|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 |
- #include "test/common/matrix_mul.h"
- #include "src/common/utils.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
-
- using namespace megdnn;
- using namespace test;
-
- constexpr size_t matrix_mul::TestArg::UNSET_STRIDE_VAL;
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_no_mask() {
- std::vector<TestArg> args;
-
- for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 32})
- for (size_t n : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
- 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32})
- for (size_t k : {1, 2, 4, 8, 11, 12, 15, 16, 31, 32, 37})
- args.emplace_back(m, n, k, 0);
-
- for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17})
- args.emplace_back(m, m + 1, m + 2, 0);
- for (size_t mbase : {11})
- for (size_t test_case_offset : {64, 256, 512}) {
- size_t mnk = mbase + test_case_offset;
- args.emplace_back(mnk, mnk, mnk, 0);
- return args;
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_mk_packed_args(size_t nbase) {
- std::vector<TestArg> args;
- for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11})
- for (size_t n : {1, 2, 3, 4, 5, 8, 12, 16, 24})
- for (size_t k : {1, 2, 3, 4, 5, 9, 10, 11})
- args.emplace_back(m, n * nbase, k, 0);
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_cublaslt() {
- std::vector<TestArg> args;
- for (size_t m : {4, 6, 8, 16}) {
- for (size_t n : {4, 6, 8, 16}) {
- //[TODO]: the following test case are disabled due to the
- // cublasLt(version: 10020) produce wrong result when k in [65, 97],
- // so please uncomment it if the bug is fixed
-
- for (size_t k : {32, 64}) {
- args.emplace_back(
- m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
- TestArg::UNSET_STRIDE_VAL, TestArg::UNSET_STRIDE_VAL, 2);
- }
- }
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_int8x8x32() {
- std::vector<TestArg> args;
- for (size_t m : {1, 2, 3, 4, 5, 8, 64}) {
- for (size_t n : {1, 2, 3, 4, 5, 8, 64}) {
- for (size_t k : {1, 2, 3, 4, 5, 8, 64}) {
- args.emplace_back(
- m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
- TestArg::UNSET_STRIDE_VAL, TestArg::UNSET_STRIDE_VAL, 2);
- }
- }
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_mask(uint8_t mask) {
- std::vector<TestArg> args;
-
- std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_no_mask();
- for (auto arg : args_temp) {
- arg.mask = mask;
- args.emplace_back(arg);
- }
-
- // non-contiguous case
- for (size_t m : {110})
- for (size_t n : {119})
- for (size_t k : {120}) {
- // A: (m, k)
- size_t Astride = mask & 1 ? m + 2 : k + 2;
- // B: (k, n)
- size_t Bstride = mask & 2 ? k + 2 : n + 2;
- size_t Cstride = n * 2 + 2;
- args.emplace_back(m, n, k, mask, Astride, Bstride, Cstride);
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args() {
- std::vector<TestArg> args;
- for (size_t mask = 0; mask < 4; ++mask) {
- std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_mask(mask);
- for (auto arg : args_temp)
- args.emplace_back(arg);
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_split_k() {
- std::vector<TestArg> args = get_matmul_args();
- for (auto iter = args.begin(); iter < args.end();) {
- if (iter->k <= iter->n) {
- iter = args.erase(iter);
- } else {
- iter++;
- }
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_mask(
- uint8_t mask) {
- std::vector<TestArg> args;
- for (size_t b : {1, 2, 3}) {
- std::vector<TestArg> args_temp =
- megdnn::test::matrix_mul::get_matmul_args_mask(mask);
- for (auto arg : args_temp) {
- arg.b = b;
- args.emplace_back(arg);
- }
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args() {
- std::vector<TestArg> args;
- for (size_t mask = 0; mask < 4; ++mask) {
- std::vector<TestArg> args_temp = matrix_mul::get_batched_matmul_args_mask(mask);
- for (auto arg : args_temp)
- args.emplace_back(arg);
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_broadcast_args() {
- std::vector<TestArg> args;
- for (size_t mask = 0; mask < 4; ++mask) {
- std::vector<TestArg> args_temp =
- matrix_mul::get_batched_matmul_broadcast_args_mask(mask);
- for (auto arg : args_temp)
- args.emplace_back(arg);
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_broadcast_args_mask(
- uint8_t mask) {
- std::vector<TestArg> args;
- std::vector<TestArg> args_temp = matrix_mul::get_batched_matmul_args_mask(mask);
- for (auto arg : args_temp) {
- args.emplace_back(arg);
- args.back().A_batch_stride = 0;
- }
- return args;
- }
-
- template <typename Opr>
- void matrix_mul::check_matrix_mul(
- DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
- const ExecutionPolicyAlgoName& algo, param::MatrixMul::Format format,
- size_t nbase, float eps, std::vector<TestArg>&& user_args,
- bool force_deduce_dst, param::MatrixMul::ComputeMode compute_mode) {
- megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
- Checker<Opr> checker(handle);
- checker.set_force_deduce_dst(force_deduce_dst);
- if (!algo.name.empty()) {
- checker.set_before_exec_callback(AlgoChecker<Opr>(algo));
- }
- std::unique_ptr<RNG> rng;
- checker.set_epsilon(eps);
- if (A_dtype.enumv() == DTypeEnum::Int8 ||
- A_dtype.enumv() == DTypeEnum::QuantizedS8) {
- //! use larger rng to check the overflow
- rng = std::make_unique<UniformIntRNG>(-127, 127);
- } else if (
- A_dtype.enumv() == DTypeEnum::Uint8 ||
- A_dtype.enumv() == DTypeEnum::Quantized8Asymm) {
- rng = std::make_unique<NormalRNG>(128.f);
- } else if (A_dtype.enumv() == DTypeEnum::Int16) {
- rng = std::make_unique<UniformIntRNG>(-32767, 32767);
- } else if (A_dtype.enumv() == DTypeEnum::Float16) {
- rng = std::make_unique<NormalRNG>(2.f);
- //! if fp16 not set eps, default 1e-3, we just set it to 1e-2
- if (eps < 1e-2) {
- checker.set_epsilon(1e-2);
- }
- }
-
- if (rng) {
- checker.set_rng(0, rng.get()).set_rng(1, rng.get());
- }
-
- //! return expect if stride == -1, stride otherwise
- auto stride_val = [](size_t stride, size_t expect) -> size_t {
- if (stride == TestArg::UNSET_STRIDE_VAL) {
- return expect;
- } else {
- return stride;
- }
- };
-
- constexpr static bool batched = std::is_same<Opr, megdnn::BatchedMatrixMul>::value;
- using Param = MatrixMul::Param;
- std::vector<TestArg> args;
- if (user_args.empty()) {
- if (format == param::MatrixMul::Format::DEFAULT) {
- if (batched) {
- args = matrix_mul::get_batched_matmul_args();
- } else {
- args = matrix_mul::get_matmul_args();
- }
-
- } else {
- megdnn_assert(!batched, "BatchedMatrixMul does not support MK4/MK8");
- args = matrix_mul::get_matmul_mk_packed_args(nbase);
- }
- } else {
- args = user_args;
- }
- size_t pack_size = MatrixMulForward::pack_size(format);
- for (auto& arg : args) {
- size_t m = arg.m, n = arg.n, k = arg.k;
-
- if (handle->type() == Handle::HandleType::CUDA) {
- //! NOTE: cublas can only process 4B aligned 8-bit input matrix;
- bool is_dt_8bit = A_dtype.enumv() == DTypeEnum::Int8 ||
- A_dtype.enumv() == DTypeEnum::QuantizedS8 ||
- A_dtype.enumv() == DTypeEnum::Uint8 ||
- A_dtype.enumv() == DTypeEnum::Quantized8Asymm;
- if (is_dt_8bit && ((m % 4 != 0) || (n % 4 != 0))) {
- continue;
- }
- }
-
- Param param;
- param.transposeA = arg.mask & 0x1;
- param.transposeB = arg.mask & 0x2;
- param.compute_mode = compute_mode;
- param.format = format;
- checker.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
- size_t A0 = m, A1 = k, B0 = k, B1 = n;
- TensorShape A, B;
- if (param.transposeA) {
- std::swap(A0, A1);
- }
- if (param.transposeB) {
- std::swap(B0, B1);
- }
- ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
- C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
- B_batch_stride = arg.B_batch_stride,
- C_batch_stride = arg.C_batch_stride;
- A_stride = stride_val(A_stride, A1);
- B_stride = stride_val(B_stride, B1);
- C_stride = stride_val(C_stride, n);
- A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
- B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
- C_batch_stride = stride_val(C_batch_stride, m * C_stride);
-
- checker.set_param(param);
- if (format == param::MatrixMul::Format::DEFAULT) {
- if (batched) {
- auto a_layout = TensorLayout{
- {arg.b, A0, A1}, {A_batch_stride, A_stride, 1}, A_dtype};
- auto b_layout = TensorLayout{
- {arg.b, B0, B1}, {B_batch_stride, B_stride, 1}, B_dtype};
- auto c_layout = TensorLayout{
- {arg.b, m, n}, {C_batch_stride, C_stride, 1}, C_dtype};
- checker.execl({a_layout, b_layout, c_layout});
-
- } else {
- checker.execl(
- {TensorLayout{{A0, A1}, {A_stride, 1}, A_dtype},
- TensorLayout{{B0, B1}, {B_stride, 1}, B_dtype},
- TensorLayout{{m, n}, {C_stride, 1}, C_dtype}});
- }
- } else {
- //! ignore non-contiguous, only DEFAULT format support
- //! non-contiguous input
- checker.execs({{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}});
- }
- }
- }
-
- void matrix_mul::check_batched_matrix_mul(
- DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
- const ExecutionPolicyAlgoName& algo, float eps, std::vector<TestArg>&& args,
- bool force_deduce_dst) {
- check_matrix_mul<megdnn::BatchedMatrixMul>(
- A_dtype, B_dtype, C_dtype, handle, algo, param::MatrixMul::Format::DEFAULT,
- 8, eps, std::forward<decltype(args)>(args), force_deduce_dst);
- }
-
- void matrix_mul::check_matrix_mul(
- DType A_dtype, DType B_dtype, DType C_dtype, Handle* handle,
- const ExecutionPolicyAlgoName& algo, param::MatrixMul::Format format,
- size_t nbase, float eps, bool force_deduce_dst) {
- check_matrix_mul<megdnn::MatrixMul>(
- A_dtype, B_dtype, C_dtype, handle, algo, format, nbase, eps, {},
- force_deduce_dst);
- }
-
- #if MEGDNN_WITH_BENCHMARK
- std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_args() {
- std::vector<matrix_mul::TestArg> args;
- args.emplace_back(256, 12 * 24, 256, 0);
-
- //////////////////////// gemv //////////////////////////
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 64, 112, 256}) {
- args.emplace_back(M, 1, K, 0);
- }
- }
-
- //////////////////////// gemm //////////////////////////
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 16, 32, 64, 112, 256}) {
- for (size_t N : {8, 64, 112, 256}) {
- args.emplace_back(M, N, K, 0);
- }
- }
- }
- return args;
- }
-
- std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_mk_packed_args(
- size_t nbase) {
- std::vector<TestArg> args;
- for (size_t m : {2, 4, 8, 16, 24, 32, 64})
- for (size_t n : {1, 2, 3, 4, 8, 16, 32, 64})
- for (size_t k : {2, 4, 8, 16, 24, 32, 64})
- args.emplace_back(m, n * nbase, k, 0);
- return args;
- }
-
- void matrix_mul::benchmark_with_contrast(
- Handle* handle, const std::vector<TestArg>& args, DType A_dtype, DType B_dtype,
- DType C_dtype, const char* algo, param::MatrixMul::Format format,
- DType contrast_A_dtype, DType contrast_B_dtype, DType contrast_C_dtype,
- const char* contrast_algo, param::MatrixMul::Format contrast_format) {
- using Param = MatrixMul::Param;
-
- megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
- megdnn_assert(contrast_A_dtype.enumv() == contrast_B_dtype.enumv());
- Benchmarker<MatrixMul> benchmark_contrast(handle);
- Benchmarker<MatrixMul> benchmark(handle);
- constexpr size_t RUNS = 50;
- if (algo) {
- benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
- }
- if (contrast_algo) {
- benchmark_contrast.set_before_exec_callback(
- AlgoChecker<MatrixMul>(contrast_algo));
- }
- benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
- benchmark.set_times(RUNS);
- benchmark_contrast.set_dtype(0, contrast_A_dtype)
- .set_dtype(1, contrast_B_dtype)
- .set_dtype(2, contrast_C_dtype);
- benchmark_contrast.set_times(RUNS);
-
- auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
- param::MatrixMul::Format format, size_t m, size_t n, size_t k,
- size_t pack_size) -> float {
- param.format = format;
- benchmark.set_param(param);
- float used_algo = 1.0;
- if (format == param::MatrixMul::Format::DEFAULT) {
- size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size, B1 = n;
- TensorShape A, B;
- if (param.transposeA) {
- std::swap(A0, A1);
- }
- if (param.transposeB) {
- std::swap(B0, B1);
- }
- used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
- } else {
- size_t A0 = m, A1 = k, B0 = k, B1 = n;
- if (param.transposeA) {
- std::swap(A0, A1);
- }
- if (param.transposeB) {
- std::swap(B0, B1);
- }
-
- used_algo =
- benchmark.execs(
- {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}}) /
- RUNS;
- }
- return used_algo;
- };
-
- size_t mk_size = MatrixMulForward::pack_size(format);
- size_t mk_size_contrast = MatrixMulForward::pack_size(contrast_format);
- size_t pack_size = std::max(mk_size, mk_size_contrast);
- for (auto& arg : args) {
- Param param;
- param.transposeA = arg.mask & 0x1;
- param.transposeB = arg.mask & 0x2;
-
- auto used_contrast =
- bench(benchmark_contrast, param, contrast_format, arg.m, arg.n, arg.k,
- pack_size);
- auto used_algo =
- bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);
-
- float computations = 2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
- printf("run: {(%zu, %zu) x (%zu, %zu)} contrast: %f ms %f Gflops %s: "
- "%f "
- "ms "
- "%f Gflops "
- "speedup: %f \n",
- arg.m * pack_size, arg.k * pack_size, arg.k * pack_size, arg.n,
- used_contrast, computations / used_contrast, algo, used_algo,
- computations / used_algo, used_contrast / used_algo);
- }
- }
-
- void matrix_mul::benchmark_single_algo(
- Handle* handle, const std::vector<TestArg>& args, DType A_dtype, DType B_dtype,
- DType C_dtype, const char* algo, param::MatrixMul::Format format) {
- using Param = MatrixMul::Param;
-
- megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
- Benchmarker<MatrixMul> benchmark(handle);
- constexpr size_t RUNS = 50;
- if (algo) {
- benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
- }
- benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
- benchmark.set_times(RUNS);
-
- auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
- param::MatrixMul::Format format, size_t m, size_t n, size_t k,
- size_t pack_size) -> float {
- param.format = format;
- benchmark.set_param(param);
- float used_algo = 1.0;
- if (format == param::MatrixMul::Format::DEFAULT) {
- size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size, B1 = n;
- TensorShape A, B;
- if (param.transposeA) {
- std::swap(A0, A1);
- }
- if (param.transposeB) {
- std::swap(B0, B1);
- }
- used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
- } else {
- size_t A0 = m, A1 = k, B0 = k, B1 = n;
- if (param.transposeA) {
- std::swap(A0, A1);
- }
- if (param.transposeB) {
- std::swap(B0, B1);
- }
-
- used_algo =
- benchmark.execs(
- {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}}) /
- RUNS;
- }
- return used_algo;
- };
-
- size_t pack_size = MatrixMulForward::pack_size(format);
- for (auto& arg : args) {
- Param param;
- param.transposeA = arg.mask & 0x1;
- param.transposeB = arg.mask & 0x2;
-
- auto used_algo =
- bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);
-
- float computations = 2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
- printf("run: {(%zu, %zu) x (%zu, %zu)} %f ms %f Gflops\n", arg.m * pack_size,
- arg.k * pack_size, arg.k * pack_size, arg.n, used_algo,
- computations / used_algo);
- }
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|