You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resize.h 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. #pragma once
  2. #include <iostream>
  3. #include "megdnn/basic_types.h"
  4. #include "megdnn/opr_param_defs.h"
  5. #include "./rng.h"
  6. namespace megdnn {
  7. namespace test {
  8. namespace resize {
  9. using IMode = param::Resize::InterpolationMode;
  10. struct TestArg {
  11. param::Resize param;
  12. TensorShape src;
  13. TensorShape dst;
  14. TestArg(param::Resize param_, TensorShape src_, TensorShape dst_)
  15. : param(param_), src(src_), dst(dst_) {}
  16. };
  17. // Get the args for linear test
  18. static void set_linear_args(std::vector<TestArg>& args) {
  19. // test src_rows == dst_rows * 2 && src_cols == dst_cols * 2
  20. param::Resize cur_param;
  21. cur_param.format = param::Resize::Format::NHWC;
  22. cur_param.imode = param::Resize::InterpolationMode::INTER_LINEAR;
  23. args.emplace_back(cur_param, TensorShape{1, 6, 6, 1}, TensorShape{1, 3, 3, 1});
  24. // test resize_linear_Restric_kernel
  25. // CH == 3 && dst_rows < src_rows && dst_cols < src_cols
  26. args.emplace_back(cur_param, TensorShape{1, 4, 4, 3}, TensorShape{1, 3, 3, 3});
  27. // test else
  28. args.emplace_back(cur_param, TensorShape{1, 4, 4, 1}, TensorShape{1, 3, 3, 1});
  29. args.emplace_back(cur_param, TensorShape{1, 4, 6, 1}, TensorShape{1, 10, 9, 1});
  30. args.emplace_back(cur_param, TensorShape{1, 4, 6, 3}, TensorShape{1, 10, 9, 3});
  31. }
  32. static void set_nchw_args(std::vector<TestArg>& args) {
  33. param::Resize param;
  34. param.format = param::Resize::Format::NCHW;
  35. param.imode = param::Resize::InterpolationMode::LINEAR;
  36. args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 2, 6, 8});
  37. args.emplace_back(param, TensorShape{1, 2, 2, 2}, TensorShape{1, 2, 4, 3});
  38. args.emplace_back(param, TensorShape{1, 2, 6, 8}, TensorShape{1, 2, 3, 4});
  39. param.imode = param::Resize::InterpolationMode::NEAREST;
  40. args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 2, 6, 8});
  41. args.emplace_back(param, TensorShape{1, 2, 2, 2}, TensorShape{1, 2, 4, 3});
  42. args.emplace_back(param, TensorShape{1, 2, 6, 8}, TensorShape{1, 2, 3, 4});
  43. }
  44. static inline std::vector<TestArg> get_args(IMode imode = IMode::INTER_LINEAR) {
  45. std::vector<TestArg> args;
  46. set_nchw_args(args);
  47. if (imode == IMode::INTER_LINEAR) {
  48. //! test NHWC with ch != 1 or ch != 3
  49. param::Resize param;
  50. param.format = param::Resize::Format::NHWC;
  51. param.imode = imode;
  52. args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 4, 6, 4});
  53. args.emplace_back(param, TensorShape{2, 4, 6, 4}, TensorShape{2, 2, 3, 4});
  54. }
  55. return args;
  56. }
  57. static inline std::vector<TestArg> get_nhwc_args() {
  58. std::vector<TestArg> args;
  59. param::Resize param;
  60. param.format = param::Resize::Format::NHWC;
  61. param.imode = param::Resize::InterpolationMode::LINEAR;
  62. args.emplace_back(param, TensorShape{2, 3, 4, 2}, TensorShape{2, 6, 8, 2});
  63. args.emplace_back(param, TensorShape{1, 2, 2, 2}, TensorShape{1, 4, 3, 2});
  64. args.emplace_back(param, TensorShape{1, 6, 8, 2}, TensorShape{1, 3, 4, 2});
  65. param.imode = param::Resize::InterpolationMode::NEAREST;
  66. args.emplace_back(param, TensorShape{2, 3, 4, 2}, TensorShape{2, 6, 8, 2});
  67. args.emplace_back(param, TensorShape{1, 2, 2, 2}, TensorShape{1, 4, 3, 2});
  68. args.emplace_back(param, TensorShape{1, 6, 8, 2}, TensorShape{1, 3, 4, 2});
  69. return args;
  70. }
  71. static inline std::vector<TestArg> get_nhwcd4_args() {
  72. std::vector<TestArg> args;
  73. param::Resize param;
  74. param.format = param::Resize::Format::NHWCD4;
  75. param.imode = param::Resize::InterpolationMode::LINEAR;
  76. args.emplace_back(param, TensorShape{2, 2, 1, 3, 4}, TensorShape{2, 4, 1, 6, 4});
  77. args.emplace_back(param, TensorShape{2, 4, 1, 6, 4}, TensorShape{2, 2, 1, 3, 4});
  78. param.imode = param::Resize::InterpolationMode::NEAREST;
  79. args.emplace_back(param, TensorShape{2, 2, 1, 3, 4}, TensorShape{2, 4, 1, 6, 4});
  80. args.emplace_back(param, TensorShape{2, 4, 1, 6, 4}, TensorShape{2, 2, 1, 3, 4});
  81. return args;
  82. }
  83. static inline std::vector<TestArg> get_nchw4_args() {
  84. std::vector<TestArg> args;
  85. param::Resize param;
  86. param.format = param::Resize::Format::NCHW4;
  87. param.imode = param::Resize::InterpolationMode::LINEAR;
  88. args.emplace_back(param, TensorShape{1, 1, 2, 3, 4}, TensorShape{1, 1, 2, 6, 4});
  89. args.emplace_back(param, TensorShape{2, 2, 2, 2, 4}, TensorShape{2, 2, 2, 4, 4});
  90. args.emplace_back(param, TensorShape{2, 4, 6, 8, 4}, TensorShape{2, 4, 3, 4, 4});
  91. return args;
  92. }
  93. static inline std::vector<TestArg> get_nchw44_args() {
  94. std::vector<TestArg> args;
  95. param::Resize param;
  96. param.format = param::Resize::Format::NCHW44;
  97. param.imode = param::Resize::InterpolationMode::LINEAR;
  98. rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul)
  99. args.emplace_back(
  100. param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 4ul},
  101. TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 4ul});
  102. param.imode = param::Resize::InterpolationMode::NEAREST;
  103. rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul)
  104. args.emplace_back(
  105. param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 4ul},
  106. TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 4ul});
  107. return args;
  108. }
  109. static inline std::vector<TestArg> get_nchw88_args() {
  110. std::vector<TestArg> args;
  111. param::Resize param;
  112. param.format = param::Resize::Format::NCHW88;
  113. param.imode = param::Resize::InterpolationMode::LINEAR;
  114. rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul)
  115. args.emplace_back(
  116. param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 8ul},
  117. TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 8ul});
  118. param.imode = param::Resize::InterpolationMode::NEAREST;
  119. rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul)
  120. args.emplace_back(
  121. param, TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 8ul},
  122. TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 8ul});
  123. return args;
  124. }
  125. static inline std::vector<TestArg> get_cv_args() {
  126. std::vector<TestArg> args;
  127. set_linear_args(args);
  128. param::Resize cur_param;
  129. cur_param.format = param::Resize::Format::NHWC;
  130. for (size_t i = 8; i < 129; i *= 4) {
  131. cur_param.imode = param::Resize::InterpolationMode::INTER_NEAREST;
  132. args.emplace_back(
  133. cur_param, TensorShape{1, i, i, 3}, TensorShape{1, i / 2, i / 2, 3});
  134. args.emplace_back(cur_param, TensorShape{1, i, i, 1}, TensorShape{1, 8, 8, 1});
  135. args.emplace_back(
  136. cur_param, TensorShape{1, i, i, 6}, TensorShape{1, i / 2, i / 2, 6});
  137. args.emplace_back(cur_param, TensorShape{1, i, i, 6}, TensorShape{1, 8, 8, 6});
  138. cur_param.imode = param::Resize::InterpolationMode::INTER_AREA;
  139. args.emplace_back(cur_param, TensorShape{1, i, i, 3}, TensorShape{1, 8, 8, 3});
  140. cur_param.imode = param::Resize::InterpolationMode::INTER_CUBIC;
  141. args.emplace_back(cur_param, TensorShape{1, i, i, 3}, TensorShape{1, 8, 8, 3});
  142. cur_param.imode = param::Resize::InterpolationMode::INTER_LANCZOS4;
  143. args.emplace_back(cur_param, TensorShape{1, i, i, 3}, TensorShape{1, 8, 8, 3});
  144. }
  145. //! cuda not use vector
  146. //! enlarge==true && dst_area_size > 500 * 500
  147. cur_param.imode = param::Resize::InterpolationMode::INTER_CUBIC;
  148. args.emplace_back(cur_param, TensorShape{1, 3, 3, 1}, TensorShape{1, 500, 600, 1});
  149. cur_param.imode = param::Resize::InterpolationMode::INTER_LANCZOS4;
  150. args.emplace_back(cur_param, TensorShape{1, 3, 3, 1}, TensorShape{1, 500, 600, 1});
  151. cur_param.imode = param::Resize::InterpolationMode::INTER_NEAREST;
  152. args.emplace_back(cur_param, TensorShape{1, 3, 3, 1}, TensorShape{1, 500, 600, 1});
  153. args.emplace_back(cur_param, TensorShape{1, 3, 3, 4}, TensorShape{1, 500, 600, 4});
  154. return args;
  155. }
  156. } // namespace resize
  157. } // namespace test
  158. } // namespace megdnn
  159. // vim: syntax=cpp.doxygen