You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_save_load.py 1.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. import numpy as np
  2. import megengine as mge
  3. import megengine.autodiff as ad
  4. import megengine.optimizer as optimizer
  5. from megengine import Parameter, tensor
  6. from megengine.module import Module
  7. class Simple(Module):
  8. def __init__(self):
  9. super().__init__()
  10. self.a = Parameter([1.23], dtype=np.float32)
  11. def forward(self, x):
  12. x = x * self.a
  13. return x
  14. def test_save_load():
  15. net = Simple()
  16. optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
  17. optim.clear_grad()
  18. gm = ad.GradManager().attach(net.parameters())
  19. data = tensor([2.34])
  20. with gm:
  21. loss = net(data)
  22. gm.backward(loss)
  23. optim.step()
  24. model_name = "simple.pkl"
  25. print("save to {}".format(model_name))
  26. mge.save(
  27. {
  28. "name": "simple",
  29. "state_dict": net.state_dict(),
  30. "opt_state": optim.state_dict(),
  31. },
  32. model_name,
  33. )
  34. # Load param to cpu
  35. checkpoint = mge.load(model_name, map_location="cpu0")
  36. device_save = mge.get_default_device()
  37. mge.set_default_device("cpu0")
  38. net = Simple()
  39. net.load_state_dict(checkpoint["state_dict"])
  40. optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
  41. optim.load_state_dict(checkpoint["opt_state"])
  42. print("load done")
  43. with gm:
  44. loss = net([1.23])
  45. gm.backward(loss)
  46. optim.step()
  47. # Restore device
  48. mge.set_default_device(device_save)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台