You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

adam.py 4.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. # -*- coding: utf-8 -*-
  2. import os
  3. from typing import Iterable, Tuple, Union
  4. from ..functional.inplace import _inplace_add_
  5. from ..tensor import Parameter, tensor
  6. from .optimizer import Optimizer
  7. class Adam(Optimizer):
  8. r"""Implements Adam algorithm proposed in `"Adam: A Method for Stochastic Optimization" <https://arxiv.org/abs/1412.6980>`_.
  9. Args:
  10. params: iterable of parameters to optimize or dicts defining
  11. parameter groups.
  12. lr: learning rate.
  13. betas: coefficients used for computing running averages of gradient
  14. and its square. Default: (0.9, 0.999)
  15. eps: term added to the denominator to improve numerical stability. Default: 1e-8
  16. weight_decay: weight decay (L2 penalty). Default: 0
  17. """
  18. def __init__(
  19. self,
  20. params: Union[Iterable[Parameter], dict],
  21. lr: float,
  22. betas: Tuple[float, float] = (0.9, 0.999),
  23. eps: float = 1e-8,
  24. weight_decay: float = 0.0,
  25. ):
  26. if lr < 0.0:
  27. raise ValueError("Invalid learning rate: {}".format(lr))
  28. if weight_decay < 0.0:
  29. raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
  30. if not 0.0 <= betas[0] < 1.0:
  31. raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
  32. if not 0.0 <= betas[1] < 1.0:
  33. raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
  34. defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps)
  35. super().__init__(params, defaults)
  36. self._disable_type_convert = True
  37. def _create_state(self, param_group):
  38. for param in param_group["params"]:
  39. self._add_state(param, "exp_avg")
  40. self._add_state(param, "exp_avg_sq")
  41. self._add_state(param, "step", initializer=0.0)
  42. def _updates(self, param_group):
  43. lr = param_group["lr"]
  44. weight_decay = param_group["weight_decay"]
  45. eps = param_group["eps"]
  46. beta0, beta1 = param_group["betas"]
  47. def make_scalar(val):
  48. return tensor(val, dtype="float32")
  49. # since `conver_inputs` is disabled for param updates,
  50. # scalar should be explicitly tansforred to tensor
  51. _lr, _neg_lr = map(make_scalar, (lr, -lr))
  52. _weight_decay = make_scalar(weight_decay)
  53. _eps = make_scalar(eps)
  54. _beta0, _beta1 = map(make_scalar, (beta0, beta1))
  55. c1, c05 = map(make_scalar, (1.0, 0.5))
  56. inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0"))
  57. if inplace_mode:
  58. # reduce device sync
  59. c1_sub_beta0, c1_sub_beta1 = map(make_scalar, (1 - beta0, 1 - beta1))
  60. for param in param_group["params"]:
  61. if param.grad is None:
  62. continue
  63. grad = param.grad
  64. if weight_decay != 0.0:
  65. grad = grad + param * _weight_decay
  66. states = self._state[param]
  67. step, exp_avg, exp_avg_sq = (
  68. states["step"],
  69. states["exp_avg"],
  70. states["exp_avg_sq"],
  71. )
  72. if inplace_mode:
  73. _inplace_add_(step, c1, alpha=c1, beta=c1)
  74. _inplace_add_(exp_avg, grad, alpha=_beta0, beta=c1_sub_beta0)
  75. _inplace_add_(
  76. exp_avg_sq, grad * grad, alpha=_beta1, beta=c1_sub_beta1,
  77. )
  78. delta = (exp_avg / (c1 - _beta0 ** step)) / (
  79. (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps
  80. )
  81. _inplace_add_(param, delta, alpha=c1, beta=_neg_lr)
  82. continue
  83. # step = step + c1
  84. step += c1
  85. # exp_avg = _beta0 * exp_avg + grad * (c1 - _beta0)
  86. exp_avg *= _beta0
  87. exp_avg += grad * (c1 - _beta0)
  88. # exp_avg_sq = _beta1 * exp_avg_sq + (c1 - _beta1) * (grad * grad)
  89. exp_avg_sq *= _beta1
  90. exp_avg_sq += (c1 - _beta1) * (grad * grad)
  91. delta = (exp_avg / (c1 - _beta0 ** step)) / (
  92. (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps
  93. )
  94. param -= _lr * delta