You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_param_pack.py 2.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import platform
  10. import numpy as np
  11. import pytest
  12. import megengine
  13. import megengine.autodiff as ad
  14. import megengine.distributed as dist
  15. import megengine.optimizer as optimizer
  16. from megengine import Parameter, tensor
  17. from megengine.distributed.helper import get_device_count_by_fork
  18. from megengine.module import Module
  19. from megengine.optimizer import SGD
  20. class Simple(Module):
  21. def __init__(self):
  22. super().__init__()
  23. self.params = [Parameter(1.0, dtype=np.float32) for i in range(10)]
  24. def forward(self, x):
  25. for p in self.params:
  26. x = x * p
  27. return x
  28. @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device")
  29. @pytest.mark.isolated_distributed
  30. @pytest.mark.skipif(
  31. platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM"
  32. )
  33. def test_param_pack():
  34. data = np.ones([1], dtype="float32")
  35. @dist.launcher
  36. def worker():
  37. net = Simple()
  38. opt = SGD(net.parameters(), lr=0.1)
  39. gm = ad.GradManager().attach(
  40. net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)]
  41. )
  42. opt.clear_grad()
  43. with gm:
  44. x = tensor(data)
  45. loss = net(x)
  46. loss = loss.sum()
  47. gm.backward(loss)
  48. for p in net.params:
  49. np.testing.assert_equal(p.grad.numpy(), 1)
  50. worker()
  51. @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device")
  52. @pytest.mark.isolated_distributed
  53. @pytest.mark.skipif(
  54. platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM"
  55. )
  56. def test_param_pack_with_no_param():
  57. data = np.ones([1], dtype="float32")
  58. @dist.launcher
  59. def worker():
  60. net = Simple()
  61. opt = SGD(net.parameters(), lr=0.1)
  62. allreduce_cb = dist.make_allreduce_cb("MEAN", dist.WORLD)
  63. allreduce_cb._param_pack_thd = 0
  64. gm = ad.GradManager().attach(net.parameters(), callbacks=[allreduce_cb])
  65. opt.clear_grad()
  66. with gm:
  67. x = tensor(data)
  68. loss = net(x)
  69. loss = loss.sum()
  70. gm.backward(loss)
  71. for p in net.params:
  72. np.testing.assert_equal(p.grad.numpy(), 1)
  73. worker()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台