You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv_bn.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. from ...tensor import Parameter
  2. from ..qat import conv_bn as QAT
  3. from .conv import Conv2d
  4. class _ConvBnActivation2d(Conv2d):
  5. r"""Applies a 2D convolution over a quantized input tensor, used for inference only.
  6. """
  7. @classmethod
  8. def from_qat_module(cls, qat_module: QAT._ConvBnActivation2d):
  9. r"""
  10. Return a :class:`~.QuantizedModule` instance converted from a
  11. :class:`~.QATModule` instance.
  12. """
  13. output_dtype = qat_module.get_activation_dtype()
  14. qconv = cls(
  15. qat_module.conv.in_channels,
  16. qat_module.conv.out_channels,
  17. qat_module.conv.kernel_size,
  18. qat_module.conv.stride,
  19. qat_module.conv.padding,
  20. qat_module.conv.dilation,
  21. qat_module.conv.groups,
  22. dtype=output_dtype,
  23. name=qat_module.name,
  24. padding_mode=qat_module.conv.padding_mode,
  25. )
  26. w_fold, b_fold = qat_module.fold_weight_bias(
  27. qat_module.bn.running_mean, qat_module.bn.running_var
  28. )
  29. weight = w_fold.astype(qat_module.get_weight_dtype())
  30. qconv.weight = Parameter(weight.numpy(), name=qat_module.conv.weight.name)
  31. qconv.bias = Parameter(b_fold.numpy())
  32. if qat_module.conv.bias is not None:
  33. qconv.bias.name = qat_module.conv.bias.name
  34. return qconv
  35. class ConvBn2d(_ConvBnActivation2d):
  36. r"""Quantized version of :class:`~.qat.ConvBn2d`."""
  37. def forward(self, inp):
  38. return self.calc_conv_quantized(inp, nonlinear_mode="identity")
  39. class ConvBnRelu2d(_ConvBnActivation2d):
  40. r"""Quantized version of :class:`~.qat.ConvBnRelu2d`."""
  41. def forward(self, inp):
  42. return self.calc_conv_quantized(inp, nonlinear_mode="relu")