You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataloader.py 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import math
  11. import multiprocessing
  12. import platform
  13. import queue
  14. import random
  15. import time
  16. import numpy as np
  17. from ..logger import get_logger
  18. from ..random.rng import _random_seed_generator
  19. from .collator import Collator
  20. from .dataset import Dataset, StreamDataset
  21. from .sampler import MapSampler, Sampler, SequentialSampler, StreamSampler
  22. from .transform import PseudoTransform, Transform
  23. logger = get_logger(__name__)
  24. MP_QUEUE_GET_TIMEOUT = 5
  25. class DataLoader:
  26. __initialized = False
  27. def __init__(
  28. self,
  29. dataset: Dataset,
  30. sampler: Sampler = None,
  31. transform: Transform = None,
  32. collator: Collator = None,
  33. num_workers: int = 0,
  34. timeout: int = 0,
  35. divide: bool = False,
  36. ):
  37. r"""
  38. Provides a convenient way to iterate on a given dataset.
  39. `DataLoader` combines a dataset with `sampler`, `transform` and `collator`,
  40. make it flexible to get minibatch continually from a dataset.
  41. :type dataset: Dataset
  42. :param dataset: dataset from which to load the minibatch.
  43. :type sampler: Sampler
  44. :param sampler: defines the strategy to sample data from the dataset.
  45. :type transform: Transform
  46. :param transform: defined the transforming strategy for a sampled batch.
  47. Default: None
  48. :type collator: Collator
  49. :param collator: defined the merging strategy for a transformed batch.
  50. Default: None
  51. :type num_workers: int
  52. :param num_workers: the number of sub-process to load, transform and collate
  53. the batch. ``0`` means using single-process. Default: 0
  54. :type timeout: int
  55. :param timeout: if positive, means the timeout value(second) for collecting a
  56. batch from workers. Default: 0
  57. :type divide: bool
  58. :param divide: define the paralleling strategy in multi-processing mode.
  59. ``True`` means one batch is divided into :attr:`num_workers` pieces, and
  60. the workers will process these pieces parallelly. ``False`` means
  61. different sub-process will process different batch. Default: False
  62. """
  63. if num_workers < 0:
  64. raise ValueError("num_workers should not be negative")
  65. if timeout < 0:
  66. raise ValueError("timeout should not be negative")
  67. if divide and num_workers <= 1:
  68. raise ValueError("divide should not be set to True when num_workers <= 1")
  69. self.dataset = dataset
  70. self.num_workers = num_workers
  71. self.timeout = timeout
  72. self.divide = divide
  73. if isinstance(dataset, StreamDataset):
  74. self.sampler = sampler if sampler else StreamSampler(batch_size=1)
  75. assert isinstance(
  76. self.sampler, StreamSampler
  77. ), "types of dataset and sampler do not match"
  78. else:
  79. assert isinstance(
  80. dataset, Dataset
  81. ), "Can not recognize this kind of dataset: %s" % type(dataset)
  82. self.sampler = (
  83. sampler
  84. if sampler
  85. else SequentialSampler(dataset, batch_size=1, drop_last=False)
  86. )
  87. assert isinstance(
  88. self.sampler, MapSampler
  89. ), "types of dataset and sampler do not match"
  90. if divide:
  91. if self.sampler.batch_size <= self.num_workers:
  92. raise ValueError(
  93. "batch size must not smaller than num_workers in divide mode."
  94. )
  95. elif self.sampler.batch_size % self.num_workers:
  96. logger.warning(
  97. "batch size is not divisible by num_workers, may lose performance in divide mode."
  98. )
  99. if transform is None:
  100. self.transform = PseudoTransform()
  101. else:
  102. self.transform = transform
  103. if collator is None:
  104. self.collator = Collator()
  105. else:
  106. self.collator = collator
  107. self.__initialized = True
  108. def __iter__(self):
  109. if platform.system() == "Windows" and self.num_workers > 0:
  110. print(
  111. "pyarrow.plasma does not support ParallelDataLoader on windows, changing num_workers to be zero"
  112. )
  113. self.num_workers = 0
  114. if isinstance(self.dataset, StreamDataset):
  115. if not self.num_workers:
  116. return _SerialStreamDataLoaderIter(self)
  117. else:
  118. return _ParallelStreamDataLoaderIter(self)
  119. else:
  120. assert isinstance(
  121. self.dataset, Dataset
  122. ), "Can not recognize this kind of dataset: %s" % type(self.dataset)
  123. if not self.num_workers:
  124. return _SerialMapDataLoaderIter(self)
  125. else:
  126. return _ParallelMapDataLoaderIter(self)
  127. def __len__(self):
  128. return len(self.sampler)
  129. class _BaseMapDataLoaderIter:
  130. def __init__(self, loader):
  131. self.dataset = loader.dataset
  132. self.sampler = loader.sampler
  133. self.seed = _random_seed_generator().__next__()
  134. self.transform = loader.transform
  135. self.collator = loader.collator
  136. self.num_workers = loader.num_workers
  137. self.timeout = loader.timeout
  138. self.divide = loader.divide
  139. self.num_processed = 0
  140. def _get_next_batch(self):
  141. raise NotImplementedError
  142. def __len__(self):
  143. return len(self.sampler)
  144. def __iter__(self):
  145. return self
  146. def __next__(self):
  147. if self.num_processed >= len(self):
  148. raise StopIteration
  149. minibatch = self._get_next_batch()
  150. self.num_processed += 1
  151. return minibatch
  152. class _SerialMapDataLoaderIter(_BaseMapDataLoaderIter):
  153. def __init__(self, loader):
  154. super(_SerialMapDataLoaderIter, self).__init__(loader)
  155. self.indices_iter = iter(self.sampler)
  156. def _get_next_batch(self):
  157. indices = next(self.indices_iter)
  158. items = [self.dataset[idx] for idx in indices]
  159. trans_items = self.transform.apply_batch(items)
  160. return self.collator.apply(trans_items)
  161. class _ParallelMapDataLoaderIter(_BaseMapDataLoaderIter):
  162. __initialized = False
  163. def __init__(self, loader):
  164. super(_ParallelMapDataLoaderIter, self).__init__(loader)
  165. self.task_queues = [
  166. multiprocessing.Queue(maxsize=2) for _ in range(self.num_workers)
  167. ]
  168. self.feed_batch_idx = multiprocessing.Value("i", 0)
  169. self.target_batch_idx = multiprocessing.Value("i", 0)
  170. self.shutdown_flag = multiprocessing.Value("i", 0)
  171. self.trans_data_queues = [
  172. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  173. ]
  174. # use shared-memory queue implemented by pyarrow plasma store.
  175. from ._queue import PlasmaShmQueue
  176. self.batch_queue = PlasmaShmQueue(maxsize=2)
  177. self.task_feeding_worker = multiprocessing.Process(
  178. target=_task_feeding_loop,
  179. args=(
  180. iter(self.sampler),
  181. self.task_queues,
  182. self.num_workers,
  183. self.divide,
  184. self.shutdown_flag,
  185. self.feed_batch_idx,
  186. ),
  187. daemon=True,
  188. )
  189. self.task_feeding_worker.start()
  190. self.workers = []
  191. for worker_id in range(self.num_workers):
  192. worker = multiprocessing.Process(
  193. target=_worker_loop,
  194. args=(
  195. self.dataset,
  196. self.task_queues[worker_id],
  197. self.trans_data_queues[worker_id],
  198. self.transform,
  199. self.seed + worker_id + 1,
  200. self.shutdown_flag,
  201. ),
  202. daemon=True,
  203. )
  204. worker.start()
  205. self.workers.append(worker)
  206. if self.divide:
  207. self.data_collecting_worker = multiprocessing.Process(
  208. target=_data_gathering_loop,
  209. args=(
  210. self.trans_data_queues,
  211. self.batch_queue,
  212. self.collator,
  213. len(self),
  214. self.num_workers,
  215. self.shutdown_flag,
  216. self.target_batch_idx,
  217. ),
  218. daemon=True,
  219. )
  220. else:
  221. self.data_collecting_worker = multiprocessing.Process(
  222. target=_data_selecting_loop,
  223. args=(
  224. self.trans_data_queues,
  225. self.batch_queue,
  226. self.collator,
  227. len(self),
  228. self.num_workers,
  229. self.shutdown_flag,
  230. self.target_batch_idx,
  231. ),
  232. daemon=True,
  233. )
  234. self.data_collecting_worker.start()
  235. self.__initialized = True
  236. def _check_workers(self):
  237. # Check the status of each worker.
  238. if not self.data_collecting_worker.is_alive():
  239. exitcode = self.task_feeding_worker.exitcode
  240. if exitcode != 0:
  241. raise RuntimeError("data collecting worker died. {}".format(exitcode))
  242. if not self.task_feeding_worker.is_alive():
  243. exitcode = self.task_feeding_worker.exitcode
  244. if exitcode != 0:
  245. raise RuntimeError("task feeding worker died. {}".format(exitcode))
  246. for worker_id, worker in enumerate(self.workers):
  247. if not worker.is_alive():
  248. exitcode = worker.exitcode
  249. if exitcode != 0:
  250. raise RuntimeError("worker:{} died. {}".format(worker_id, exitcode))
  251. logger.debug("all workers are alive.")
  252. def _try_get_next_batch(self):
  253. start_time = time.time()
  254. while True:
  255. self._check_workers()
  256. try:
  257. return self.batch_queue.get(timeout=1)
  258. except queue.Empty:
  259. logger.debug("batch queue empty!")
  260. waited_time = time.time() - start_time
  261. if self.timeout > 0:
  262. if waited_time > self.timeout:
  263. raise RuntimeError("get_next_batch timeout!")
  264. def _get_next_batch(self):
  265. batch_data = self._try_get_next_batch()
  266. return batch_data
  267. def _shutdown(self):
  268. with self.shutdown_flag.get_lock():
  269. self.shutdown_flag.value = 1
  270. if self.task_feeding_worker.is_alive():
  271. self.task_feeding_worker.terminate()
  272. self.task_feeding_worker.join()
  273. if self.data_collecting_worker.is_alive():
  274. self.data_collecting_worker.terminate()
  275. self.data_collecting_worker.join()
  276. for worker in self.workers:
  277. if worker.is_alive():
  278. worker.terminate()
  279. worker.join()
  280. for q in self.trans_data_queues:
  281. q.cancel_join_thread()
  282. q.close()
  283. for q in self.task_queues:
  284. q.cancel_join_thread()
  285. q.close()
  286. self.batch_queue.cancel_join_thread()
  287. self.batch_queue.close()
  288. def __del__(self):
  289. if self.__initialized:
  290. self._shutdown()
  291. class _BaseStreamDataLoaderIter:
  292. def __init__(self, loader):
  293. self.dataset = loader.dataset
  294. self.sampler = loader.sampler
  295. self.transform = loader.transform
  296. self.collator = loader.collator
  297. self.num_workers = loader.num_workers
  298. self.timeout = loader.timeout
  299. def _get_next_batch(self):
  300. raise NotImplementedError
  301. def __iter__(self):
  302. return self
  303. def __next__(self):
  304. return self._get_next_batch()
  305. class _SerialStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  306. def __init__(self, loader):
  307. super().__init__(loader)
  308. self.dataset_iter = iter(self.dataset)
  309. self.idx = 0
  310. self.data = None
  311. def _get_next_batch(self):
  312. ret = []
  313. start_time = time.time()
  314. while len(ret) != self.sampler.batch_size:
  315. waited_time = time.time() - start_time
  316. if self.timeout > 0 and waited_time > self.timeout:
  317. raise RuntimeError("get_next_batch timeout!")
  318. if self.idx != 0:
  319. data = self.data
  320. else:
  321. try:
  322. raw_data = next(self.dataset_iter)
  323. except:
  324. continue
  325. assert len(raw_data) == 2 and isinstance(
  326. raw_data[0], bool
  327. ), "raw_data must be a tuple"
  328. if not raw_data[0]:
  329. data = list((x,) for x in raw_data[1])
  330. else:
  331. data = raw_data[1]
  332. for idx in range(self.idx, len(data[0])):
  333. trans_data = self.transform.apply(tuple(e[idx] for e in data))
  334. ret.append(trans_data)
  335. if len(ret) == self.sampler.batch_size:
  336. if idx + 1 == len(data[0]):
  337. self.idx = 0
  338. self.data = None
  339. else:
  340. self.idx = idx
  341. self.data = data
  342. break
  343. return self.collator.apply(ret)
  344. class _ParallelStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  345. __initialized = False
  346. def __init__(self, loader):
  347. super().__init__(loader)
  348. self.shutdown_flag = multiprocessing.Value("i", 0)
  349. self.raw_data_queues = [
  350. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  351. ]
  352. self.trans_data_queues = [
  353. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  354. ]
  355. # shared-memory queue implemented by pyarrow plasma store
  356. from ._queue import PlasmaShmQueue
  357. self.batch_queue = PlasmaShmQueue(maxsize=2)
  358. self.recieve_worker = multiprocessing.Process(target=self._recieve, daemon=True)
  359. self.recieve_worker.start()
  360. self.transform_workers = []
  361. for worker_id in range(self.num_workers):
  362. worker = multiprocessing.Process(
  363. target=self._transform, args=(worker_id,), daemon=True
  364. )
  365. worker.start()
  366. self.transform_workers.append(worker)
  367. self.collect_worker = multiprocessing.Process(target=self._collect, daemon=True)
  368. self.collect_worker.start()
  369. self.__initialized = True
  370. def _recieve(self):
  371. dataset_iter = iter(self.dataset)
  372. cnt = -1
  373. while True:
  374. if self.shutdown_flag.value == 1:
  375. break
  376. raw_data = next(dataset_iter)
  377. assert len(raw_data) == 2 and isinstance(
  378. raw_data[0], bool
  379. ), "raw_data must be a tuple"
  380. if not raw_data[0]:
  381. data = list((x,) for x in raw_data[1])
  382. else:
  383. data = raw_data[1]
  384. for idx in range(len(data[0])):
  385. while True:
  386. cnt += 1
  387. qid = cnt % self.num_workers
  388. try:
  389. self.raw_data_queues[qid].put(tuple(e[idx] for e in data))
  390. break
  391. except queue.Full:
  392. if self.shutdown_flag.value == 1:
  393. break
  394. logger.debug("raw data queue is full")
  395. def _transform(self, worker_id):
  396. while True:
  397. if self.shutdown_flag.value == 1:
  398. break
  399. try:
  400. data = self.raw_data_queues[worker_id].get(timeout=MP_QUEUE_GET_TIMEOUT)
  401. except queue.Empty:
  402. continue
  403. trans_data = self.transform.apply(data)
  404. while True:
  405. try:
  406. self.trans_data_queues[worker_id].put(trans_data)
  407. break
  408. except queue.Full:
  409. if self.shutdown_flag.value == 1:
  410. break
  411. logger.debug("batch queue if full")
  412. def _collect(self):
  413. cnt = -1
  414. trans_items = []
  415. while True:
  416. if self.shutdown_flag.value == 1:
  417. break
  418. cnt += 1
  419. queue_id = cnt % self.num_workers
  420. try:
  421. trans_item = self.trans_data_queues[queue_id].get(
  422. timeout=MP_QUEUE_GET_TIMEOUT
  423. )
  424. except queue.Empty:
  425. continue
  426. trans_items.append(trans_item)
  427. if len(trans_items) == self.sampler.batch_size:
  428. batch_data = self.collator.apply(trans_items)
  429. while True:
  430. try:
  431. self.batch_queue.put(batch_data, timeout=1)
  432. break
  433. except queue.Full:
  434. if self.shutdown_flag.value == 1:
  435. break
  436. logger.debug("batch queue is full")
  437. trans_items = []
  438. def _check_workers(self):
  439. if not self.collect_worker.is_alive():
  440. exitcode = self.collect_worker.exitcode
  441. if exitcode != 0:
  442. raise RuntimeError("collator worker died. {}".format(exitcode))
  443. for worker_id, worker in enumerate(self.transform_workers):
  444. if not worker.is_alive():
  445. exitcode = worker.exitcode
  446. if exitcode != 0:
  447. raise RuntimeError(
  448. "worker: {} died. {}".format(worker_id, exitcode)
  449. )
  450. def _try_get_next_batch(self):
  451. start_time = time.time()
  452. while True:
  453. self._check_workers()
  454. try:
  455. return self.batch_queue.get(timeout=1)
  456. except queue.Empty:
  457. logger.debug("batch queue empty!")
  458. waited_time = time.time() - start_time
  459. if self.timeout > 0 and waited_time > self.timeout:
  460. raise RuntimeError("get_next_batch timeout!")
  461. def _get_next_batch(self):
  462. batch_data = self._try_get_next_batch()
  463. return batch_data
  464. def _shutdown(self):
  465. with self.shutdown_flag.get_lock():
  466. self.shutdown_flag.value = 1
  467. if self.recieve_worker.is_alive():
  468. self.recieve_worker.terminate()
  469. self.recieve_worker.join()
  470. if self.collect_worker.is_alive():
  471. self.collect_worker.terminate()
  472. self.collect_worker.join()
  473. for worker in self.transform_workers:
  474. if worker.is_alive():
  475. worker.terminate()
  476. worker.join()
  477. for q in self.raw_data_queues:
  478. q.cancel_join_thread()
  479. q.close()
  480. for q in self.trans_data_queues:
  481. q.cancel_join_thread()
  482. q.close()
  483. self.batch_queue.cancel_join_thread()
  484. self.batch_queue.close()
  485. def __del__(self):
  486. if self.__initialized:
  487. self._shutdown()
  488. def _task_feeding_loop(
  489. indices_iter, task_queues, num_workers, divide, shutdown_flag, feed_batch_idx
  490. ):
  491. # Feed the indices into the task queues
  492. while True:
  493. if shutdown_flag.value == 1:
  494. break
  495. batch_idx = feed_batch_idx.value
  496. try:
  497. indices = next(indices_iter)
  498. except StopIteration:
  499. break
  500. if divide:
  501. # make sure all task_queues is ready for put
  502. while any([q.full() for q in task_queues]):
  503. if shutdown_flag.value == 1:
  504. return
  505. # divide into small pieces, feed to different workers.
  506. sub_num = math.ceil(len(indices) / num_workers)
  507. for worker_id in range(num_workers):
  508. sub_indices = indices[worker_id * sub_num : (worker_id + 1) * sub_num]
  509. task_queues[worker_id].put((batch_idx, sub_indices))
  510. else:
  511. # distribute tasks to different workers uniformly.
  512. target_id = batch_idx % num_workers
  513. while task_queues[target_id].full():
  514. if shutdown_flag.value == 1:
  515. return
  516. task_queues[target_id].put((batch_idx, indices))
  517. with feed_batch_idx.get_lock():
  518. feed_batch_idx.value += 1
  519. def _worker_loop(dataset, task_queue, trans_data_queue, transform, seed, shutdown_flag):
  520. # Get dataset items and do the transform
  521. random.seed(seed)
  522. np.random.seed(seed)
  523. while True:
  524. if shutdown_flag.value == 1:
  525. break
  526. try:
  527. batch_idx, indices = task_queue.get(timeout=MP_QUEUE_GET_TIMEOUT)
  528. except queue.Empty:
  529. continue
  530. if len(indices) > 0:
  531. items = [dataset[idx] for idx in indices]
  532. trans_items = transform.apply_batch(items)
  533. else:
  534. # in case of incomplete last batch
  535. trans_items = ()
  536. while True:
  537. try:
  538. trans_data_queue.put((batch_idx, trans_items), timeout=1)
  539. break
  540. except queue.Full:
  541. if shutdown_flag.value == 1:
  542. break
  543. logger.debug("batch part queue is full!")
  544. def _data_gathering_loop(
  545. trans_data_queues,
  546. batch_queue,
  547. collator,
  548. length,
  549. num_workers,
  550. shutdown_flag,
  551. target_idx,
  552. ):
  553. # Gathering the small pieces of batch data into full batch data
  554. while True:
  555. if shutdown_flag.value == 1:
  556. break
  557. target_batch_idx = target_idx.value
  558. if target_batch_idx >= length:
  559. break
  560. full_trans_items = []
  561. for worker_id in range(num_workers):
  562. while True:
  563. try:
  564. batch_idx, trans_items = trans_data_queues[worker_id].get(
  565. timeout=MP_QUEUE_GET_TIMEOUT
  566. )
  567. break
  568. except queue.Empty:
  569. if shutdown_flag.value == 1:
  570. break
  571. logger.debug(
  572. "worker:{} data queue get timeout! target batch idx:{}".format(
  573. worker_id, target_batch_idx
  574. )
  575. )
  576. if batch_idx != target_batch_idx:
  577. raise RuntimeError(
  578. "Unexperted batch_idx in data gathering loop. worker_id:{}.".format(
  579. worker_id
  580. )
  581. )
  582. else:
  583. full_trans_items.extend(trans_items)
  584. # Merge different parts into a batch.
  585. full_batch = collator.apply(full_trans_items)
  586. while True:
  587. try:
  588. batch_queue.put(full_batch, timeout=1)
  589. break
  590. except queue.Full:
  591. if shutdown_flag.value == 1:
  592. break
  593. logger.debug("batch queue is full!")
  594. with target_idx.get_lock():
  595. target_idx.value += 1
  596. batch_queue.disconnect_client()
  597. def _data_selecting_loop(
  598. trans_data_queues,
  599. batch_queue,
  600. collator,
  601. length,
  602. num_workers,
  603. shutdown_flag,
  604. target_idx,
  605. ):
  606. # Make sure that batch is generated exactly with the same order as generated indices
  607. while True:
  608. if shutdown_flag.value == 1:
  609. break
  610. target_batch_idx = target_idx.value
  611. if target_batch_idx >= length:
  612. break
  613. target_worker_id = target_batch_idx % num_workers
  614. while True:
  615. try:
  616. batch_idx, trans_items = trans_data_queues[target_worker_id].get(
  617. timeout=MP_QUEUE_GET_TIMEOUT
  618. )
  619. batch_data = collator.apply(trans_items)
  620. break
  621. except queue.Empty:
  622. if shutdown_flag.value == 1:
  623. break
  624. logger.debug(
  625. "worker:{} data queue get timeout! target batch idx:{}".format(
  626. target_worker_id, target_batch_idx
  627. )
  628. )
  629. if batch_idx != target_batch_idx:
  630. raise RuntimeError(
  631. "batch_idx {} mismatch the target_batch_idx {}".format(
  632. batch_idx, target_batch_idx
  633. )
  634. )
  635. while True:
  636. try:
  637. batch_queue.put(batch_data, timeout=1)
  638. break
  639. except queue.Full:
  640. if shutdown_flag.value == 1:
  641. break
  642. logger.debug("batch queue is full!")
  643. with target_idx.get_lock():
  644. target_idx.value += 1
  645. batch_queue.disconnect_client()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台