You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. /**
  2. * \file dnn/test/arm_common/pooling_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include <vector>
  12. #include "megdnn/dtype.h"
  13. #include "megdnn/opr_param_defs.h"
  14. #include "test/arm_common/fixture.h"
  15. #include "test/common/pooling.h"
  16. #include "test/common/checker.h"
  17. #include "test/common/benchmarker.h"
  18. #include "test/common/rng.h"
  19. namespace megdnn {
  20. namespace test {
  21. /*********************** mutli threads *********************************/
  22. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  23. using Param = param::Pooling;
  24. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  25. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  26. for (size_t p: {1, 2})
  27. {
  28. Param param;
  29. param.mode = Param::Mode::MAX;
  30. param.window_h = param.window_w = 3;
  31. param.stride_h = param.stride_w = 2;
  32. param.pad_h = param.pad_w = p;
  33. Checker<Pooling> checker(handle());
  34. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  35. param.mode = Param::Mode::AVERAGE;
  36. param.window_h = param.window_w = 3;
  37. param.stride_h = param.stride_w = 2;
  38. param.pad_h = param.pad_w = p;
  39. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  40. param.mode = Param::Mode::MAX;
  41. param.window_h = param.window_w = 4;
  42. param.stride_h = param.stride_w = 2;
  43. param.pad_h = param.pad_w = p;
  44. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  45. param.mode = Param::Mode::MAX;
  46. param.window_h = param.window_w = 5;
  47. param.stride_h = param.stride_w = 2;
  48. param.pad_h = param.pad_w = p;
  49. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  50. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  51. }
  52. }
  53. std::vector<std::pair<param::Pooling, TensorShapeArray>> get_nchw44_pool_args(
  54. size_t filter, size_t stride) {
  55. constexpr size_t ic_step = 4;
  56. std::vector<std::pair<param::Pooling, TensorShapeArray>> args;
  57. for (size_t n : {1, 2})
  58. for (size_t c : {4, 8})
  59. for (size_t ih : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
  60. for (size_t iw : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
  61. for (size_t ph : {0, 1, 2})
  62. for (size_t pw : {0, 1, 2})
  63. for (auto mode : {param::Pooling::Mode::MAX,
  64. param::Pooling::Mode::AVERAGE})
  65. if (ih + 2 * ph >= filter &&
  66. iw + 2 * pw >= filter && filter > ph &&
  67. filter > pw) {
  68. param::Pooling param;
  69. param.mode = mode;
  70. param.format =
  71. param::Pooling::Format::NCHW44;
  72. param.pad_h = ph;
  73. param.pad_w = pw;
  74. param.stride_h = param.stride_w = stride;
  75. param.window_h = param.window_w = filter;
  76. args.emplace_back(std::make_pair(
  77. param,
  78. TensorShapeArray{{n, c / ic_step,
  79. ih, iw, ic_step},
  80. {}}));
  81. }
  82. return args;
  83. }
  84. void run_pooling_check(
  85. Handle* handle,
  86. std::vector<std::pair<param::Pooling, TensorShapeArray>> args,
  87. bool is_int8) {
  88. Checker<Pooling> checker(handle);
  89. UniformIntRNG rng_int8{INT8_MIN >> 1, INT8_MAX >> 1};
  90. UniformIntRNG rng_fp32{-10, 10};
  91. if (is_int8) {
  92. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  93. checker.set_rng(0, &rng_int8);
  94. } else {
  95. checker.set_rng(0, &rng_fp32);
  96. }
  97. for (auto arg : args) {
  98. checker.set_param(arg.first).exec(arg.second);
  99. }
  100. }
  101. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_NCHW44_FP32) {
  102. for (auto filter : {2, 3, 4, 5})
  103. for (auto stride : {1, 2}) {
  104. run_pooling_check(handle(), get_nchw44_pool_args(filter, stride),
  105. false);
  106. }
  107. }
  108. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W3x3_NCHW44)
  109. {
  110. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  111. Checker<Pooling> checker(handle());
  112. checker.set_rng(0, &rng);
  113. // clang-format off
  114. for (size_t ih: {3, 5, 10})
  115. for (size_t iw: {3, 5, 7, 9, 15, 20})
  116. for (size_t ph: {0, 1, 2})
  117. for (size_t pw: {0, 1, 2})
  118. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  119. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  120. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  121. {
  122. checker.set_dtype(0, data_type);
  123. param::Pooling param;
  124. param.mode = mode;
  125. param.format = param::Pooling::Format::NCHW44;
  126. param.pad_h = ph;
  127. param.pad_w = pw;
  128. param.stride_h = param.stride_w = 1;
  129. param.window_h = param.window_w = 3;
  130. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  131. param.stride_h = param.stride_w = 2;
  132. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  133. }
  134. // clang-format on
  135. }
  136. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W2x2_NCHW44)
  137. {
  138. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  139. Checker<Pooling> checker(handle());
  140. checker.set_rng(0, &rng);
  141. // clang-format off
  142. for (size_t ih: {2, 5, 10, 17})
  143. for (size_t iw: {2, 6, 8, 16, 26})
  144. for (size_t ph: {0, 1})
  145. for (size_t pw: {0, 1})
  146. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  147. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  148. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  149. {
  150. checker.set_dtype(0, data_type);
  151. checker.set_dtype(1, data_type);
  152. param::Pooling param;
  153. param.mode = mode;
  154. param.format = param::Pooling::Format::NCHW44;
  155. param.pad_h = ph;
  156. param.pad_w = pw;
  157. param.stride_h = param.stride_w = 1;
  158. param.window_h = param.window_w = 2;
  159. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  160. param.stride_h = param.stride_w = 2;
  161. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  162. }
  163. // clang-format on
  164. }
  165. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W4x4_NCHW44)
  166. {
  167. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  168. Checker<Pooling> checker(handle());
  169. checker.set_rng(0, &rng);
  170. // clang-format off
  171. for (size_t ih: {4, 10, 18, 25, 30})
  172. for (size_t iw: {4, 12, 17, 20, 25})
  173. for (size_t ph: {0, 1, 2})
  174. for (size_t pw: {0, 1, 2})
  175. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  176. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  177. if (ih+2*ph >= 4 && iw+2*pw >= 4)
  178. {
  179. checker.set_dtype(0, data_type);
  180. param::Pooling param;
  181. param.mode = mode;
  182. param.format = param::Pooling::Format::NCHW44;
  183. param.pad_h = ph;
  184. param.pad_w = pw;
  185. param.stride_h = param.stride_w = 1;
  186. param.window_h = param.window_w = 4;
  187. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  188. param.stride_h = param.stride_w = 2;
  189. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  190. }
  191. // clang-format on
  192. }
  193. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W5x5_NCHW44)
  194. {
  195. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  196. Checker<Pooling> checker(handle());
  197. checker.set_rng(0, &rng);
  198. // clang-format off
  199. for (size_t ih: {5, 9, 19, 20, 39})
  200. for (size_t iw: {5, 12, 23, 27, 39})
  201. for (size_t ph: {0, 1, 2})
  202. for (size_t pw: {0, 1, 2})
  203. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  204. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  205. if (ih+2*ph >= 5 && iw+2*pw >= 5)
  206. {
  207. checker.set_dtype(0, data_type);
  208. param::Pooling param;
  209. param.mode = mode;
  210. param.format = param::Pooling::Format::NCHW44;
  211. param.pad_h = ph;
  212. param.pad_w = pw;
  213. param.stride_h = param.stride_w = 1;
  214. param.window_h = param.window_w = 5;
  215. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  216. param.stride_h = param.stride_w = 2;
  217. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  218. }
  219. // clang-format on
  220. }
  221. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
  222. {
  223. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  224. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  225. for (size_t ph: {0, 1, 2})
  226. for (size_t pw: {0, 1, 2})
  227. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  228. {
  229. Checker<Pooling> checker(handle());
  230. checker.set_dtype(0, dtype::Int8());
  231. param::Pooling param;
  232. param.mode = param::Pooling::Mode::MAX;
  233. param.pad_h = ph;
  234. param.pad_w = pw;
  235. param.stride_h = param.stride_w = 2;
  236. param.window_h = param.window_w = 3;
  237. checker.set_param(param).exec(TensorShapeArray{
  238. {2, 3, ih, iw}, {}});
  239. }
  240. }
  241. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
  242. {
  243. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  244. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  245. for (size_t ph: {0, 1})
  246. for (size_t pw: {0, 1})
  247. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  248. {
  249. Checker<Pooling> checker(handle());
  250. checker.set_dtype(0, dtype::Int8());
  251. param::Pooling param;
  252. param.mode = param::Pooling::Mode::MAX;
  253. param.pad_h = ph;
  254. param.pad_w = pw;
  255. param.stride_h = param.stride_w = 2;
  256. param.window_h = param.window_w = 2;
  257. checker.set_param(param).exec(TensorShapeArray{
  258. {2, 3, ih, iw}, {}});
  259. }
  260. }
  261. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  262. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  263. Checker<Pooling> checker(handle());
  264. checker.set_dtype(0, dtype::Float16{})
  265. .set_dtype(1, dtype::Float16{})
  266. .set_epsilon(3e-3);
  267. using Param = param::Pooling;
  268. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  269. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  270. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  271. for (size_t window : {2, 3}) {
  272. Param param;
  273. param.mode = mode;
  274. param.window_h = param.window_w = window;
  275. param.stride_h = param.stride_w = 1;
  276. param.pad_h = param.pad_w = window / 2;
  277. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  278. //! == 3)
  279. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  280. //! test for SH = SW = 2 && FH = FW = 2
  281. param.stride_h = param.stride_w = 2;
  282. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  283. }
  284. }
  285. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  286. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  287. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  288. for (size_t ph : {0, 1, 2})
  289. for (size_t pw : {0, 1, 2})
  290. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  291. param::Pooling param;
  292. param.mode = param::Pooling::Mode::MAX;
  293. param.pad_h = ph;
  294. param.pad_w = pw;
  295. param.stride_h = param.stride_w = 2;
  296. param.window_h = param.window_w = 3;
  297. checker.set_param(param).exec(
  298. TensorShapeArray{{2, 3, ih, iw}, {}});
  299. }
  300. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  301. for (size_t ih :
  302. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  303. for (size_t iw :
  304. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  305. for (size_t p : {1, 2}) {
  306. Param param;
  307. param.mode = Param::Mode::MAX;
  308. param.window_h = param.window_w = 4;
  309. param.stride_h = param.stride_w = 2;
  310. param.pad_h = param.pad_w = p;
  311. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  312. }
  313. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  314. for (size_t ih :
  315. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  316. for (size_t iw :
  317. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  318. for (size_t p : {1, 2}) {
  319. Param param;
  320. param.mode = Param::Mode::MAX;
  321. param.window_h = param.window_w = 5;
  322. param.stride_h = param.stride_w = 2;
  323. param.pad_h = param.pad_w = p;
  324. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  325. }
  326. }
  327. #endif
  328. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  329. Checker<Pooling> checker(handle());
  330. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  331. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  332. using Param = param::Pooling;
  333. for (auto type : std::vector<DType>{
  334. dtype::QuantizedS8(1.1f),
  335. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  336. if (type.enumv() == DTypeEnum::QuantizedS8) {
  337. checker.set_rng(0, &rng1);
  338. } else {
  339. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  340. checker.set_rng(0, &rng2);
  341. }
  342. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  343. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  344. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  345. for (size_t window : {2, 3}) {
  346. Param param;
  347. param.mode = mode;
  348. param.window_h = param.window_w = window;
  349. param.stride_h = param.stride_w = 1;
  350. param.pad_h = param.pad_w = window / 2;
  351. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  352. //! FH
  353. //! == 3)
  354. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  355. //! test for SH = SW = 2 && FH = FW = 2
  356. param.stride_h = param.stride_w = 2;
  357. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  358. }
  359. }
  360. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  361. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  362. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  363. for (size_t ph : {0, 1, 2})
  364. for (size_t pw : {0, 1, 2})
  365. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  366. param::Pooling param;
  367. param.mode = param::Pooling::Mode::MAX;
  368. param.pad_h = ph;
  369. param.pad_w = pw;
  370. param.window_h = param.window_w = 3;
  371. param.stride_h = param.stride_w = 2;
  372. checker.set_param(param).exec(
  373. TensorShapeArray{{2, 3, ih, iw}, {}});
  374. }
  375. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  376. for (size_t ih :
  377. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  378. for (size_t iw :
  379. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  380. for (size_t p : {1, 2}) {
  381. Param param;
  382. param.mode = Param::Mode::MAX;
  383. param.window_h = param.window_w = 4;
  384. param.stride_h = param.stride_w = 2;
  385. param.pad_h = param.pad_w = p;
  386. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  387. }
  388. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  389. for (size_t ih :
  390. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  391. for (size_t iw :
  392. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  393. for (size_t p : {1, 2}) {
  394. Param param;
  395. param.mode = Param::Mode::MAX;
  396. param.window_h = param.window_w = 5;
  397. param.stride_h = param.stride_w = 2;
  398. param.pad_h = param.pad_w = p;
  399. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  400. }
  401. }
  402. }
  403. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  404. using Param = param::Pooling;
  405. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  406. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  407. for (size_t p: {1, 2})
  408. {
  409. Param param;
  410. param.mode = Param::Mode::MAX;
  411. param.window_h = param.window_w = 3;
  412. param.stride_h = param.stride_w = 2;
  413. param.pad_h = param.pad_w = p;
  414. Checker<Pooling> checker(handle());
  415. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  416. }
  417. }
  418. #if MEGDNN_WITH_BENCHMARK
  419. namespace {
  420. template <typename Opr>
  421. void benchmark_impl(const typename Opr::Param& param,
  422. std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
  423. TaskExecutorConfig&& multi_thread_config,
  424. TaskExecutorConfig&& single_thread_config,
  425. DType data_type) {
  426. std::vector<float> multi_thread_times, single_thread_times;
  427. {
  428. auto multi_thread_hanle =
  429. create_cpu_handle(0, true, &multi_thread_config);
  430. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  431. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  432. benchmarker.set_dtype(0, data_type);
  433. for (auto shape : shapes) {
  434. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  435. }
  436. }
  437. {
  438. auto single_thread_handle =
  439. create_cpu_handle(0, true, &single_thread_config);
  440. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  441. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  442. benchmarker.set_dtype(0, data_type);
  443. for (auto shape : shapes) {
  444. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  445. }
  446. }
  447. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  448. printf("core_ids:");
  449. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  450. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  451. }
  452. printf(", Single thread core_id %zu\n",
  453. single_thread_config.affinity_core_set[0]);
  454. for (size_t i = 0; i < shapes.size(); i++) {
  455. auto shape = shapes[i];
  456. printf("Case: ");
  457. for (auto sh : shape)
  458. printf("%s ", sh.to_string().c_str());
  459. printf("%zu threads time: %f,\n single thread time: "
  460. "%f. spead up = %f, speedup/cores=%f\n",
  461. multi_thread_config.nr_thread, multi_thread_times[i],
  462. single_thread_times[i],
  463. single_thread_times[i] / multi_thread_times[i],
  464. single_thread_times[i] / multi_thread_times[i] /
  465. multi_thread_config.nr_thread);
  466. }
  467. }
  468. } // namespace
  469. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  470. constexpr size_t RUNS = 50;
  471. using Param = param::Pooling;
  472. Param param;
  473. param.window_h = param.window_w = 3;
  474. param.stride_h = param.stride_w = 2;
  475. param.pad_h = param.pad_w = 1;
  476. std::vector<SmallVector<TensorShape>> shapes;
  477. shapes.push_back({{32, 32, 215, 215}, {}});
  478. shapes.push_back({{32, 32, 128, 128}, {}});
  479. shapes.push_back({{8, 256, 100, 100}, {}});
  480. shapes.push_back({{1, 256, 100, 100}, {}});
  481. shapes.push_back({{1, 32, 100, 100}, {}});
  482. shapes.push_back({{1, 256, 80, 80}, {}});
  483. shapes.push_back({{1, 256, 60, 60}, {}});
  484. shapes.push_back({{1, 256, 30, 30}, {}});
  485. param.window_h = param.window_w = 3;
  486. param.stride_h = param.stride_w = 2;
  487. param.pad_h = param.pad_w = 1;
  488. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  489. param.window_w, param.stride_h, static_cast<int>(param.mode));
  490. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32());
  491. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32());
  492. benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32());
  493. }
  494. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) {
  495. constexpr size_t RUNS = 50;
  496. using Param = param::Pooling;
  497. Param param;
  498. param.pad_h = param.pad_w = 0;
  499. param.mode = Param::Mode::MAX;
  500. std::vector<SmallVector<TensorShape>> shapes;
  501. std::vector<std::vector<size_t>> filter_and_stride = {
  502. {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}};
  503. for (auto mode :
  504. {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) {
  505. for (auto filter : filter_and_stride) {
  506. shapes.push_back({{1, 32 * 4, 215, 215}, {}});
  507. shapes.push_back({{1, 32 * 4, 128, 128}, {}});
  508. shapes.push_back({{1, 16 * 4, 56, 56}, {}});
  509. param.mode = mode;
  510. param.window_h = param.window_w = filter[0];
  511. param.stride_h = param.stride_w = filter[1];
  512. param.format = Param::Format::NCHW;
  513. printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  514. param.window_h, param.window_h, param.stride_h,
  515. static_cast<int>(param.mode));
  516. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
  517. {1, {4}}, dtype::QuantizedS8(1.1f));
  518. shapes.clear();
  519. shapes.push_back({{1, 32, 215, 215, 4}, {}});
  520. shapes.push_back({{1, 32, 128, 128, 4}, {}});
  521. shapes.push_back({{1, 16, 56, 56, 4}, {}});
  522. param.format = Param::Format::NCHW44;
  523. printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  524. param.window_h, param.window_w, param.stride_h,
  525. static_cast<int>(param.mode));
  526. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
  527. {1, {4}}, dtype::QuantizedS8(1.1f));
  528. shapes.clear();
  529. }
  530. }
  531. }
  532. #endif
  533. } // namespace test
  534. } // namespace megdnn
  535. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台