You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

matrix_mul.cpp 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. #include "test/common/matrix_mul.h"
  2. #include "src/common/utils.h"
  3. #include "test/common/benchmarker.h"
  4. #include "test/common/checker.h"
  5. using namespace megdnn;
  6. using namespace test;
  7. constexpr size_t matrix_mul::TestArg::UNSET_STRIDE_VAL;
  8. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_no_mask() {
  9. std::vector<TestArg> args;
  10. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 32})
  11. for (size_t n : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  12. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32})
  13. for (size_t k : {1, 2, 4, 8, 11, 12, 15, 16, 31, 32, 37})
  14. args.emplace_back(m, n, k, 0);
  15. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17})
  16. args.emplace_back(m, m + 1, m + 2, 0);
  17. for (size_t mbase : {11})
  18. for (size_t test_case_offset : {64, 256, 512}) {
  19. size_t mnk = mbase + test_case_offset;
  20. args.emplace_back(mnk, mnk, mnk, 0);
  21. return args;
  22. }
  23. return args;
  24. }
  25. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_mk_packed_args(size_t nbase) {
  26. std::vector<TestArg> args;
  27. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11})
  28. for (size_t n : {1, 2, 3, 4, 5, 8, 12, 16, 24})
  29. for (size_t k : {1, 2, 3, 4, 5, 9, 10, 11})
  30. args.emplace_back(m, n * nbase, k, 0);
  31. return args;
  32. }
  33. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_cublaslt() {
  34. std::vector<TestArg> args;
  35. for (size_t m : {4, 6, 8, 16}) {
  36. for (size_t n : {4, 6, 8, 16}) {
  37. //[TODO]: the following test case are disabled due to the
  38. // cublasLt(version: 10020) produce wrong result when k in [65, 97],
  39. // so please uncomment it if the bug is fixed
  40. for (size_t k : {32, 64}) {
  41. args.emplace_back(
  42. m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
  43. TestArg::UNSET_STRIDE_VAL, TestArg::UNSET_STRIDE_VAL, 2);
  44. }
  45. }
  46. }
  47. return args;
  48. }
  49. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_int8x8x32() {
  50. std::vector<TestArg> args;
  51. for (size_t m : {1, 2, 3, 4, 5, 8, 64}) {
  52. for (size_t n : {1, 2, 3, 4, 5, 8, 64}) {
  53. for (size_t k : {1, 2, 3, 4, 5, 8, 64}) {
  54. args.emplace_back(
  55. m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
  56. TestArg::UNSET_STRIDE_VAL, TestArg::UNSET_STRIDE_VAL, 2);
  57. }
  58. }
  59. }
  60. return args;
  61. }
  62. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_mask(uint8_t mask) {
  63. std::vector<TestArg> args;
  64. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_no_mask();
  65. for (auto arg : args_temp) {
  66. arg.mask = mask;
  67. args.emplace_back(arg);
  68. }
  69. // non-contiguous case
  70. for (size_t m : {110})
  71. for (size_t n : {119})
  72. for (size_t k : {120}) {
  73. // A: (m, k)
  74. size_t Astride = mask & 1 ? m + 2 : k + 2;
  75. // B: (k, n)
  76. size_t Bstride = mask & 2 ? k + 2 : n + 2;
  77. size_t Cstride = n * 2 + 2;
  78. args.emplace_back(m, n, k, mask, Astride, Bstride, Cstride);
  79. }
  80. return args;
  81. }
  82. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args() {
  83. std::vector<TestArg> args;
  84. for (size_t mask = 0; mask < 4; ++mask) {
  85. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_mask(mask);
  86. for (auto arg : args_temp)
  87. args.emplace_back(arg);
  88. }
  89. return args;
  90. }
  91. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_split_k() {
  92. std::vector<TestArg> args = get_matmul_args();
  93. for (auto iter = args.begin(); iter < args.end();) {
  94. if (iter->k <= iter->n) {
  95. iter = args.erase(iter);
  96. } else {
  97. iter++;
  98. }
  99. }
  100. return args;
  101. }
  102. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_mask(
  103. uint8_t mask) {
  104. std::vector<TestArg> args;
  105. for (size_t b : {1, 2, 3}) {
  106. std::vector<TestArg> args_temp =
  107. megdnn::test::matrix_mul::get_matmul_args_mask(mask);
  108. for (auto arg : args_temp) {
  109. arg.b = b;
  110. args.emplace_back(arg);
  111. }
  112. }
  113. return args;
  114. }
  115. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args() {
  116. std::vector<TestArg> args;
  117. for (size_t mask = 0; mask < 4; ++mask) {
  118. std::vector<TestArg> args_temp = matrix_mul::get_batched_matmul_args_mask(mask);
  119. for (auto arg : args_temp)
  120. args.emplace_back(arg);
  121. }
  122. return args;
  123. }
  124. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_broadcast_args() {
  125. std::vector<TestArg> args;
  126. for (size_t mask = 0; mask < 4; ++mask) {
  127. std::vector<TestArg> args_temp =
  128. matrix_mul::get_batched_matmul_broadcast_args_mask(mask);
  129. for (auto arg : args_temp)
  130. args.emplace_back(arg);
  131. }
  132. return args;
  133. }
  134. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_broadcast_args_mask(
  135. uint8_t mask) {
  136. std::vector<TestArg> args;
  137. std::vector<TestArg> args_temp = matrix_mul::get_batched_matmul_args_mask(mask);
  138. for (auto arg : args_temp) {
  139. args.emplace_back(arg);
  140. args.back().A_batch_stride = 0;
  141. }
  142. return args;
  143. }
  144. template <typename Opr>
  145. void matrix_mul::check_matrix_mul(
  146. DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
  147. const ExecutionPolicyAlgoName& algo, param::MatrixMul::Format format,
  148. size_t nbase, float eps, std::vector<TestArg>&& user_args,
  149. bool force_deduce_dst, param::MatrixMul::ComputeMode compute_mode) {
  150. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  151. Checker<Opr> checker(handle);
  152. checker.set_force_deduce_dst(force_deduce_dst);
  153. if (!algo.name.empty()) {
  154. checker.set_before_exec_callback(AlgoChecker<Opr>(algo));
  155. }
  156. std::unique_ptr<RNG> rng;
  157. checker.set_epsilon(eps);
  158. if (A_dtype.enumv() == DTypeEnum::Int8 ||
  159. A_dtype.enumv() == DTypeEnum::QuantizedS8) {
  160. //! use larger rng to check the overflow
  161. rng = std::make_unique<UniformIntRNG>(-127, 127);
  162. } else if (
  163. A_dtype.enumv() == DTypeEnum::Uint8 ||
  164. A_dtype.enumv() == DTypeEnum::Quantized8Asymm) {
  165. rng = std::make_unique<NormalRNG>(128.f);
  166. } else if (A_dtype.enumv() == DTypeEnum::Int16) {
  167. rng = std::make_unique<UniformIntRNG>(-32767, 32767);
  168. } else if (A_dtype.enumv() == DTypeEnum::Float16) {
  169. rng = std::make_unique<NormalRNG>(2.f);
  170. //! if fp16 not set eps, default 1e-3, we just set it to 1e-2
  171. if (eps < 1e-2) {
  172. checker.set_epsilon(1e-2);
  173. }
  174. }
  175. if (rng) {
  176. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  177. }
  178. //! return expect if stride == -1, stride otherwise
  179. auto stride_val = [](size_t stride, size_t expect) -> size_t {
  180. if (stride == TestArg::UNSET_STRIDE_VAL) {
  181. return expect;
  182. } else {
  183. return stride;
  184. }
  185. };
  186. constexpr static bool batched = std::is_same<Opr, megdnn::BatchedMatrixMul>::value;
  187. using Param = MatrixMul::Param;
  188. std::vector<TestArg> args;
  189. if (user_args.empty()) {
  190. if (format == param::MatrixMul::Format::DEFAULT) {
  191. if (batched) {
  192. args = matrix_mul::get_batched_matmul_args();
  193. } else {
  194. args = matrix_mul::get_matmul_args();
  195. }
  196. } else {
  197. megdnn_assert(!batched, "BatchedMatrixMul does not support MK4/MK8");
  198. args = matrix_mul::get_matmul_mk_packed_args(nbase);
  199. }
  200. } else {
  201. args = user_args;
  202. }
  203. size_t pack_size = MatrixMulForward::pack_size(format);
  204. for (auto& arg : args) {
  205. size_t m = arg.m, n = arg.n, k = arg.k;
  206. if (handle->type() == Handle::HandleType::CUDA) {
  207. //! NOTE: cublas can only process 4B aligned 8-bit input matrix;
  208. bool is_dt_8bit = A_dtype.enumv() == DTypeEnum::Int8 ||
  209. A_dtype.enumv() == DTypeEnum::QuantizedS8 ||
  210. A_dtype.enumv() == DTypeEnum::Uint8 ||
  211. A_dtype.enumv() == DTypeEnum::Quantized8Asymm;
  212. if (is_dt_8bit && ((m % 4 != 0) || (n % 4 != 0))) {
  213. continue;
  214. }
  215. }
  216. Param param;
  217. param.transposeA = arg.mask & 0x1;
  218. param.transposeB = arg.mask & 0x2;
  219. param.compute_mode = compute_mode;
  220. param.format = format;
  221. checker.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
  222. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  223. TensorShape A, B;
  224. if (param.transposeA) {
  225. std::swap(A0, A1);
  226. }
  227. if (param.transposeB) {
  228. std::swap(B0, B1);
  229. }
  230. ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
  231. C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
  232. B_batch_stride = arg.B_batch_stride,
  233. C_batch_stride = arg.C_batch_stride;
  234. A_stride = stride_val(A_stride, A1);
  235. B_stride = stride_val(B_stride, B1);
  236. C_stride = stride_val(C_stride, n);
  237. A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
  238. B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
  239. C_batch_stride = stride_val(C_batch_stride, m * C_stride);
  240. checker.set_param(param);
  241. if (format == param::MatrixMul::Format::DEFAULT) {
  242. if (batched) {
  243. auto a_layout = TensorLayout{
  244. {arg.b, A0, A1}, {A_batch_stride, A_stride, 1}, A_dtype};
  245. auto b_layout = TensorLayout{
  246. {arg.b, B0, B1}, {B_batch_stride, B_stride, 1}, B_dtype};
  247. auto c_layout = TensorLayout{
  248. {arg.b, m, n}, {C_batch_stride, C_stride, 1}, C_dtype};
  249. checker.execl({a_layout, b_layout, c_layout});
  250. } else {
  251. checker.execl(
  252. {TensorLayout{{A0, A1}, {A_stride, 1}, A_dtype},
  253. TensorLayout{{B0, B1}, {B_stride, 1}, B_dtype},
  254. TensorLayout{{m, n}, {C_stride, 1}, C_dtype}});
  255. }
  256. } else {
  257. //! ignore non-contiguous, only DEFAULT format support
  258. //! non-contiguous input
  259. checker.execs({{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}});
  260. }
  261. }
  262. }
  263. void matrix_mul::check_batched_matrix_mul(
  264. DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
  265. const ExecutionPolicyAlgoName& algo, float eps, std::vector<TestArg>&& args,
  266. bool force_deduce_dst) {
  267. check_matrix_mul<megdnn::BatchedMatrixMul>(
  268. A_dtype, B_dtype, C_dtype, handle, algo, param::MatrixMul::Format::DEFAULT,
  269. 8, eps, std::forward<decltype(args)>(args), force_deduce_dst);
  270. }
  271. void matrix_mul::check_matrix_mul(
  272. DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
  273. const ExecutionPolicyAlgoName& algo, param::MatrixMul::Format format,
  274. size_t nbase, float eps, bool force_deduce_dst) {
  275. check_matrix_mul<megdnn::MatrixMul>(
  276. A_dtype, B_dtype, C_dtype, handle, algo, format, nbase, eps, {},
  277. force_deduce_dst);
  278. }
  279. #if MEGDNN_WITH_BENCHMARK
  280. std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_args() {
  281. std::vector<matrix_mul::TestArg> args;
  282. args.emplace_back(256, 12 * 24, 256, 0);
  283. //////////////////////// gemv //////////////////////////
  284. for (size_t M : {8, 64, 112, 256}) {
  285. for (size_t K : {8, 64, 112, 256}) {
  286. args.emplace_back(M, 1, K, 0);
  287. }
  288. }
  289. //////////////////////// gemm //////////////////////////
  290. for (size_t M : {8, 64, 112, 256}) {
  291. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  292. for (size_t N : {8, 64, 112, 256}) {
  293. args.emplace_back(M, N, K, 0);
  294. }
  295. }
  296. }
  297. return args;
  298. }
  299. std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_mk_packed_args(
  300. size_t nbase) {
  301. std::vector<TestArg> args;
  302. for (size_t m : {2, 4, 8, 16, 24, 32, 64})
  303. for (size_t n : {1, 2, 3, 4, 8, 16, 32, 64})
  304. for (size_t k : {2, 4, 8, 16, 24, 32, 64})
  305. args.emplace_back(m, n * nbase, k, 0);
  306. return args;
  307. }
  308. void matrix_mul::benchmark_with_contrast(
  309. Handle* handle, const std::vector<TestArg>& args, DType A_dtype, DType B_dtype,
  310. DType C_dtype, const char* algo, param::MatrixMul::Format format,
  311. DType contrast_A_dtype, DType contrast_B_dtype, DType contrast_C_dtype,
  312. const char* contrast_algo, param::MatrixMul::Format contrast_format) {
  313. using Param = MatrixMul::Param;
  314. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  315. megdnn_assert(contrast_A_dtype.enumv() == contrast_B_dtype.enumv());
  316. Benchmarker<MatrixMul> benchmark_contrast(handle);
  317. Benchmarker<MatrixMul> benchmark(handle);
  318. constexpr size_t RUNS = 50;
  319. if (algo) {
  320. benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
  321. }
  322. if (contrast_algo) {
  323. benchmark_contrast.set_before_exec_callback(
  324. AlgoChecker<MatrixMul>(contrast_algo));
  325. }
  326. benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
  327. benchmark.set_times(RUNS);
  328. benchmark_contrast.set_dtype(0, contrast_A_dtype)
  329. .set_dtype(1, contrast_B_dtype)
  330. .set_dtype(2, contrast_C_dtype);
  331. benchmark_contrast.set_times(RUNS);
  332. auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
  333. param::MatrixMul::Format format, size_t m, size_t n, size_t k,
  334. size_t pack_size) -> float {
  335. param.format = format;
  336. benchmark.set_param(param);
  337. float used_algo = 1.0;
  338. if (format == param::MatrixMul::Format::DEFAULT) {
  339. size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size, B1 = n;
  340. TensorShape A, B;
  341. if (param.transposeA) {
  342. std::swap(A0, A1);
  343. }
  344. if (param.transposeB) {
  345. std::swap(B0, B1);
  346. }
  347. used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
  348. } else {
  349. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  350. if (param.transposeA) {
  351. std::swap(A0, A1);
  352. }
  353. if (param.transposeB) {
  354. std::swap(B0, B1);
  355. }
  356. used_algo =
  357. benchmark.execs(
  358. {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}}) /
  359. RUNS;
  360. }
  361. return used_algo;
  362. };
  363. size_t mk_size = MatrixMulForward::pack_size(format);
  364. size_t mk_size_contrast = MatrixMulForward::pack_size(contrast_format);
  365. size_t pack_size = std::max(mk_size, mk_size_contrast);
  366. for (auto& arg : args) {
  367. Param param;
  368. param.transposeA = arg.mask & 0x1;
  369. param.transposeB = arg.mask & 0x2;
  370. auto used_contrast =
  371. bench(benchmark_contrast, param, contrast_format, arg.m, arg.n, arg.k,
  372. pack_size);
  373. auto used_algo =
  374. bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);
  375. float computations = 2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
  376. printf("run: {(%zu, %zu) x (%zu, %zu)} contrast: %f ms %f Gflops %s: "
  377. "%f "
  378. "ms "
  379. "%f Gflops "
  380. "speedup: %f \n",
  381. arg.m * pack_size, arg.k * pack_size, arg.k * pack_size, arg.n,
  382. used_contrast, computations / used_contrast, algo, used_algo,
  383. computations / used_algo, used_contrast / used_algo);
  384. }
  385. }
  386. void matrix_mul::benchmark_single_algo(
  387. Handle* handle, const std::vector<TestArg>& args, DType A_dtype, DType B_dtype,
  388. DType C_dtype, const char* algo, param::MatrixMul::Format format) {
  389. using Param = MatrixMul::Param;
  390. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  391. Benchmarker<MatrixMul> benchmark(handle);
  392. constexpr size_t RUNS = 50;
  393. if (algo) {
  394. benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
  395. }
  396. benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
  397. benchmark.set_times(RUNS);
  398. auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
  399. param::MatrixMul::Format format, size_t m, size_t n, size_t k,
  400. size_t pack_size) -> float {
  401. param.format = format;
  402. benchmark.set_param(param);
  403. float used_algo = 1.0;
  404. if (format == param::MatrixMul::Format::DEFAULT) {
  405. size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size, B1 = n;
  406. TensorShape A, B;
  407. if (param.transposeA) {
  408. std::swap(A0, A1);
  409. }
  410. if (param.transposeB) {
  411. std::swap(B0, B1);
  412. }
  413. used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
  414. } else {
  415. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  416. if (param.transposeA) {
  417. std::swap(A0, A1);
  418. }
  419. if (param.transposeB) {
  420. std::swap(B0, B1);
  421. }
  422. used_algo =
  423. benchmark.execs(
  424. {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}}) /
  425. RUNS;
  426. }
  427. return used_algo;
  428. };
  429. size_t pack_size = MatrixMulForward::pack_size(format);
  430. for (auto& arg : args) {
  431. Param param;
  432. param.transposeA = arg.mask & 0x1;
  433. param.transposeB = arg.mask & 0x2;
  434. auto used_algo =
  435. bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);
  436. float computations = 2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
  437. printf("run: {(%zu, %zu) x (%zu, %zu)} %f ms %f Gflops\n", arg.m * pack_size,
  438. arg.k * pack_size, arg.k * pack_size, arg.n, used_algo,
  439. computations / used_algo);
  440. }
  441. }
  442. #endif
  443. // vim: syntax=cpp.doxygen