You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv.py 3.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. from typing import Tuple, Union
  9. import numpy as np
  10. import megengine._internal as mgb
  11. from ... import module as Float
  12. from ...core import Parameter
  13. from ...functional import conv_bias_activation
  14. from ..qat import conv as QAT
  15. from .module import QuantizedModule
  16. class Conv2d(Float.Conv2d, QuantizedModule):
  17. r"""quantized version of :class:`~.qat.conv.Conv2d`."""
  18. r"""Applies a 2D convolution over an quantized input tensor, inference only.
  19. The parameter is same with :class: `~.Conv2d`
  20. """
  21. def __init__(
  22. self,
  23. in_channels: int,
  24. out_channels: int,
  25. kernel_size: Union[int, Tuple[int, int]],
  26. stride: Union[int, Tuple[int, int]] = 1,
  27. padding: Union[int, Tuple[int, int]] = 0,
  28. dilation: Union[int, Tuple[int, int]] = 1,
  29. groups: int = 1,
  30. conv_mode: str = "CROSS_CORRELATION",
  31. compute_mode: str = "DEFAULT",
  32. dtype=None,
  33. ):
  34. super().__init__(
  35. in_channels,
  36. out_channels,
  37. kernel_size,
  38. stride,
  39. padding,
  40. dilation,
  41. groups,
  42. True,
  43. conv_mode,
  44. compute_mode,
  45. )
  46. self.output_dtype = dtype
  47. def calc_conv_quantized(self, inp, nonlinear_mode="IDENTITY"):
  48. inp_scale = mgb.dtype.get_scale(inp.dtype)
  49. w_scale = mgb.dtype.get_scale(self.weight.dtype)
  50. bias_scale = inp_scale * w_scale
  51. return conv_bias_activation(
  52. inp,
  53. self.weight,
  54. self.bias.astype(mgb.dtype.qint32(bias_scale)),
  55. self.output_dtype,
  56. self.stride,
  57. self.padding,
  58. self.dilation,
  59. self.groups,
  60. conv_mode=self.conv_mode,
  61. compute_mode=self.compute_mode,
  62. nonlinear_mode=nonlinear_mode,
  63. )
  64. @classmethod
  65. def from_qat_module(cls, qat_module: QAT.Conv2d):
  66. r"""
  67. return a :class:`~.QuantizedModule` instance converted from a
  68. :class:`~.QATModule` instance.
  69. """
  70. output_dtype = qat_module.get_activation_dtype()
  71. qconv = cls(
  72. qat_module.in_channels,
  73. qat_module.out_channels,
  74. qat_module.kernel_size,
  75. qat_module.stride,
  76. qat_module.padding,
  77. qat_module.dilation,
  78. qat_module.groups,
  79. dtype=output_dtype,
  80. )
  81. weight = qat_module.weight.astype(qat_module.get_weight_dtype())
  82. qconv.weight = Parameter(weight.numpy())
  83. if qat_module.bias is not None:
  84. qconv.bias = Parameter(qat_module.bias.numpy())
  85. else:
  86. qconv.bias = Parameter(
  87. np.zeros(qat_module._infer_bias_shape(), dtype=np.float32)
  88. )
  89. return qconv
  90. def forward(self, inp):
  91. return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY")
  92. class ConvRelu2d(Conv2d):
  93. r"""quantized version of :class:`~.qat.conv.ConvRelu2d`."""
  94. def forward(self, inp):
  95. return self.calc_conv_quantized(inp, nonlinear_mode="RELU")

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台