You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

record1.cpp 48 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303
  1. #include "test/naive/fixture.h"
  2. #include "megdnn/oprs.h"
  3. #include "test/common/task_record_check.h"
  4. #include "test/common/adaptive_pooling.h"
  5. #include "test/common/cond_take.h"
  6. #include "test/common/convolution3d.h"
  7. #include "test/common/local.h"
  8. #include "test/common/matrix_mul.h"
  9. #include "test/common/rng.h"
  10. #include "test/common/separable_conv.h"
  11. #include "test/common/warp_affine.h"
  12. #include "test/common/warp_perspective.h"
  13. namespace {
  14. using namespace megdnn;
  15. using namespace test;
  16. class ArgmxxRNG final : public RNG {
  17. public:
  18. void gen(const TensorND& tensor) override {
  19. auto offset = tensor.layout.span().low_elem;
  20. auto nr_elems = tensor.layout.span().dist_elem();
  21. #define cb(DType) \
  22. if (tensor.layout.dtype == DType()) { \
  23. using ctype = typename DTypeTrait<DType>::ctype; \
  24. auto ptr = tensor.ptr<ctype>(); \
  25. for (size_t i = 0; i < nr_elems; ++i) { \
  26. ptr[offset + i] = i; \
  27. } \
  28. COMPAT_RANDOM(ptr + offset, ptr + offset + nr_elems); \
  29. }
  30. MEGDNN_FOREACH_COMPUTING_DTYPE(cb);
  31. #undef cb
  32. }
  33. };
  34. template <typename Argmxx>
  35. void test_argmxx() {
  36. TaskRecordChecker<Argmxx> checker(2);
  37. checker.set_dtype(1, dtype::Int32());
  38. using Param = typename Argmxx::Param;
  39. ArgmxxRNG rng;
  40. checker.set_rng(0, &rng);
  41. for (size_t axis = 0; axis < 4; ++axis) {
  42. Param param;
  43. param.axis = axis;
  44. checker.set_param(param)
  45. .set_dtype(0, dtype::Float32())
  46. .execs({{2, 3, 4, 5}, {}});
  47. checker.set_param(param)
  48. .set_dtype(0, dtype::Float16())
  49. .execs({{2, 3, 4, 5}, {}});
  50. checker.set_param(param).set_dtype(0, dtype::Int32()).execs({{2, 3, 4, 5}, {}});
  51. checker.set_param(param).set_dtype(0, dtype::Int16()).execs({{2, 3, 4, 5}, {}});
  52. checker.set_param(param).set_dtype(0, dtype::Int8()).execs({{2, 3, 4, 5}, {}});
  53. checker.set_param(param).set_dtype(0, dtype::Uint8()).execs({{2, 3, 4, 5}, {}});
  54. }
  55. checker.set_dtype(0, dtype::Float32());
  56. Param param;
  57. param.axis = 1;
  58. checker.set_param(param);
  59. // 1-step
  60. checker.execs({{2, 64, 32}, {}});
  61. // 2-step
  62. checker.execs({{2, 192, 32}, {}});
  63. // 3-step
  64. checker.execs({{2, 4333, 32}, {}});
  65. // single reduce
  66. checker.execs({{2, 1, 1}, {}});
  67. checker.execs({{2, 1 + 1, 1}, {}});
  68. checker.execs({{2, 2048 + 1, 1}, {}});
  69. checker.execs({{2, 2048 * 2048 + 1, 1}, {}});
  70. checker.execs({{2, 1 + 1, 31}, {}});
  71. checker.execs({{2, 16 + 1, 31}, {}});
  72. checker.execs({{2, 16 * 16 + 1, 31}, {}});
  73. checker.execs({{2, 16 * 16 * 16 + 1, 31}, {}});
  74. checker.execs({{2, 16 * 16 * 16 * 16 + 1, 31}, {}});
  75. checker.execs({{3, 256 * 256 + 1, 2}, {}});
  76. checker.execs({{3, 128 * 128 + 1, 3}, {}});
  77. checker.execs({{3, 64 * 64 + 1, 7}, {}});
  78. checker.execs({{3, 32 * 32 + 1, 15}, {}});
  79. checker.execs({{3, 512, 500}, {}});
  80. // very large reduce
  81. checker.execs({{1, 4194304, 1}, {}});
  82. }
  83. class ArgsortRNG final : public RNG {
  84. bool m_rev_order = false;
  85. DType m_dtype;
  86. template <typename T>
  87. void fill(T* ptr, int n) {
  88. if (m_rev_order) {
  89. for (int i = 0; i < n; ++i)
  90. ptr[i] = static_cast<T>(n / 2 - i);
  91. } else {
  92. for (int i = 0; i < n; ++i)
  93. ptr[i] = static_cast<T>(i - n / 2);
  94. COMPAT_RANDOM(ptr, ptr + n);
  95. }
  96. }
  97. void gen(const TensorND& tensor) override {
  98. auto n = tensor.layout.total_nr_elems();
  99. if (m_dtype == dtype::Float32{}) {
  100. fill(tensor.ptr<dt_float32>(), n);
  101. } else {
  102. megdnn_assert(m_dtype == dtype::Int32{});
  103. fill(tensor.ptr<dt_int32>(), n);
  104. }
  105. }
  106. public:
  107. ArgsortRNG(DType dt) : m_dtype{dt} {}
  108. void set_rev_order(bool flag) { m_rev_order = flag; }
  109. };
  110. void run_forward_test(DType dtype) {
  111. TaskRecordChecker<ArgsortForward> checker(2);
  112. using Param = Argsort::Param;
  113. using Order = Param::Order;
  114. ArgsortRNG rng{dtype};
  115. checker.set_dtype(2, dtype::Int32());
  116. checker.set_dtype(0, dtype).set_rng(0, &rng);
  117. for (size_t i = 3; i < 10240; i *= 2) {
  118. Param param;
  119. param.order = Order::ASCENDING;
  120. checker.set_param(param).execs({{3, i + 1}, {}, {}});
  121. param.order = Order::DESCENDING;
  122. checker.set_param(param).execs({{3, i - 1}, {}, {}});
  123. checker.set_param(param).execs({{13, i + 3}, {}, {}});
  124. }
  125. {
  126. // reverse sort large array
  127. constexpr size_t N = 200003;
  128. rng.set_rev_order(true);
  129. Param param;
  130. param.order = Order::ASCENDING;
  131. checker.set_param(param).execs({{1, N}, {}, {}});
  132. }
  133. }
  134. class IdxRng final : public RNG {
  135. void gen(const TensorND& tensor) override {
  136. auto ptr = tensor.ptr<dt_int32>();
  137. auto m = tensor.layout[0], n = tensor.layout[1];
  138. for (size_t i = 0; i < m; ++i) {
  139. for (size_t j = 0; j < n; ++j) {
  140. ptr[j] = j;
  141. }
  142. COMPAT_RANDOM(ptr, ptr + n);
  143. ptr += n;
  144. }
  145. }
  146. };
  147. void run_backward_test(DType dtype) {
  148. IdxRng rng;
  149. TaskRecordChecker<ArgsortBackward> checker(2);
  150. checker.set_dtype(1, dtype::Int32()).set_rng(1, &rng);
  151. checker.set_dtype(0, dtype);
  152. checker.set_dtype(2, dtype);
  153. for (size_t i = 16; i < 4096; i *= 2) {
  154. checker.execs({{3, i}, {3, i}, {3, i}});
  155. checker.execs({{3, i + 3}, {3, i + 3}, {3, i + 3}});
  156. checker.execs({{3, i + 3}, {3, i + 3}, {3, i + 7}});
  157. }
  158. }
  159. } // anonymous namespace
  160. namespace megdnn {
  161. namespace test {
  162. //! adaptive pooling
  163. TEST_F(NAIVE, ADAPTIVE_POOLING_FORWARD_RECORD) {
  164. TaskRecordChecker<AdaptivePooling> checker(2);
  165. auto args = adaptive_pooling::get_args();
  166. using Format = param::AdaptivePooling::Format;
  167. DType dtype = dtype::Float32();
  168. for (auto&& arg : args) {
  169. auto param = arg.param;
  170. auto src = arg.ishape;
  171. auto dst = arg.oshape;
  172. param.format = Format::NCHW;
  173. checker.set_epsilon(1e-2);
  174. checker.set_param(param).set_dtype(0, dtype).set_dtype(1, dtype).exec(
  175. TensorShapeArray{src, dst, {}});
  176. break;
  177. }
  178. }
  179. TEST_F(NAIVE, ADAPTIVE_POOLING_BACKWARD_RECORD) {
  180. TaskRecordChecker<AdaptivePooling> checker(2);
  181. auto args = adaptive_pooling::get_args();
  182. for (auto&& arg : args) {
  183. TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32());
  184. TensorLayout olayout = TensorLayout(arg.oshape, dtype::Float32());
  185. DType dtype = dtype::Float32();
  186. checker.set_dtype(0, dtype)
  187. .set_dtype(1, dtype)
  188. .set_dtype(2, dtype)
  189. .set_dtype(3, dtype)
  190. .set_param(arg.param)
  191. .exec(TensorShapeArray{ilayout, olayout, olayout, ilayout});
  192. break;
  193. }
  194. }
  195. //! add update
  196. TEST_F(NAIVE, ADD_UPDATE_RECORD) {
  197. TaskRecordChecker<AddUpdate> checker(2);
  198. param::AddUpdate p{2, -1, 3};
  199. checker.set_param(p)
  200. .set_dtype(0, dtype::BFloat16())
  201. .set_dtype(1, dtype::BFloat16())
  202. .execs({{2, 2, 3}, {2, 2, 3}});
  203. }
  204. //! argxx
  205. TEST_F(NAIVE, ARGXX_RECORD) {
  206. test_argmxx<Argmax>();
  207. test_argmxx<Argmin>();
  208. }
  209. //! argsort
  210. TEST_F(NAIVE, ARGSORT_FORWARD_RECORD) {
  211. run_forward_test(dtype::Float32{});
  212. run_forward_test(dtype::Int32{});
  213. }
  214. TEST_F(NAIVE, ARGSORT_BACKWARD_RECORD) {
  215. run_backward_test(dtype::Float32{});
  216. run_backward_test(dtype::Int32{});
  217. }
  218. TEST_F(NAIVE, BATCH_CONV_BIAS_QS8_RECORD) {
  219. TaskRecordChecker<BatchConvBiasForward> checker(2);
  220. UniformIntRNG const_rng{1, 1};
  221. UniformIntRNG rng{-5, 5};
  222. UniformIntRNG bias_rng{-50, 50};
  223. checker.set_rng(0, &rng)
  224. .set_rng(1, &rng)
  225. .set_rng(2, &rng)
  226. .set_rng(3, &rng)
  227. .set_dtype(0, dtype::QuantizedS8{1.2f})
  228. .set_dtype(1, dtype::QuantizedS8{1.3f})
  229. .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
  230. .set_dtype(3, dtype::QuantizedS8{1.1f})
  231. .set_dtype(4, dtype::QuantizedS8{1.1f})
  232. .set_epsilon(1 + 1e-3);
  233. param::BatchConvBias param;
  234. param.pad_h = 2, param.pad_w = 1;
  235. param.stride_h = 1, param.stride_w = 2;
  236. param.format = param::BatchConvBias::Format::NCHW4;
  237. checker.set_param(param).execs(
  238. {{32, 4, 24, 24, 4}, {32, 32, 4, 1, 1, 4}, {1, 8, 1, 1, 4}, {}, {}});
  239. }
  240. //! batched_matmul
  241. TEST_F(NAIVE, BATCH_MAT_MUL_RECORD) {
  242. TaskRecordChecker<BatchedMatrixMulForward> checker(2);
  243. using TestArg = matrix_mul::TestArg;
  244. //! return expect if stride == -1, stride otherwise
  245. auto stride_val = [](size_t stride, size_t expect) -> size_t {
  246. if (stride == TestArg::UNSET_STRIDE_VAL) {
  247. return expect;
  248. } else {
  249. return stride;
  250. }
  251. };
  252. using Param = MatrixMul::Param;
  253. std::vector<TestArg> args;
  254. args = matrix_mul::get_batched_matmul_args();
  255. for (auto& arg : args) {
  256. if (arg.b == 1) {
  257. continue;
  258. }
  259. size_t m = arg.m, n = arg.n, k = arg.k;
  260. Param param;
  261. param.transposeA = arg.mask & 0x1;
  262. param.transposeB = arg.mask & 0x2;
  263. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  264. TensorShape A, B;
  265. if (param.transposeA) {
  266. std::swap(A0, A1);
  267. }
  268. if (param.transposeB) {
  269. std::swap(B0, B1);
  270. }
  271. ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
  272. C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
  273. B_batch_stride = arg.B_batch_stride,
  274. C_batch_stride = arg.C_batch_stride;
  275. A_stride = stride_val(A_stride, A1);
  276. B_stride = stride_val(B_stride, B1);
  277. C_stride = stride_val(C_stride, n);
  278. A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
  279. B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
  280. C_batch_stride = stride_val(C_batch_stride, m * C_stride);
  281. checker.set_param(param);
  282. checker.execl(
  283. {TensorLayout{
  284. {arg.b, A0, A1},
  285. {A_batch_stride, A_stride, 1},
  286. dtype::Float32()},
  287. TensorLayout{
  288. {arg.b, B0, B1},
  289. {B_batch_stride, B_stride, 1},
  290. dtype::Float32()},
  291. TensorLayout{
  292. {arg.b, m, n},
  293. {C_batch_stride, C_stride, 1},
  294. dtype::Float32()}});
  295. break;
  296. }
  297. }
  298. //! BN
  299. TEST_F(NAIVE, BN_FORWARD_RECORD) {
  300. TaskRecordChecker<BNForward> checker(2);
  301. checker.set_dtype(0, dtype::Float32())
  302. .set_dtype(1, dtype::Float32())
  303. .set_dtype(2, dtype::Float32())
  304. .set_epsilon(1e-3);
  305. param::BN param;
  306. param.fwd_mode = param::BN::FwdMode::TRAINING;
  307. param.param_dim = param::BN::ParamDim::DIM_1C11;
  308. param.epsilon = 1e-3;
  309. for (size_t n : {1, 2}) {
  310. for (size_t c : {1, 128}) {
  311. for (size_t i : {2, 14}) {
  312. for (float f : {0.5, 1.0}) {
  313. param.avg_factor = f;
  314. checker.set_param(param);
  315. TensorShape src{n, c, i, i};
  316. TensorShape inp{1, c, 1, 1};
  317. checker.execs(
  318. {src, //! src -> input
  319. inp, //! bn_scale -> input
  320. inp, //! bn_bias -> input
  321. inp, //! mean -> output
  322. inp, //! variance -> output
  323. inp, //! batch_mean -> output
  324. inp, //! batch_inv_variance -> output
  325. {}, //! reserve -> output
  326. {}});
  327. }
  328. }
  329. }
  330. }
  331. UniformFloatRNG rng(1.0f, 2.0f);
  332. checker.set_dtype(0, dtype::Float32())
  333. .set_dtype(1, dtype::Float32())
  334. .set_dtype(2, dtype::Float32())
  335. .set_dtype(3, dtype::Float32())
  336. .set_dtype(4, dtype::Float32())
  337. .set_rng(3, &rng)
  338. .set_rng(4, &rng)
  339. .set_epsilon(1e-3);
  340. param.fwd_mode = param::BN::FwdMode::INFERENCE;
  341. param.param_dim = param::BN::ParamDim::DIM_1C11;
  342. param.epsilon = 1e-3;
  343. checker.set_param(param);
  344. for (size_t n : {1, 2}) {
  345. for (size_t c : {1, 128}) {
  346. for (size_t i : {2, 14}) {
  347. TensorShape src{n, c, i, i};
  348. TensorShape inp{1, c, 1, 1};
  349. checker.exec({
  350. src, //! src -> input
  351. inp, //! bn_scale -> input
  352. inp, //! bn_bias -> input
  353. inp, //! mean -> input
  354. inp, //! variance -> input
  355. {}, //! batch_mean -> output[unused]
  356. {}, //! batch_inv_variance -> output[unused]
  357. {}, //! reserve -> output
  358. {} //! dst -> output[shape got by
  359. //! deduced]
  360. });
  361. }
  362. }
  363. }
  364. }
  365. TEST_F(NAIVE, BN_BACKWARD_RECORD) {
  366. TaskRecordChecker<BNBackward> checker(2);
  367. UniformFloatRNG rng(1.0f, 2.0f);
  368. checker.set_dtype(0, dtype::Float32())
  369. .set_dtype(1, dtype::Float32())
  370. .set_dtype(2, dtype::Float32())
  371. .set_dtype(3, dtype::Float32())
  372. .set_dtype(4, dtype::Float32())
  373. .set_rng(3, &rng);
  374. param::BN param;
  375. param.fwd_mode = param::BN::FwdMode::TRAINING;
  376. param.epsilon = 0.0f;
  377. checker.set_param(param);
  378. for (size_t n : {1, 2}) {
  379. for (size_t c : {3, 128}) {
  380. for (size_t i : {2, 14}) {
  381. TensorShape src{n, c, i, i};
  382. TensorShape inp{1, c, 1, 1};
  383. checker.exec({
  384. src, //! x -> input
  385. src, //! dy -> input
  386. inp, //! bn_mean -> input
  387. inp, //! bn_ivar -> input
  388. inp, //! bn_scale -> input
  389. {}, //! reserve -> input
  390. inp, //! d_bn_scale -> output
  391. inp, //! d_bn_bias -> output
  392. src //! dx -> output
  393. });
  394. }
  395. }
  396. }
  397. }
  398. //! concat
  399. TEST_F(NAIVE, CONCAT_RECORD) {
  400. TaskRecordChecker<Concat> checker(2);
  401. using Param = Concat::Param;
  402. for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()})
  403. for (size_t axis = 0; axis < 4; ++axis) {
  404. Param param;
  405. param.axis = axis;
  406. TensorShapeArray shapes(4, TensorShape({2, 3, 4, 5}));
  407. for (size_t i = 0; i < 4; ++i) {
  408. shapes[i].shape[axis] = i + 1;
  409. }
  410. shapes.emplace_back();
  411. for (size_t i = 0; i < shapes.size(); ++i)
  412. checker.set_dtype(i, dtype);
  413. checker.set_param(param).execs(shapes);
  414. }
  415. }
  416. //! ConvBias
  417. TEST_F(NAIVE, CONV_BIAS_RECORD) {
  418. TaskRecordChecker<ConvBias> checker(2);
  419. ConvBias::Param param;
  420. param.format = ConvBias::Param::Format::NCHW;
  421. checker.set_dtype(0, dtype::QuantizedS8(0.1f))
  422. .set_dtype(1, dtype::QuantizedS8(0.2f))
  423. .set_dtype(2, dtype::QuantizedS32(0.02f))
  424. .set_dtype(3, dtype::QuantizedS32(0.3f))
  425. .set_dtype(4, dtype::QuantizedS32(0.02f));
  426. checker.set_param(param).execs(
  427. {{1, 1, 4, 4}, {3, 1, 3, 3}, {1, 3, 1, 1}, {1, 3, 2, 2}, {}});
  428. }
  429. //! Convolution
  430. TEST_F(NAIVE, CONV_RECORD) {
  431. TaskRecordChecker<Convolution> checker(2);
  432. Convolution::Param param;
  433. param.format = Convolution::Param::Format::NCHW;
  434. checker.set_param(param).execs({{1, 1, 4, 4}, {3, 1, 3, 3}, {}});
  435. }
  436. //! Conv3D
  437. TEST_F(NAIVE, CONV3D_RECORD) {
  438. using TestArg = convolution3d::TestArg;
  439. std::vector<TestArg> args = convolution3d::get_args();
  440. TaskRecordChecker<Convolution3DForward> checker(2);
  441. NormalRNG default_rng;
  442. for (auto&& arg : args) {
  443. float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] *
  444. arg.filter[4]);
  445. UniformFloatRNG rng(scale, 2 * scale);
  446. checker.set_dtype(0, dtype::Float32())
  447. .set_dtype(1, dtype::Float32())
  448. .set_rng(0, &default_rng)
  449. .set_rng(1, &default_rng)
  450. .set_param(arg.param)
  451. .execs({arg.src, arg.filter, {}});
  452. }
  453. }
  454. //! cumsum
  455. TEST_F(NAIVE, CUMSUM_RECORD) {
  456. TaskRecordChecker<Cumsum> checker(2);
  457. struct TestArg {
  458. param::Cumsum param;
  459. TensorShape shape;
  460. TestArg(param::Cumsum param, TensorShape shape) : param(param), shape(shape) {}
  461. };
  462. std::vector<TestArg> args, args_int32;
  463. for (auto shape : TensorShapeArray{{1000}, {330, 33}, {10, 10, 10}, {5, 5, 5, 5}}) {
  464. for (size_t axis = 0; axis < shape.ndim; ++axis) {
  465. args.emplace_back(param::Cumsum(axis, true, true), shape);
  466. args.emplace_back(param::Cumsum(axis, true, false), shape);
  467. args.emplace_back(param::Cumsum(axis, false, true), shape);
  468. args.emplace_back(param::Cumsum(axis, false, false), shape);
  469. }
  470. }
  471. for (auto shape : TensorShapeArray{{1}, {10}, {100}, {1000}, {10000}}) {
  472. args.emplace_back(param::Cumsum(0, true, true), shape);
  473. args.emplace_back(param::Cumsum(0, true, false), shape);
  474. args.emplace_back(param::Cumsum(0, false, true), shape);
  475. args.emplace_back(param::Cumsum(0, false, false), shape);
  476. }
  477. for (auto shape : TensorShapeArray{{1}, {10}, {100}, {1000}, {10000}}) {
  478. args_int32.emplace_back(param::Cumsum(0, true, true), shape);
  479. args_int32.emplace_back(param::Cumsum(0, true, false), shape);
  480. args_int32.emplace_back(param::Cumsum(0, false, true), shape);
  481. args_int32.emplace_back(param::Cumsum(0, false, false), shape);
  482. }
  483. for (auto arg : args) {
  484. checker.set_param(arg.param);
  485. checker.set_epsilon(1e-2);
  486. checker.set_dtype(0, dtype::Float32()).execs({{arg.shape}, {}});
  487. checker.set_dtype(0, dtype::Int16()).execs({{arg.shape}, {}});
  488. checker.set_dtype(0, dtype::Int32()).execs({{arg.shape}, {}});
  489. }
  490. for (auto arg : args_int32) {
  491. checker.set_param(arg.param);
  492. checker.set_epsilon(1e-2);
  493. checker.set_dtype(0, dtype::Int32()).execs({{arg.shape}, {}});
  494. }
  495. }
  496. //! dct
  497. TEST_F(NAIVE, DCT_RECORD) {
  498. TaskRecordChecker<DctChannelSelectForward> checker(2);
  499. DctChannelSelectForward::Param param;
  500. param.format = DctChannelSelectForward::Param::Format::NCHW4;
  501. checker.set_dtype(0, dtype::Uint8()).set_dtype(3, dtype::QuantizedS8(10.f));
  502. checker.set_param(param).execs({{1, 1, 16, 16}, {}, {}, {}});
  503. }
  504. //! deformable_conv
  505. TEST_F(NAIVE, DEFORMABLE_CONV_FWD_RECORD) {
  506. TaskRecordChecker<DeformableConv> checker(2);
  507. DeformableConv::Param param;
  508. UniformIntRNG im_rng{0, 4};
  509. UniformIntRNG filter_rng{0, 4};
  510. UniformIntRNG offset_rng{-2, 2};
  511. UniformIntRNG mask_rng{0, 1};
  512. checker.set_rng(0, &im_rng)
  513. .set_rng(1, &filter_rng)
  514. .set_rng(2, &offset_rng)
  515. .set_rng(3, &mask_rng);
  516. param.pad_h = 1;
  517. param.pad_w = 1;
  518. param.stride_h = 1;
  519. param.stride_w = 1;
  520. param.dilate_h = 1;
  521. param.dilate_w = 1;
  522. param.format = DeformableConv::Param::Format::NCHW;
  523. param.sparse = DeformableConv::Param::Sparse::GROUP;
  524. checker.set_param(param).execs(
  525. {{1, 2, 5, 5},
  526. {2, 1, 1, 3, 3},
  527. {1, 2 * 2 * 3 * 3, 5, 5},
  528. {1, 2 * 3 * 3, 5, 5},
  529. {}});
  530. checker.set_param(param).execs(
  531. {{1, 2, 5, 5},
  532. {2, 1, 1, 3, 3},
  533. {1, 2 * 2 * 3 * 3, 5, 5},
  534. {1, 2 * 3 * 3, 5, 5},
  535. {}});
  536. param.sparse = DeformableConv::Param::Sparse::DENSE;
  537. checker.set_param(param).execs(
  538. {{1, 2, 5, 5},
  539. {2, 2, 3, 3},
  540. {1, 2 * 2 * 3 * 3, 5, 5},
  541. {1, 2 * 3 * 3, 5, 5},
  542. {}});
  543. }
  544. TEST_F(NAIVE, DEFORMABLE_CONV_BWD_FILTER_RECORD) {
  545. TaskRecordChecker<DeformableConvBackwardFilter> checker(2);
  546. DeformableConv::Param param;
  547. UniformIntRNG im_rng{0, 4};
  548. UniformIntRNG offset_rng{-2, 2};
  549. UniformIntRNG mask_rng{0, 1};
  550. UniformIntRNG out_grad_rng{0, 1};
  551. checker.set_rng(0, &im_rng)
  552. .set_rng(1, &offset_rng)
  553. .set_rng(2, &mask_rng)
  554. .set_rng(3, &out_grad_rng);
  555. param.pad_h = 1;
  556. param.pad_w = 1;
  557. param.stride_h = 1;
  558. param.stride_w = 1;
  559. param.dilate_h = 1;
  560. param.dilate_w = 1;
  561. param.format = DeformableConv::Param::Format::NCHW;
  562. param.sparse = DeformableConv::Param::Sparse::GROUP;
  563. checker.set_param(param).execs(
  564. {{1, 2, 5, 5},
  565. {1, 2 * 2 * 3 * 3, 5, 5},
  566. {1, 2 * 3 * 3, 5, 5},
  567. {1, 2, 5, 5},
  568. {2, 1, 1, 3, 3}});
  569. }
  570. TEST_F(NAIVE, DEFORMABLE_CONV_BWD_DATA_RECORD) {
  571. TaskRecordChecker<DeformableConvBackwardData> checker(2);
  572. DeformableConv::Param param;
  573. ConstValue im_rng{1};
  574. ConstValue filter_rng{0.99};
  575. ConstValue offset_rng{1.1};
  576. ConstValue mask_rng{1};
  577. ConstValue out_grad_rng{1};
  578. checker.set_rng(0, &im_rng)
  579. .set_rng(1, &filter_rng)
  580. .set_rng(2, &offset_rng)
  581. .set_rng(3, &mask_rng)
  582. .set_rng(4, &out_grad_rng);
  583. param.pad_h = 1;
  584. param.pad_w = 1;
  585. param.stride_h = 1;
  586. param.stride_w = 1;
  587. param.dilate_h = 1;
  588. param.dilate_w = 1;
  589. param.format = DeformableConv::Param::Format::NCHW;
  590. param.sparse = DeformableConv::Param::Sparse::GROUP;
  591. checker.set_param(param).execs(
  592. {{1, 2, 5, 5},
  593. {2, 1, 1, 3, 3},
  594. {1, 1 * 2 * 3 * 3, 5, 5},
  595. {1, 1 * 3 * 3, 5, 5},
  596. {1, 2, 5, 5},
  597. {1, 2, 5, 5},
  598. {1, 1 * 2 * 3 * 3, 5, 5},
  599. {1, 1 * 3 * 3, 5, 5}});
  600. }
  601. //! elemwise
  602. TEST_F(NAIVE, ELEMWISE_COMMON_RECORD) {
  603. TaskRecordChecker<ElemwiseForward> checker(2);
  604. using Mode = ElemwiseForward::Param::Mode;
  605. auto run_activate = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  606. DType dtype) {
  607. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype);
  608. checker.execs({{N, C, H, W}, {}});
  609. };
  610. auto run_binary = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  611. DType dtype) {
  612. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(
  613. 2, dtype);
  614. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  615. };
  616. auto run_unary = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  617. DType dtype) {
  618. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype);
  619. checker.execs({{N, C, H, W}, {}});
  620. };
  621. #define RUN_ACTIVATE(_dt) \
  622. run_activate(4, 32, 10, 10, Mode::RELU, _dt); \
  623. run_activate(4, 32, 10, 10, Mode::SIGMOID, _dt);
  624. RUN_ACTIVATE(dtype::Float32());
  625. RUN_ACTIVATE(dtype::Float16());
  626. checker.set_epsilon(1e-2);
  627. RUN_ACTIVATE(dtype::BFloat16());
  628. #undef RUN_ACTIVATE
  629. checker.set_epsilon(1e-3);
  630. #define RUN_BINARY(_dt) \
  631. run_binary(4, 32, 10, 10, Mode::ADD, _dt); \
  632. run_binary(4, 32, 10, 10, Mode::SUB, _dt); \
  633. run_binary(4, 32, 10, 10, Mode::MUL, _dt); \
  634. run_binary(4, 32, 10, 10, Mode::MIN, _dt); \
  635. run_binary(4, 32, 10, 10, Mode::MAX, _dt);
  636. RUN_BINARY(dtype::Float32());
  637. RUN_BINARY(dtype::Float16());
  638. RUN_BINARY(dtype::BFloat16());
  639. RUN_BINARY(dtype::Int32());
  640. RUN_BINARY(dtype::Int16());
  641. //! true_div
  642. run_binary(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float32());
  643. RUN_BINARY(dtype::Float16());
  644. checker.set_epsilon(1e-2);
  645. run_binary(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float16());
  646. RUN_BINARY(dtype::BFloat16());
  647. //! FIXME: precision is especially low
  648. checker.set_epsilon(1e-1);
  649. run_binary(4, 32, 10, 10, Mode::TRUE_DIV, dtype::BFloat16());
  650. #undef RUN_BINARY
  651. #define RUN_UNARY(_dt) \
  652. run_unary(4, 32, 10, 10, Mode::ABS, _dt); \
  653. run_unary(4, 32, 10, 10, Mode::SIN, _dt); \
  654. run_unary(4, 32, 10, 10, Mode::COS, _dt); \
  655. run_unary(4, 32, 10, 10, Mode::EXP, _dt); \
  656. run_unary(4, 32, 10, 10, Mode::CEIL, _dt); \
  657. run_unary(4, 32, 10, 10, Mode::TANH, _dt);
  658. RUN_UNARY(dtype::Float32());
  659. RUN_UNARY(dtype::BFloat16());
  660. checker.set_epsilon(1e-2);
  661. RUN_UNARY(dtype::Float16());
  662. //! FLOOR
  663. run_unary(4, 32, 10, 10, Mode::FLOOR, dtype::Float32());
  664. run_unary(4, 32, 10, 10, Mode::FLOOR, dtype::Float16());
  665. //! INT TEST
  666. run_unary(4, 32, 10, 10, Mode::ABS, dtype::Int16());
  667. run_unary(4, 32, 10, 10, Mode::ABS, dtype::Int32());
  668. #undef RUN_UNARY
  669. //! naive impl
  670. run_binary(4, 32, 10, 10, Mode::LT, dtype::Float32());
  671. run_binary(4, 32, 10, 10, Mode::LT, dtype::Int32());
  672. run_binary(4, 32, 10, 10, Mode::LEQ, dtype::Float32());
  673. run_binary(4, 32, 10, 10, Mode::LEQ, dtype::Int32());
  674. run_binary(4, 32, 10, 10, Mode::EQ, dtype::Float32());
  675. run_binary(4, 32, 10, 10, Mode::EQ, dtype::Int32());
  676. auto rng = UniformFloatRNG(0.01, 2.0);
  677. checker.set_rng(0, &rng);
  678. run_unary(4, 32, 10, 10, Mode::LOG, dtype::Float32());
  679. run_unary(4, 32, 10, 10, Mode::LOG, dtype::BFloat16());
  680. checker.set_epsilon(1e-2);
  681. run_unary(4, 32, 10, 10, Mode::LOG, dtype::Float16());
  682. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Float32());
  683. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::BFloat16());
  684. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Float16());
  685. auto rng_int = UniformIntNonZeroRNG(1, 65535);
  686. checker.set_rng(0, &rng_int);
  687. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Int32());
  688. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Int16());
  689. }
  690. TEST_F(NAIVE, ELEMWISE_BROADCAST_RECORD) {
  691. TaskRecordChecker<ElemwiseForward> checker(2);
  692. using Mode = ElemwiseForward::Param::Mode;
  693. //! do broadcast test
  694. auto run_binary_broadcast = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  695. DType dtype) {
  696. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype);
  697. checker.execs({{N, C, H, W}, {N, C, 1, 1}, {}});
  698. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {}});
  699. checker.execs({{N, C, H, W}, {1}, {}});
  700. checker.execs({{1}, {N, C, H, W}, {}});
  701. checker.execs({{N, C, H, W}, {1, C, H, W}, {}});
  702. checker.execs({{1, C, H, W}, {N, C, H, W}, {}});
  703. };
  704. #define RUN_BINARY(_dt) \
  705. run_binary_broadcast(4, 32, 10, 10, Mode::ADD, _dt); \
  706. run_binary_broadcast(4, 32, 10, 10, Mode::SUB, _dt); \
  707. run_binary_broadcast(4, 32, 10, 10, Mode::MUL, _dt); \
  708. run_binary_broadcast(4, 32, 10, 10, Mode::MIN, _dt); \
  709. run_binary_broadcast(4, 32, 10, 10, Mode::MAX, _dt);
  710. RUN_BINARY(dtype::Float32());
  711. run_binary_broadcast(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float32());
  712. RUN_BINARY(dtype::Float16());
  713. checker.set_epsilon(1e-2);
  714. run_binary_broadcast(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float16());
  715. RUN_BINARY(dtype::BFloat16());
  716. //! FIXME: precision is especially low
  717. checker.set_epsilon(1e-1);
  718. run_binary_broadcast(4, 32, 10, 10, Mode::TRUE_DIV, dtype::BFloat16());
  719. RUN_BINARY(dtype::Int16());
  720. RUN_BINARY(dtype::Int32());
  721. #undef RUN_BINARY
  722. }
  723. TEST_F(NAIVE, ELEMWISE_FUSE_MUL_ADD3_RECORD) {
  724. TaskRecordChecker<ElemwiseForward> checker(2);
  725. using Mode = ElemwiseForward::Param::Mode;
  726. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  727. checker.set_param(Mode::FUSE_MUL_ADD3)
  728. .set_dtype(0, dtype)
  729. .set_dtype(1, dtype)
  730. .set_dtype(2, dtype);
  731. checker.execs({{1}, {N, C, H, W}, {1}, {}});
  732. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {1}, {}});
  733. checker.execs({{N, C, H, W}, {N, C, H, W}, {1}, {}});
  734. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {N, C, 1, 1}, {}});
  735. };
  736. run_mul_add(4, 32, 10, 10, dtype::Float32());
  737. checker.set_epsilon(1e-2);
  738. run_mul_add(4, 32, 10, 10, dtype::Float16());
  739. //! FIXME: precision is especially low
  740. checker.set_epsilon(1e-1);
  741. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  742. run_mul_add(4, 32, 10, 10, dtype::Int16());
  743. run_mul_add(4, 32, 10, 10, dtype::Int32());
  744. }
  745. TEST_F(NAIVE, ELEMWISE_FUSE_MUL_ADD4_RECORD) {
  746. TaskRecordChecker<ElemwiseForward> checker(2);
  747. using Mode = ElemwiseForward::Param::Mode;
  748. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  749. checker.set_param(Mode::FUSE_MUL_ADD4)
  750. .set_dtype(0, dtype)
  751. .set_dtype(1, dtype)
  752. .set_dtype(2, dtype)
  753. .set_dtype(3, dtype)
  754. .set_dtype(4, dtype);
  755. checker.execs({{1}, {N, C, H, W}, {1}, {N, C, H, W}, {}});
  756. checker.execs({{1}, {N, C, H, W}, {N, C, H, W}, {1}, {}});
  757. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {N, C, 1, 1}, {N, C, H, W}, {}});
  758. checker.execs({{N, C, H, W}, {N, C, H, W}, {N, C, H, W}, {N, C, H, W}, {}});
  759. };
  760. run_mul_add(4, 32, 10, 10, dtype::Float32());
  761. checker.set_epsilon(1e-2);
  762. run_mul_add(4, 32, 10, 10, dtype::Float16());
  763. //! FIXME: precision is especially low
  764. checker.set_epsilon(1e-1);
  765. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  766. run_mul_add(4, 32, 10, 10, dtype::Int16());
  767. run_mul_add(4, 32, 10, 10, dtype::Int32());
  768. }
  769. TEST_F(NAIVE, ELEMWISE_FUSE_ADD_RELU_RECORD) {
  770. TaskRecordChecker<ElemwiseForward> checker(2);
  771. using Mode = ElemwiseForward::Param::Mode;
  772. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  773. checker.set_param(Mode::FUSE_ADD_RELU)
  774. .set_dtype(0, dtype)
  775. .set_dtype(1, dtype)
  776. .set_dtype(2, dtype);
  777. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  778. };
  779. run_mul_add(4, 32, 10, 10, dtype::Float32());
  780. checker.set_epsilon(1e-2);
  781. run_mul_add(4, 32, 10, 10, dtype::Float16());
  782. //! FIXME: precision is especially low
  783. checker.set_epsilon(1e-1);
  784. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  785. }
  786. TEST_F(NAIVE, ELEMWISE_FUSE_ADD_SIGMOID_RECORD) {
  787. TaskRecordChecker<ElemwiseForward> checker(2);
  788. using Mode = ElemwiseForward::Param::Mode;
  789. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  790. checker.set_param(Mode::FUSE_ADD_SIGMOID)
  791. .set_dtype(0, dtype)
  792. .set_dtype(1, dtype)
  793. .set_dtype(2, dtype);
  794. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  795. };
  796. run_mul_add(4, 32, 10, 10, dtype::Float32());
  797. checker.set_epsilon(1e-2);
  798. run_mul_add(4, 32, 10, 10, dtype::Float16());
  799. //! FIXME: precision is especially low
  800. checker.set_epsilon(1e-1);
  801. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  802. }
  803. TEST_F(NAIVE, ELEMWISE_FUSE_ADD_TANH_RECORD) {
  804. TaskRecordChecker<ElemwiseForward> checker(2);
  805. using Mode = ElemwiseForward::Param::Mode;
  806. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  807. checker.set_param(Mode::FUSE_ADD_TANH)
  808. .set_dtype(0, dtype)
  809. .set_dtype(1, dtype)
  810. .set_dtype(2, dtype);
  811. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  812. };
  813. run_mul_add(4, 32, 10, 10, dtype::Float32());
  814. checker.set_epsilon(1e-2);
  815. run_mul_add(4, 32, 10, 10, dtype::Float16());
  816. //! FIXME: precision is especially low
  817. checker.set_epsilon(1e-1);
  818. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  819. }
  820. TEST_F(NAIVE, ELEMWISE_VECTOR_RECORD) {
  821. TaskRecordChecker<ElemwiseForward> checker(2);
  822. using Mode = ElemwiseForward::Param::Mode;
  823. auto run_vector = [&](size_t N, DType dtype, Mode mode) {
  824. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(
  825. 2, dtype);
  826. checker.execs({{N}, {1, N}, {}});
  827. checker.execs({{1, N}, {N}, {}});
  828. checker.execs({{N}, {1}, {}});
  829. checker.execs({{1}, {N}, {}});
  830. checker.execs({{1}, {1, 1}, {}});
  831. checker.execs({{1, 1, 1}, {1}, {}});
  832. };
  833. run_vector(1000, dtype::Float32(), Mode::ADD);
  834. run_vector(1000, dtype::Float32(), Mode::MUL);
  835. checker.set_epsilon(1e-2);
  836. run_vector(1000, dtype::Float16(), Mode::ADD);
  837. run_vector(1000, dtype::Float16(), Mode::MUL);
  838. //! FIXME: precision is especially low
  839. checker.set_epsilon(1e-1);
  840. run_vector(1000, dtype::BFloat16(), Mode::ADD);
  841. run_vector(1000, dtype::BFloat16(), Mode::MUL);
  842. }
  843. //! EYE
  844. TEST_F(NAIVE, EYE_RECORD) {
  845. TaskRecordChecker<Eye> checker(2);
  846. for (DType dtype :
  847. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()})
  848. for (int k = -20; k < 20; ++k) {
  849. checker.set_param({k, dtype.enumv()});
  850. checker.set_dtype(0, dtype);
  851. checker.execs(TensorShapeArray{{3, 4}});
  852. checker.execs(TensorShapeArray{{4, 3}});
  853. }
  854. }
  855. //! FILL
  856. TEST_F(NAIVE, FILL_RECORD) {
  857. TaskRecordChecker<Fill> checker(2);
  858. for (DType dtype :
  859. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()})
  860. for (float value : {-1.23, 0.0, 0.001, 234.0, 2021.072}) {
  861. checker.set_param({value});
  862. checker.set_dtype(0, dtype);
  863. checker.exec(TensorShapeArray{{1, 1}});
  864. checker.exec(TensorShapeArray{{2, 3, 4}});
  865. }
  866. }
  867. //! LINSPACE
  868. TEST_F(NAIVE, LINSPACE_RECORD) {
  869. TaskRecordChecker<Linspace> checker(2);
  870. Linspace::Param param;
  871. param.start = 0.5;
  872. param.stop = 1.5;
  873. param.endpoint = true;
  874. for (DType dtype :
  875. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()}) {
  876. checker.set_dtype(0, dtype).set_param(param).exec(TensorShapeArray{{11}});
  877. }
  878. param.endpoint = false;
  879. for (DType dtype :
  880. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()}) {
  881. checker.set_dtype(0, dtype).set_param(param).exec(TensorShapeArray{{11}});
  882. }
  883. }
  884. //! LOCAL
  885. TEST_F(NAIVE, LOCAL_FORWARD_RECORD) {
  886. auto args = local::get_args_for_cuda();
  887. for (size_t i = 0; i < 2; ++i) {
  888. auto&& arg = args[i];
  889. TaskRecordChecker<LocalForward> checker(2);
  890. checker.set_param(arg.param).exec(
  891. TensorShapeArray{arg.sshape(), arg.fshape(), arg.dshape()});
  892. }
  893. }
  894. TEST_F(NAIVE, LOCAL_BACKWARD_DATA_RECORD) {
  895. using namespace local;
  896. auto args = local::get_args_bwd_data_for_cuda();
  897. for (size_t i = 0; i < 2; ++i) {
  898. auto&& arg = args[i];
  899. TaskRecordChecker<LocalBackwardData> checker(2);
  900. checker.set_param(arg.param).exec(
  901. TensorShapeArray{arg.fshape(), arg.dshape(), arg.sshape()});
  902. }
  903. }
  904. TEST_F(NAIVE, LOCAL_BACKWARD_FILTER_RECORD) {
  905. using namespace local;
  906. auto args = local::get_args_bwd_filter_for_cuda();
  907. for (size_t i = 0; i < 2; ++i) {
  908. auto&& arg = args[i];
  909. TaskRecordChecker<LocalBackwardFilter> checker(2);
  910. checker.set_param(arg.param).exec(
  911. TensorShapeArray{arg.sshape(), arg.dshape(), arg.fshape()});
  912. }
  913. }
  914. //! matrix inverse
  915. TEST_F(NAIVE, MATRIX_INVERSE_RECORD) {
  916. TaskRecordChecker<MatrixInverse> checker(2);
  917. checker.exec({{10, 20, 20}, {}});
  918. }
  919. //! matmul
  920. TEST_F(NAIVE, MATRIX_MUL_RECORD) {
  921. TaskRecordChecker<MatrixMul> checker(2);
  922. MatrixMul::Param param;
  923. param.transposeA = false;
  924. param.transposeB = false;
  925. checker.set_dtype(0, dtype::Quantized8Asymm(0.1f, (uint8_t)128))
  926. .set_dtype(1, dtype::Quantized8Asymm(0.2f, (uint8_t)233))
  927. .set_dtype(2, dtype::QuantizedS32(0.1f * 0.2f));
  928. checker.set_param(param).exec({{4, 7}, {7, 5}, {}});
  929. param.transposeA = true;
  930. checker.set_dtype(0, dtype::Quantized8Asymm(0.7f, (uint8_t)128))
  931. .set_dtype(1, dtype::Quantized8Asymm(0.4f, (uint8_t)128))
  932. .set_dtype(2, dtype::QuantizedS32(0.7f * 0.4f));
  933. checker.set_param(param).exec({{2, 1}, {2, 1}, {}});
  934. }
  935. //! pooling
  936. TEST_F(NAIVE, POOLING_QUANTIZED_RECORD) {
  937. using Mode = Pooling::Param::Mode;
  938. TaskRecordChecker<Pooling> checker(2);
  939. Pooling::Param param{Mode::MAX, 1, 1, 2, 2, 2, 2};
  940. auto dt = dtype::Quantized8Asymm(0.1f, (uint8_t)128);
  941. checker.set_dtype(0, dt).set_dtype(1, dt);
  942. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  943. param = {Mode::AVERAGE, 1, 1, 2, 2, 2, 2};
  944. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  945. param = {Mode::AVERAGE_COUNT_EXCLUDE_PADDING, 1, 1, 2, 2, 2, 2};
  946. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  947. auto dt32 = dtype::QuantizedS32(0.233f);
  948. checker.set_dtype(0, dt32).set_dtype(1, dt32);
  949. param = {Mode::MAX, 1, 1, 2, 2, 2, 2};
  950. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  951. }
  952. TEST_F(NAIVE, REDUCE_QUANTIZED_RECORD) {
  953. using Mode = Reduce::Param::Mode;
  954. TaskRecordChecker<Reduce> checker(2);
  955. Reduce::Param param;
  956. param.mode = Mode::SUM;
  957. param.data_type = param::Reduce::DataType::QUINT_I8xO32;
  958. param.axis = 0;
  959. checker.set_dtype(0, dtype::Quantized8Asymm(0.1f, (uint8_t)128))
  960. .set_dtype(1, dtype::QuantizedS32(0.1f));
  961. checker.set_param(param).exec({{3, 4}, {}});
  962. param.data_type = param::Reduce::DataType::DEFAULT;
  963. param.mode = Mode::MEAN;
  964. checker.set_dtype(0, dtype::Quantized8Asymm(1.f, (uint8_t)128))
  965. .set_dtype(1, dtype::Quantized8Asymm(1.f, (uint8_t)128));
  966. checker.set_param(param).exec({{3, 4}, {}});
  967. checker.set_dtype(0, dtype::Quantized8Asymm(0.00233f, (uint8_t)128))
  968. .set_dtype(1, dtype::Quantized8Asymm(0.00233f, (uint8_t)128));
  969. checker.set_param(param).exec({{3, 4}, {}});
  970. checker.set_dtype(0, dtype::Quantized8Asymm(7e-10f, (uint8_t)45))
  971. .set_dtype(1, dtype::Quantized8Asymm(7e-10f, (uint8_t)45));
  972. checker.set_param(param).exec({{3, 4}, {}});
  973. }
  974. //! relayout format
  975. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW4_NCHW_RECORD) {
  976. TaskRecordChecker<RelayoutFormat> checker(2);
  977. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW};
  978. checker.set_param(param).exec({{1, 2, 1, 2, 4}, {}});
  979. param.oc = 7;
  980. checker.set_param(param).exec({{1, 2, 1, 2, 4}, {}});
  981. param.oc = 6;
  982. param.group = 2;
  983. checker.set_param(param).exec({{1, 2, 1, 2, 4}, {}});
  984. }
  985. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4_WEIGHT_RECORD) {
  986. TaskRecordChecker<RelayoutFormat> checker(2);
  987. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT};
  988. checker.set_param(param);
  989. checker.exec({{2, 2, 2, 2}, {}});
  990. checker.exec({{2, 2, 1, 2, 2}, {}});
  991. }
  992. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4_RECORD) {
  993. TaskRecordChecker<RelayoutFormat> checker(2);
  994. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4};
  995. checker.set_param(param).exec({{1, 8, 1, 2}, {}});
  996. param.group = 4;
  997. checker.set_param(param).exec({{1, 8, 1, 2}, {}});
  998. param.group = 2;
  999. checker.set_param(param).exec({{1, 6, 1, 2}, {}});
  1000. }
  1001. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_RECORD) {
  1002. TaskRecordChecker<RelayoutFormat> checker(2);
  1003. {
  1004. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW88};
  1005. checker.set_param(param);
  1006. checker.exec({{1, 8, 1, 2}, {}});
  1007. checker.exec({{2, 8, 1, 2}, {}});
  1008. checker.exec({{2, 4, 1, 2}, {}});
  1009. checker.exec({{1, 3, 64, 64}, {}});
  1010. }
  1011. {
  1012. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW88_NCHW};
  1013. checker.set_param(param).exec({{1, 1, 1, 2, 8}, {}});
  1014. }
  1015. }
  1016. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_DENSE_RECORD) {
  1017. TaskRecordChecker<RelayoutFormat> checker(2);
  1018. RelayoutFormat::Param param{
  1019. RelayoutFormat::Param::Mode::NCHW_NCHW88_CONV_DENSE_WEIGHT};
  1020. checker.set_param(param);
  1021. checker.exec({{8, 8, 1, 1}, {}});
  1022. checker.exec({{8, 2, 1, 1}, {}});
  1023. }
  1024. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_CHAIN_RECORD) {
  1025. TaskRecordChecker<RelayoutFormat> checker(2);
  1026. RelayoutFormat::Param param{
  1027. RelayoutFormat::Param::Mode::NCHW_NCHW88_CONV_CHAN_WEIGHT};
  1028. checker.set_param(param);
  1029. checker.exec({{8, 1, 1, 1, 2}, {}});
  1030. checker.exec({{2, 1, 1, 1, 2}, {}});
  1031. }
  1032. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_GROUP_RECORD) {
  1033. TaskRecordChecker<RelayoutFormat> checker(2);
  1034. {
  1035. RelayoutFormat::Param param{
  1036. RelayoutFormat::Param::Mode::NCHW_NCHW88_CONV_GROUP_WEIGHT};
  1037. checker.set_param(param);
  1038. checker.exec({{1, 8, 8, 1, 1}, {}});
  1039. checker.exec({{1, 8, 2, 1, 1}, {}});
  1040. }
  1041. {
  1042. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW88_NCHW};
  1043. checker.set_param(param).exec({TensorShape{1, 8, 64, 64, 8}, {}});
  1044. }
  1045. }
  1046. //! separable conv
  1047. TEST_F(NAIVE, SEPARABLE_CONV_RECORD) {
  1048. using TestArg = megdnn::test::separable_conv::TestArg;
  1049. std::vector<TestArg> args = separable_conv::get_args();
  1050. TaskRecordChecker<SeparableConvForward> checker(2);
  1051. for (auto&& arg : args) {
  1052. checker.set_param(arg.param).execs({arg.src, arg.filter_x, arg.filter_y, {}});
  1053. }
  1054. }
  1055. //! warp affine
  1056. TEST_F(NAIVE, WARP_AFFINE_RECORD) {
  1057. TaskRecordChecker<WarpAffine> checker(2);
  1058. WarpAffine::Param param;
  1059. param.border_mode = WarpAffine::Param::BorderMode::BORDER_REFLECT;
  1060. param.imode = WarpAffine::Param::InterpolationMode::LINEAR;
  1061. param.format = WarpAffine::Param::Format::NCHW;
  1062. checker.set_dtype(0, dtype::Uint8{})
  1063. .set_dtype(1, dtype::Float32{})
  1064. .set_dtype(2, dtype::Uint8{});
  1065. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 2, 3}, {1, 1, 2, 2}});
  1066. checker.set_dtype(0, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)})
  1067. .set_dtype(1, dtype::Float32{})
  1068. .set_dtype(2, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)});
  1069. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 2, 3}, {1, 1, 2, 2}});
  1070. }
  1071. TEST_F(NAIVE, WARP_AFFINE_CV_RECORD) {
  1072. using TestArg = warp_affine::TestArg;
  1073. std::vector<TestArg> args = warp_affine::get_cv_args();
  1074. TaskRecordChecker<WarpAffine> checker(2);
  1075. for (auto&& arg : args) {
  1076. checker.set_param(arg.param)
  1077. .set_dtype(0, dtype::Uint8())
  1078. .set_dtype(1, dtype::Float32())
  1079. .set_dtype(2, dtype::Uint8())
  1080. .execs({arg.src, arg.trans, arg.dst});
  1081. }
  1082. for (auto&& arg : args) {
  1083. checker.set_param(arg.param)
  1084. .set_dtype(0, dtype::Float32())
  1085. .set_dtype(1, dtype::Float32())
  1086. .set_dtype(2, dtype::Float32())
  1087. .execs({arg.src, arg.trans, arg.dst});
  1088. }
  1089. }
  1090. //! warp perspective
  1091. TEST_F(NAIVE, WARP_PERSPECTIVE_RECORD) {
  1092. TaskRecordChecker<WarpPerspective> checker(2);
  1093. WarpPerspective::Param param;
  1094. param.bmode = WarpPerspective::Param::BorderMode::BORDER_REFLECT;
  1095. param.imode = WarpPerspective::Param::InterpolationMode::LINEAR;
  1096. param.format = WarpPerspective::Param::Format::NCHW;
  1097. checker.set_dtype(0, dtype::Uint8{})
  1098. .set_dtype(1, dtype::Float32{})
  1099. .set_dtype(2, dtype::Uint8{});
  1100. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1101. checker.set_dtype(0, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)})
  1102. .set_dtype(1, dtype::Float32{})
  1103. .set_dtype(2, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)});
  1104. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1105. }
  1106. TEST_F(NAIVE, WARP_PERSPECTIVE_NCHW4_RECORD) {
  1107. using Param = WarpPerspective::Param;
  1108. WarpPerspective::Param param;
  1109. TaskRecordChecker<WarpPerspectiveForward> checker(2);
  1110. WarpPerspectiveMatRNG rng;
  1111. checker.set_rng(1, &rng);
  1112. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  1113. checker.set_dtype(2, dtype::QuantizedS8(0.1f));
  1114. for (auto bmode :
  1115. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  1116. WarpPerspective::BorderMode::REPLICATE,
  1117. WarpPerspective::BorderMode::CONSTANT}) {
  1118. param.border_val = 0.3f;
  1119. param.bmode = bmode;
  1120. param.imode = Param::InterpolationMode::LINEAR;
  1121. param.format = Param::Format::NCHW4;
  1122. checker.set_param(param);
  1123. checker.execs({{2, 1, 10, 11, 4}, {2, 3, 3}, {2, 1, 11, 12, 4}});
  1124. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 25, 510, 4}});
  1125. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 51, 51, 4}});
  1126. checker.execs({{1, 25, 51, 51, 4}, {1, 3, 3}, {1, 25, 25, 25, 4}});
  1127. }
  1128. }
  1129. TEST_F(NAIVE_MULTI_THREADS, WARP_PERSPECTIVE_RECORD) {
  1130. TaskRecordChecker<WarpPerspective> checker(2);
  1131. WarpPerspective::Param param;
  1132. param.bmode = WarpPerspective::Param::BorderMode::BORDER_REFLECT;
  1133. param.imode = WarpPerspective::Param::InterpolationMode::LINEAR;
  1134. param.format = WarpPerspective::Param::Format::NCHW;
  1135. checker.set_dtype(0, dtype::Uint8{})
  1136. .set_dtype(1, dtype::Float32{})
  1137. .set_dtype(2, dtype::Uint8{});
  1138. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1139. checker.set_dtype(0, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)})
  1140. .set_dtype(1, dtype::Float32{})
  1141. .set_dtype(2, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)});
  1142. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1143. }
  1144. TEST_F(NAIVE_MULTI_THREADS, WARP_PERSPECTIVE_NCHW4_RECORD) {
  1145. using Param = WarpPerspective::Param;
  1146. WarpPerspective::Param param;
  1147. TaskRecordChecker<WarpPerspectiveForward> checker(2);
  1148. WarpPerspectiveMatRNG rng;
  1149. checker.set_rng(1, &rng);
  1150. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  1151. checker.set_dtype(2, dtype::QuantizedS8(0.1f));
  1152. for (auto bmode :
  1153. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  1154. WarpPerspective::BorderMode::REPLICATE,
  1155. WarpPerspective::BorderMode::CONSTANT}) {
  1156. param.border_val = 0.3f;
  1157. param.bmode = bmode;
  1158. param.imode = Param::InterpolationMode::LINEAR;
  1159. param.format = Param::Format::NCHW4;
  1160. checker.set_param(param);
  1161. checker.execs({{2, 1, 10, 11, 4}, {2, 3, 3}, {2, 1, 11, 12, 4}});
  1162. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 25, 510, 4}});
  1163. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 51, 51, 4}});
  1164. checker.execs({{1, 25, 51, 51, 4}, {1, 3, 3}, {1, 25, 25, 25, 4}});
  1165. }
  1166. }
  1167. } // namespace test
  1168. } // namespace megdnn
  1169. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}