{n, 2 * ic, h, w},
  1078. TensorShape{2, oc, ic, kernel, kernel}, TensorShape{});
  1079. if (!no_bias) {
  1080. if (!only_broadcast_bias) {
  1081. args.emplace_back(
  1082. param, TensorShape{n, 2 * ic, h, w},
  1083. TensorShape{2, oc, ic, kernel, kernel},
  1084. TensorShape{
  1085. n, 2 * oc, (h + param.pad_h * 2 - kernel) / stride + 1,
  1086. (w + param.pad_w * 2 - kernel) / stride + 1});
  1087. }
  1088. args.emplace_back(
  1089. param, TensorShape{n, 2 * ic, h, w},
  1090. TensorShape{2, oc, ic, kernel, kernel},
  1091. TensorShape{1, 2 * oc, 1, 1});
  1092. }
  1093. };
  1094. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  1095. if (!no_nonlinemode) {
  1096. nonlinemode.emplace_back(NLMode::RELU);
  1097. nonlinemode.emplace_back(NLMode::H_SWISH);
  1098. if (!quantized_nlmod) {
  1099. nonlinemode.emplace_back(NLMode::SIGMOID);
  1100. }
  1101. }
  1102. for (size_t n : {1, 2}) {
  1103. for (auto nlmode : nonlinemode) {
  1104. for (size_t ic : {1, 3, 7}) {
  1105. for (size_t oc : {1, 3, 7}) {
  1106. for (size_t size : {8, 16, 20}) {
  1107. for (size_t kern : kernel) {
  1108. pack(n, oc, ic, size, size, kern, stride, nlmode);
  1109. }
  1110. }
  1111. }
  1112. }
  1113. }
  1114. }
  1115. return args;
  1116. }
  1117. std::vector<megdnn::test::conv_bias::TestArg> get_conv_bias_1x1_args(
  1118. bool no_bias, bool no_nonlinemode, bool quantized_nlmod,
  1119. bool only_broadcast_bias) {
  1120. using namespace conv_bias;
  1121. using Param = param::ConvBias;
  1122. using NLMode = param::ConvBias::NonlineMode;
  1123. using CONVMode = param::ConvBias::Mode;
  1124. std::vector<TestArg> args;
  1125. auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h, size_t stride,
  1126. NLMode nlmode, CONVMode convmode) {
  1127. Param param;
  1128. param.stride_h = stride;
  1129. param.stride_w = stride;
  1130. param.pad_h = 0;
  1131. param.pad_w = 0;
  1132. param.mode = convmode;
  1133. param.nonlineMode = nlmode;
  1134. args.emplace_back(
  1135. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 1, 1},
  1136. TensorShape{});
  1137. if (!no_bias) {
  1138. args.emplace_back(
  1139. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 1, 1},
  1140. TensorShape{1, oc, 1, 1});
  1141. if (!only_broadcast_bias) {
  1142. args.emplace_back(
  1143. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 1, 1},
  1144. TensorShape{n, oc, (h - 1) / stride + 1, (w - 1) / stride + 1});
  1145. }
  1146. }
  1147. param.sparse = param::ConvBias::Sparse::GROUP;
  1148. args.emplace_back(
  1149. param, TensorShape{n, 2 * ic, h, w}, TensorShape{2, oc, ic, 1, 1},
  1150. TensorShape{});
  1151. if (!no_bias) {
  1152. args.emplace_back(
  1153. param, TensorShape{n, 2 * ic, h, w}, TensorShape{2, oc, ic, 1, 1},
  1154. TensorShape{1, 2 * oc, 1, 1});
  1155. if (!only_broadcast_bias) {
  1156. args.emplace_back(
  1157. param, TensorShape{n, 2 * ic, h, w},
  1158. TensorShape{2, oc, ic, 1, 1},
  1159. TensorShape{
  1160. n, 2 * oc, (h - 1) / stride + 1, (w - 1) / stride + 1});
  1161. }
  1162. }
  1163. };
  1164. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  1165. if (!no_nonlinemode) {
  1166. nonlinemode.emplace_back(NLMode::RELU);
  1167. nonlinemode.emplace_back(NLMode::H_SWISH);
  1168. if (!quantized_nlmod) {
  1169. nonlinemode.emplace_back(NLMode::SIGMOID);
  1170. }
  1171. }
  1172. std::vector<CONVMode> convmodes{
  1173. param::ConvBias::Mode::CONVOLUTION,
  1174. param::ConvBias::Mode::CROSS_CORRELATION};
  1175. for (size_t n : {1, 2})
  1176. for (size_t oc : {1, 9, 33})
  1177. for (size_t ic : {1, 16, 64})
  1178. for (size_t size : {1, 7, 14, 28})
  1179. for (auto nlmode : nonlinemode)
  1180. for (auto convmode : convmodes) {
  1181. pack(n, oc, ic, size, size, 1, nlmode, convmode);
  1182. }
  1183. return args;
  1184. }
  1185. void check_conv_bias(
  1186. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1187. using namespace conv_bias;
  1188. Checker<ConvBias> checker(handle);
  1189. checker.set_before_exec_callback(
  1190. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1191. for (auto&& arg : args) {
  1192. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  1193. }
  1194. }
  1195. void checker_conv_bias_int8x8x16(
  1196. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1197. using namespace conv_bias;
  1198. Checker<ConvBias> checker(handle);
  1199. checker.set_before_exec_callback(
  1200. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1201. checker.set_dtype(0, dtype::Int8());
  1202. checker.set_dtype(1, dtype::Int8());
  1203. checker.set_dtype(2, dtype::Int16());
  1204. checker.set_dtype(4, dtype::Int16());
  1205. for (auto&& arg : args) {
  1206. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1207. }
  1208. }
  1209. void check_conv_bias_preprocess(
  1210. std::vector<conv_bias::TestArg> args, Handle* handle, RNG* rng, float epsilon,
  1211. DType type0, DType type1, DType type2, DType type3, const char* algo_name) {
  1212. using namespace conv_bias;
  1213. Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(handle);
  1214. checker.set_dtype(0, type0);
  1215. checker.set_dtype(1, type1);
  1216. checker.set_dtype(2, type2);
  1217. checker.set_dtype(4, type3);
  1218. checker.set_epsilon(epsilon);
  1219. if (NULL != rng) {
  1220. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
  1221. }
  1222. checker.set_before_exec_callback(
  1223. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1224. for (auto&& arg : args) {
  1225. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  1226. }
  1227. }
  1228. void checker_conv_bias_common(
  1229. std::vector<conv_bias::TestArg> args, Handle* handle, RNG* rng, float epsilon,
  1230. DType type0, DType type1, DType type2, DType type3, const char* algo_name) {
  1231. using namespace conv_bias;
  1232. Checker<ConvBias> checker(handle);
  1233. checker.set_before_exec_callback(
  1234. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1235. checker.set_dtype(0, type0);
  1236. checker.set_dtype(1, type1);
  1237. checker.set_dtype(2, type2);
  1238. checker.set_dtype(4, type3);
  1239. checker.set_epsilon(epsilon);
  1240. if (NULL != rng) {
  1241. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
  1242. }
  1243. for (auto&& arg : args) {
  1244. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  1245. }
  1246. }
  1247. void checker_conv_bias_mul_int8x8x32(
  1248. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1249. using namespace conv_bias;
  1250. float epsilon = 0.001;
  1251. #if MEGDNN_ARMV7
  1252. epsilon = 1.0;
  1253. #endif
  1254. Checker<ConvBias> checker(handle);
  1255. checker.set_before_exec_callback(
  1256. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1257. checker.set_dtype(0, dtype::Int8());
  1258. checker.set_dtype(1, dtype::Int8());
  1259. checker.set_dtype(2, dtype::Int32());
  1260. checker.set_dtype(4, dtype::Int32());
  1261. checker.set_epsilon(epsilon);
  1262. for (auto&& arg : args) {
  1263. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1264. }
  1265. UniformIntRNG rng{-50, 50};
  1266. for (auto&& arg : args) {
  1267. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  1268. .set_dtype(1, dtype::QuantizedS8(2.5f))
  1269. .set_dtype(2, dtype::QuantizedS32(6.25f))
  1270. .set_dtype(4, dtype::QuantizedS32(6.25f))
  1271. .set_rng(0, &rng)
  1272. .set_rng(1, &rng)
  1273. .set_rng(2, &rng)
  1274. .set_param(arg.param)
  1275. .set_epsilon(epsilon)
  1276. .execs({arg.src, arg.filter, {}, {}, {}});
  1277. }
  1278. }
  1279. void checker_conv_bias_int8x8x32_preprocess(
  1280. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1281. using namespace conv_bias;
  1282. Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(handle);
  1283. checker.set_before_exec_callback(
  1284. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1285. checker.set_dtype(0, dtype::Int8());
  1286. checker.set_dtype(1, dtype::Int8());
  1287. checker.set_dtype(2, dtype::Int32());
  1288. checker.set_dtype(4, dtype::Int32());
  1289. for (auto&& arg : args) {
  1290. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1291. }
  1292. UniformIntRNG rng{-50, 50};
  1293. for (auto&& arg : args) {
  1294. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  1295. .set_dtype(1, dtype::QuantizedS8(2.5f))
  1296. .set_dtype(2, dtype::QuantizedS32(6.25f))
  1297. .set_dtype(4, dtype::QuantizedS32(6.25f))
  1298. .set_rng(0, &rng)
  1299. .set_rng(1, &rng)
  1300. .set_rng(2, &rng)
  1301. .set_param(arg.param)
  1302. .execs({arg.src, arg.filter, {}, {}, {}});
  1303. }
  1304. }
  1305. std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
  1306. std::vector<size_t> kernel_vec,
  1307. std::vector<param::ConvBias::NonlineMode> nlmode_vec,
  1308. std::vector<megdnn::BiasMode> biasmode_vec, size_t stride, bool no_pad,
  1309. bool is_input_nchw, bool is_nchw44_dot) {
  1310. using namespace conv_bias;
  1311. using NLMode = param::ConvBias::NonlineMode;
  1312. std::vector<TestArg> args;
  1313. MEGDNN_MARK_USED_VAR(no_pad);
  1314. auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w, size_t kernel,
  1315. size_t stride, size_t group, NLMode nlmode,
  1316. megdnn::BiasMode bias_mode, int any_pad = -1) {
  1317. constexpr int pack_c = 4;
  1318. const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
  1319. auto oc_per_group = oc / group;
  1320. auto ic_per_group = ic / group;
  1321. bool ok_group = (oc % group == 0 && ic % group == 0) &&
  1322. oc_per_group % pack_c == 0 && oc_per_group > 0 &&
  1323. ic_per_group > 0;
  1324. bool nchw_disable = group > 1 || ic_per_group >= 4;
  1325. bool nchw44_disable = ic_per_group % pack_c != 0;
  1326. bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
  1327. if (!(ok_group) || invalid_pad) {
  1328. return;
  1329. }
  1330. if ((is_input_nchw && nchw_disable) || (!is_input_nchw && nchw44_disable)) {
  1331. return;
  1332. }
  1333. size_t kernel_h = kernel;
  1334. size_t kernel_w = kernel;
  1335. param::ConvBias param;
  1336. if (!is_nchw44_dot) {
  1337. param.format = param::ConvBias::Format::NCHW44;
  1338. } else {
  1339. param.format = param::ConvBias::Format::NCHW44_DOT;
  1340. }
  1341. param.stride_h = stride;
  1342. param.stride_w = stride;
  1343. param.pad_h = pad;
  1344. param.pad_w = pad;
  1345. param.nonlineMode = nlmode;
  1346. auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
  1347. auto weight_tensor_shape = TensorShape{oc / pack_c, ic / pack_c, kernel_h,
  1348. kernel_w, pack_c, pack_c};
  1349. auto bias_tensor_shape = TensorShape{};
  1350. if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
  1351. bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
  1352. } else if (bias_mode == megdnn::BiasMode::BIAS) {
  1353. bias_tensor_shape = {
  1354. n, oc / pack_c, (h + 2 * pad - kernel) / stride + 1,
  1355. (w + 2 * pad - kernel) / stride + 1, pack_c};
  1356. }
  1357. if (group == 1) {
  1358. param.sparse = param::ConvBias::Sparse::DENSE;
  1359. } else if (group > 1 && ic / group == 1 && oc / group == 1) {
  1360. megdnn_assert(0, "not support channel wise");
  1361. param.sparse = param::ConvBias::Sparse::GROUP;
  1362. weight_tensor_shape =
  1363. TensorShape{group / pack_c, 1, 1, kernel_h, kernel_w, pack_c};
  1364. } else if (
  1365. group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
  1366. ic_per_group % pack_c == 0 && ic / group > 0) {
  1367. param.sparse = param::ConvBias::Sparse::GROUP;
  1368. weight_tensor_shape = TensorShape{group,
  1369. oc_per_group / pack_c,
  1370. ic_per_group / pack_c,
  1371. kernel_h,
  1372. kernel_w,
  1373. pack_c,
  1374. pack_c};
  1375. }
  1376. if (is_input_nchw) {
  1377. src_tensor_shape = TensorShape{n, ic, h, w};
  1378. weight_tensor_shape =
  1379. TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
  1380. }
  1381. args.emplace_back(
  1382. param, src_tensor_shape, weight_tensor_shape, bias_tensor_shape);
  1383. };
  1384. for (auto bias : biasmode_vec)
  1385. for (auto nlmode : nlmode_vec)
  1386. for (size_t n : {1, 2})
  1387. for (size_t kernel : kernel_vec)
  1388. for (size_t oc : {4, 12})
  1389. for (size_t ic : {1, 3, 4, 12})
  1390. for (size_t h : {1, 3, 12})
  1391. for (size_t w : {1, 16, 23}) {
  1392. for (size_t group = 1;
  1393. group <= std::min(std::min(oc, ic), 4_z);
  1394. ++group) {
  1395. if (kernel != 1 && (h == 1 || w == 1)) {
  1396. continue;
  1397. }
  1398. pack(n, oc, ic, h, w, kernel, stride, group,
  1399. nlmode, bias);
  1400. }
  1401. }
  1402. return args;
  1403. }
  1404. std::vector<conv_bias::TestArg> get_nchw88_conv_bias_args(
  1405. std::vector<size_t> kernel_vec,
  1406. std::vector<param::ConvBias::NonlineMode> nlmode_vec,
  1407. std::vector<megdnn::BiasMode> biasmode_vec, size_t stride, int pad) {
  1408. using namespace conv_bias;
  1409. using NLMode = param::ConvBias::NonlineMode;
  1410. std::vector<TestArg> args;
  1411. auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w, size_t kernel,
  1412. size_t stride, int pad, size_t group, NLMode nlmode,
  1413. megdnn::BiasMode bias_mode) {
  1414. constexpr int pack_c = 8;
  1415. if (pad == -1) {
  1416. pad = kernel / 2;
  1417. }
  1418. auto oc_per_group = oc / group;
  1419. auto ic_per_group = ic / group;
  1420. megdnn_assert(
  1421. oc_per_group % pack_c == 0 && ic_per_group % pack_c == 0,
  1422. "ocpg/icpg not divided by 8");
  1423. size_t kernel_h = kernel;
  1424. size_t kernel_w = kernel;
  1425. param::ConvBias param;
  1426. param.format = param::ConvBias::Format::NCHW88;
  1427. param.stride_h = stride;
  1428. param.stride_w = stride;
  1429. param.pad_h = pad;
  1430. param.pad_w = pad;
  1431. param.nonlineMode = nlmode;
  1432. auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
  1433. auto weight_tensor_shape = TensorShape{oc / pack_c, ic / pack_c, kernel_h,
  1434. kernel_w, pack_c, pack_c};
  1435. auto bias_tensor_shape = TensorShape{};
  1436. if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
  1437. bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
  1438. } else if (bias_mode == megdnn::BiasMode::BIAS) {
  1439. bias_tensor_shape = {
  1440. n, oc / pack_c, (h + 2 * pad - kernel) / stride + 1,
  1441. (w + 2 * pad - kernel) / stride + 1, pack_c};
  1442. }
  1443. if (group == 1) {
  1444. param.sparse = param::ConvBias::Sparse::DENSE;
  1445. } else {
  1446. param.sparse = param::ConvBias::Sparse::GROUP;
  1447. weight_tensor_shape = TensorShape{group,
  1448. oc_per_group / pack_c,
  1449. ic_per_group / pack_c,
  1450. kernel_h,
  1451. kernel_w,
  1452. pack_c,
  1453. pack_c};
  1454. }
  1455. args.emplace_back(
  1456. param, src_tensor_shape, weight_tensor_shape, bias_tensor_shape);
  1457. };
  1458. for (auto bias : biasmode_vec)
  1459. for (auto nlmode : nlmode_vec)
  1460. for (size_t n : {1, 2})
  1461. for (size_t kernel : kernel_vec)
  1462. for (size_t oc : {8, 16})
  1463. for (size_t ic : {8, 16, 24})
  1464. for (size_t h : {1, 3, 12})
  1465. for (size_t w : {1, 8, 13}) {
  1466. for (size_t group = 1; group < oc / 8; ++group) {
  1467. if (ic % (group * 8) || oc % (group * 8)) {
  1468. continue;
  1469. }
  1470. if (kernel < h || kernel < w) {
  1471. continue;
  1472. }
  1473. pack(n, oc, ic, h, w, kernel, stride, pad,
  1474. group, nlmode, bias);
  1475. }
  1476. }
  1477. return args;
  1478. }
  1479. } // namespace conv_bias
  1480. } // namespace test
  1481. } // namespace megdnn
  1482. // vim: syntax=cpp.doxygen