You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_info_analyze.py 7.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. #! /usr/bin/env python3
  2. import argparse
  3. import json
  4. import math
  5. import os
  6. from megengine.utils.module_stats import sizeof_fmt
  7. from megengine.utils.tensorboard import SummaryWriterExtend
  8. def load_single_graph(fpath):
  9. with open(fpath) as fin:
  10. data = json.load(fin)
  11. for t in ["operator", "var"]:
  12. data[t] = {int(i): j for i, j in data[t].items()}
  13. gvars = data["var"]
  14. for oid, i in data["operator"].items():
  15. i["input"] = list(map(int, i["input"]))
  16. out = i["output"] = list(map(int, i["output"]))
  17. for j in out:
  18. gvars[j]["owner_opr"] = oid
  19. for var in data["var"].values():
  20. mp = var.get("mem_plan", None)
  21. if mp:
  22. var["shape"] = "{" + ",".join(map(str, mp["layout"]["shape"])) + "}"
  23. else:
  24. var["shape"] = "<?>"
  25. return data
  26. def comp_graph_plotter(input, writer):
  27. jgraph = load_single_graph(input)
  28. all_oprs = jgraph["operator"]
  29. all_vars = jgraph["var"]
  30. for i in all_oprs:
  31. opr = all_oprs[i]
  32. if opr["type"] == "ImmutableTensor":
  33. continue
  34. inputlist = []
  35. for var in opr["input"]:
  36. inpopr = all_oprs[all_vars[var]["owner_opr"]]
  37. if inpopr["type"] == "ImmutableTensor":
  38. continue
  39. inputlist.append(all_oprs[all_vars[var]["owner_opr"]]["name"])
  40. writer.add_node_raw(opr["name"], opr["type"], inputlist)
  41. writer.add_graph_by_node_raw_list()
  42. def load_mem_info(fpath):
  43. with open(fpath) as fin:
  44. data = json.load(fin)
  45. oprs = data["opr"]
  46. for oid, i in oprs.items():
  47. i["size"] = 0
  48. for oid, i in data["chunk"].items():
  49. i["size"] = int(i["logic_addr_end"]) - int(i["logic_addr_begin"])
  50. data["peak_memory"] = 0
  51. data["weight_memory"] = 0
  52. for oid, i in data["chunk"].items():
  53. if i["type"] == "static_mem":
  54. i["owner_opr"] = oprs[i["time_begin"]]["name"]
  55. life_begin = int(i["time_begin"])
  56. life_end = int(i["time_end"])
  57. if i["overwrite_dest_id"] != "-1":
  58. life_begin = life_begin + 1
  59. if data["peak_memory"] < int(i["logic_addr_end"]):
  60. data["peak_memory"] = int(i["logic_addr_end"])
  61. for j in range(life_begin, life_end):
  62. oprs[str(j)]["size"] = oprs[str(j)]["size"] + i["size"]
  63. elif i["type"] == "weight_mem":
  64. data["weight_memory"] += int(i["logic_addr_end"]) - int(
  65. i["logic_addr_begin"]
  66. )
  67. return data
  68. def peak_mem_regist(input, writer):
  69. jmem = load_mem_info(input)
  70. writer.add_text(
  71. "PEAK_MEMORY_SIZE",
  72. [sizeof_fmt(jmem["peak_memory"]) + "(" + str(jmem["peak_memory"]) + " B)"],
  73. )
  74. writer.add_text(
  75. "WEIGHT_MEMORY_SIZE",
  76. [sizeof_fmt(jmem["weight_memory"]) + "(" + str(jmem["weight_memory"]) + " B)"],
  77. )
  78. all_oprs = jmem["opr"]
  79. all_chunks = jmem["chunk"]
  80. max_size = 0
  81. max_size_oprs = []
  82. # get oprs that reach the max memory
  83. for oid, i in all_oprs.items():
  84. if i["size"] == max_size:
  85. max_size_oprs.append(int(i["id"]))
  86. elif i["size"] > max_size:
  87. max_size = i["size"]
  88. max_size_oprs.clear()
  89. max_size_oprs.append(int(i["id"]))
  90. # get component of chunks
  91. max_size_oprs.sort()
  92. opr2chunks = []
  93. num = len(max_size_oprs)
  94. for i in range(num):
  95. opr2chunks.append([])
  96. for oid, i in all_chunks.items():
  97. if i["type"] == "static_mem":
  98. life_begin = int(i["time_begin"])
  99. life_end = int(i["time_end"])
  100. if i["overwrite_dest_id"] != "-1":
  101. life_begin = life_begin + 1
  102. if max_size_oprs[0] >= life_end or max_size_oprs[-1] < life_begin:
  103. continue
  104. for j in range(num):
  105. if max_size_oprs[j] >= life_end:
  106. break
  107. elif max_size_oprs[j] >= life_begin:
  108. opr2chunks[j].append(i["id"])
  109. peak_num = 0
  110. for i in range(num):
  111. suffix_1 = "PEAK" + str(peak_num)
  112. if i - 1 > 0 and opr2chunks[i - 1] == opr2chunks[i]:
  113. continue
  114. max_num = 0
  115. opr2chunks[i] = sorted(
  116. opr2chunks[i],
  117. key=lambda chunk_id: all_chunks[chunk_id]["size"],
  118. reverse=True,
  119. )
  120. writer.add_text(
  121. suffix_1 + "/" + "<SUMMARY_INFO>",
  122. ["reached_max_opr_name: " + all_oprs[str(max_size_oprs[i])]["name"]],
  123. 0,
  124. )
  125. writer.add_text(
  126. suffix_1 + "/" + "<SUMMARY_INFO>",
  127. ["max_used_size: " + sizeof_fmt(max_size)],
  128. 1,
  129. )
  130. for j in opr2chunks[i]:
  131. suffix_2 = "MAX" + str(max_num)
  132. j_size = sizeof_fmt(all_chunks[j]["size"])
  133. j_percent = round(all_chunks[j]["size"] / max_size * 100, 3)
  134. writer.add_text(
  135. suffix_1 + "/" + suffix_2 + "_OPR",
  136. ["percent: " + str(j_percent) + "%"],
  137. 0,
  138. )
  139. writer.add_text(
  140. suffix_1 + "/" + suffix_2 + "_OPR", ["memory_size: " + j_size], 1,
  141. )
  142. writer.add_text(
  143. suffix_1 + "/" + suffix_2 + "_OPR",
  144. ["owner_opr: " + all_chunks[j]["owner_opr"]],
  145. 2,
  146. )
  147. writer.add_node_raw_attributes(
  148. all_chunks[j]["owner_opr"],
  149. {
  150. "memory_" + all_chunks[j]["id"]: j_size,
  151. "memory_percent": str(j_percent) + "%",
  152. "summary_memory_" + str(peak_num): sizeof_fmt(max_size),
  153. },
  154. )
  155. writer.add_node_raw_name_suffix(
  156. all_chunks[j]["owner_opr"], "_" + suffix_1 + "_" + suffix_2
  157. )
  158. max_num += 1
  159. peak_num += 1
  160. writer.add_graph_by_node_raw_list()
  161. def convert(args):
  162. file_process_order = {
  163. "graph.json": comp_graph_plotter,
  164. "StaticMemoryInfo.json": peak_mem_regist,
  165. }
  166. g = os.walk(args.input)
  167. for path, dir_list, file_list in g:
  168. out_path = path.replace(args.input, args.output)
  169. writer = SummaryWriterExtend(out_path)
  170. for key, value in file_process_order.items():
  171. if key in file_list:
  172. value(os.path.join(path, key), writer)
  173. def main():
  174. """`graph_info_analyze.py` is uesed to convert json dumped by `VisableDataSet`
  175. class to logs which can be read by python `tensorboard`.
  176. Now `get_static_memory_alloc_info()` support this feature,it will dump a dir
  177. which can be convert by `graph_info_analyze.py`.
  178. Examples:
  179. .. code-block:: shell
  180. graph_info_analyze.py -i <input_dir_name> -o <output_dir_name>
  181. tensorboard --logdir <output_dir_name>
  182. """
  183. parser = argparse.ArgumentParser(
  184. "convert json dumped by c to logs which can be read by python tensorboard",
  185. formatter_class=argparse.ArgumentDefaultsHelpFormatter,
  186. )
  187. parser.add_argument(
  188. "-i", "--input", required=True, help="input dirctor name(c tensorboard info)"
  189. )
  190. parser.add_argument(
  191. "-o",
  192. "--output",
  193. required=True,
  194. help="output dirctor name(python tensorboard info)",
  195. )
  196. args = parser.parse_args()
  197. convert(args)
  198. if __name__ == "__main__":
  199. main()