- #include "test/cpu/fixture.h"
-
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/convolution.h"
-
- using namespace megdnn;
- using namespace test;
-
- namespace {
-
- Convolution::Param gconv_param(Convolution::Param p) {
- p.sparse = Convolution::Param::Sparse::GROUP;
- return p;
- }
-
- } // anonymous namespace
-
- #define CONVOLUTION_ARG_DIV_SIZE 100
- TEST_F(CPU, CONVOLUTION_0) {
- using namespace convolution;
- std::vector<TestArg> args = get_args();
- auto loop_size = args.size();
- ASSERT_GT(loop_size, CONVOLUTION_ARG_DIV_SIZE);
- Checker<Convolution> checker(handle());
- for (unsigned int i = 0; i < CONVOLUTION_ARG_DIV_SIZE; i++) {
- checker.set_param(args[i].param).execs({args[i].src, args[i].filter, {}});
- }
- }
-
- #define CONVOLUTION1_ARG_LOOP_END_TIME (CONVOLUTION_ARG_DIV_SIZE + 205)
-
- TEST_F(CPU, CONVOLUTION_1) {
- using namespace convolution;
- std::vector<TestArg> args = get_args();
- auto loop_size = args.size();
- ASSERT_GT(loop_size, CONVOLUTION_ARG_DIV_SIZE);
- ASSERT_GT(loop_size, CONVOLUTION1_ARG_LOOP_END_TIME);
- Checker<Convolution> checker(handle());
- for (unsigned int i = CONVOLUTION_ARG_DIV_SIZE; i < CONVOLUTION1_ARG_LOOP_END_TIME;
- i++) {
- checker.set_param(args[i].param).execs({args[i].src, args[i].filter, {}});
- }
- }
-
- #define CONVOLUTION2_ARG_LOOP_END_TIME (CONVOLUTION1_ARG_LOOP_END_TIME + 200)
- TEST_F(CPU, CONVOLUTION_2) {
- using namespace convolution;
- std::vector<TestArg> args = get_args();
- auto loop_size = args.size();
- ASSERT_GT(loop_size, CONVOLUTION2_ARG_LOOP_END_TIME);
- Checker<Convolution> checker(handle());
- for (unsigned int i = CONVOLUTION1_ARG_LOOP_END_TIME;
- i < CONVOLUTION2_ARG_LOOP_END_TIME; i++) {
- checker.set_param(args[i].param).execs({args[i].src, args[i].filter, {}});
- }
- }
-
- TEST_F(CPU, CONVOLUTION_3) {
- using namespace convolution;
- std::vector<TestArg> args = get_args();
- auto loop_size = args.size();
- ASSERT_GT(loop_size, CONVOLUTION2_ARG_LOOP_END_TIME);
- Checker<Convolution> checker(handle());
- for (unsigned int i = CONVOLUTION2_ARG_LOOP_END_TIME; i < loop_size; i++) {
- checker.set_param(args[i].param).execs({args[i].src, args[i].filter, {}});
- }
- }
-
- #undef CONVOLUTION_ARG_DIV_SIZE
- #undef CONVOLUTION1_ARG_LOOP_END_TIME
- #undef CONVOLUTION2_ARG_LOOP_END_TIME
-
- #define CB_CONV_CONFIG_COMBINATIONS(KSIZE) \
- TEST_F(CPU, CONV_CONFIG_COMBINATIONS_KSIZE_1_KSIZE_##KSIZE) { \
- convolution::test_conv_config_combinations( \
- KSIZE, handle(), true, false, false); \
- }
-
- // FIXME: only test ksize=1, will crash on IOS, so we tmp test ksize_1##other_ksize
- CB_CONV_CONFIG_COMBINATIONS(2);
- CB_CONV_CONFIG_COMBINATIONS(3);
- CB_CONV_CONFIG_COMBINATIONS(5);
- #undef CB_CONV_CONFIG_COMBINATIONS
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CPU, BENCHMARK_CONVOLUTION) {
- using TestArg = convolution::TestArg;
- using Param = param::Convolution;
- std::vector<TestArg> args;
- // case 1: detection-like (padding x stride x kernel_size)
- // clang-format off
- for (size_t has_pad = 0; has_pad < 2; ++has_pad)
- for (uint32_t stride = 1; stride <= 2; ++stride)
- for (std::pair<size_t, size_t> kersize :
- std::vector<std::pair<size_t, size_t>>{
- {2, 2}, {3, 3}, {5, 5}, {7, 7}}) {
- uint32_t pad_h, pad_w;
- if (has_pad)
- pad_h = kersize.first / 2;
- else
- pad_h = 0;
- if (has_pad)
- pad_w = kersize.second / 2;
- else
- pad_w = 0;
- auto param = Param{Param::Mode::CROSS_CORRELATION, pad_h, pad_w,
- stride, stride};
- {
- auto arg = TestArg{param,
- {2, 3, 320, 240},
- {4, 3, kersize.first, kersize.second}};
- args.push_back(arg);
- }
- }
- // clang-format on
- Checker<Convolution> checker(handle());
- checker.set_perf_check(true).set_perf_check_threshold(2.0);
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}});
- }
- }
-
- #endif
-
- TEST_F(CPU, CHANWISE_CONVOLUTION) {
- constexpr auto M = Convolution::Mode::CROSS_CORRELATION;
- Checker<Convolution> checker(handle());
- checker.set_param(gconv_param({M, 0, 0, 1, 1}))
- .execs({{1, 1, 2, 2}, {1, 1, 1, 2, 2}, {}})
- .execs({{1, 1, 5, 5}, {1, 1, 1, 2, 2}, {}})
- .execs({{2, 2, 5, 5}, {2, 3, 1, 2, 2}, {2, 6, 4, 4}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1}))
- .execs({{2, 2, 5, 5}, {2, 1, 1, 2, 2}, {}});
-
- checker.set_param(gconv_param({M, 2, 3, 2, 1}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 4, 5}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
- }
-
- TEST_F(CPU, CHANWISE_CONVOLUTION_INT8_INT8_INT16) {
- constexpr auto M = Convolution::Mode::CROSS_CORRELATION;
- Checker<Convolution> checker(handle());
-
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int16());
-
- checker.set_param(gconv_param({M, 0, 0, 1, 1, 1, 1}))
- .execs({{1, 1, 2, 2}, {1, 1, 1, 2, 2}, {}})
- .execs({{1, 1, 5, 5}, {1, 1, 1, 2, 2}, {}})
- .execs({{2, 2, 5, 5}, {2, 3, 1, 2, 2}, {2, 6, 4, 4}});
-
- checker.set_param(gconv_param({M, 1, 1, 1, 1, 1, 1}))
- .execs({{2, 2, 5, 5}, {2, 1, 1, 2, 2}, {}});
-
- checker.set_param(gconv_param({M, 2, 3, 2, 1, 1, 1}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
-
- // padding larger than kern
- checker.set_param(gconv_param({M, 20, 30, 4, 5, 1, 1}))
- .execs({{32, 12, 20, 10}, {12, 2, 1, 4, 5}, {}});
-
- // clang-format off
- for (uint32_t s : {1, 2})
- for (uint32_t p : {0, 1})
- for (size_t kh : {2, 3, 5})
- for (size_t kw : {kh, kh + 1})
- for (size_t ic : {5})
- for (size_t oc : {3})
- for (size_t h = 20; h <= 60; h += 7)
- for (size_t w : {h, h + 1}) {
- checker.set_param(gconv_param({M, p, p, s, s, 1, 1}))
- .execs({{2, ic, h, w}, {ic, oc, 1, kh, kw}, {}});
- }
- // clang-format on
- }
-
- TEST_F(CPU, GROUP_CONV) {
- auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t FH, size_t FW,
- size_t OC, size_t /* OH */, size_t /* OW */, size_t PH, size_t PW,
- size_t SH, size_t SW, size_t group) {
- Checker<Convolution> checker(handle());
- Convolution::Param param;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(gconv_param(param))
- .exec({{N, IC, IH, IW}, {group, OCg, ICg, FH, FW}, {}});
- };
- // normal case
- run(2, 64, 7, 7, 3, 3, 32, 5, 5, 0, 0, 1, 1, 1);
- // padded case
- run(2, 32, 7, 7, 3, 3, 64, 7, 7, 1, 1, 1, 1, 4);
- // strided case
- run(2, 32, 7, 7, 3, 3, 64, 3, 3, 0, 0, 2, 2, 8);
- }
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CPU, BENCHMARK_7X7_CONVOLUTION) {
- using Param = param::Convolution;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- auto handle_naive = create_cpu_handle(2);
- Benchmarker<Convolution> benchmarker_naive(handle_naive.get());
- Benchmarker<Convolution> benchmarker_float(handle());
- size_t RUN = 10;
- auto tfloat = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto tnaive = benchmarker_naive.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- printf("src: %s filter: %s dst: %s naive=%.3fms float=%.3fms\n",
- shapes[0].to_string().c_str(), shapes[1].to_string().c_str(),
- shapes[2].to_string().c_str(), tnaive / RUN, tfloat / RUN);
- };
- Param param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = 3;
- param.pad_w = 3;
-
- // clang-format off
- for (size_t ic : {1, 3, 8, 16, 24}) {
- for (size_t oc : {8, 16}) {
- for (size_t h : {128, 224, 256, 512}) {
- for (size_t w : {128, 224, 256, 512}) {
- run({{1, ic, h, w}, {oc, ic, 7, 7}, {1, oc, h / 2, w / 2}}, param);
- } } } }
- // clang-format on
- // Used in FaceModel
- // run({{2, 3, 512, 512}, {8, 3, 7, 7}, {2, 8, 256, 256}}, param);
- // run({{2, 3, 128, 128}, {16, 3, 7, 7}, {2, 16, 64, 64}}, param);
- // run({{2, 3, 224, 224}, {32, 3, 7, 7}, {2, 32, 112, 112}}, param);
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|