You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

opr_proxy.h 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /**
  2. * \file dnn/test/common/opr_proxy.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "test/common/deduce_layout_proxy.h"
  14. #include "test/common/exec_proxy.h"
  15. #include "test/common/fast_run_cache.h"
  16. #include "test/common/inspect_type.h"
  17. #include "test/common/opr_algo_proxy.h"
  18. #include "test/common/opr_trait.h"
  19. #include "test/common/timer.h"
  20. #include "test/common/workspace_wrapper.h"
  21. #include <algorithm>
  22. #include <limits>
  23. #include <memory>
  24. #include <unordered_map>
  25. namespace megdnn {
  26. namespace test {
  27. template <Algorithm::OprType>
  28. struct OprFromOprTypeTrait;
  29. template <typename Opr>
  30. struct OprTypeFromOprTrait;
  31. #define cb(_opr_type, _opr) \
  32. template <> \
  33. struct OprFromOprTypeTrait<Algorithm::OprType::_opr_type> { \
  34. using Opr = megdnn::_opr; \
  35. }; \
  36. template <> \
  37. struct OprTypeFromOprTrait<megdnn::_opr> { \
  38. constexpr static Algorithm::OprType opr_type = \
  39. Algorithm::OprType::_opr_type; \
  40. }
  41. cb(MATRIX_MUL_FORWARD, MatrixMulForward);
  42. cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
  43. cb(CONVOLUTION_FORWARD, ConvolutionForward);
  44. cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
  45. cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
  46. cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
  47. cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
  48. cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
  49. cb(LOCAL_SHARE_FORWARD, LocalShareForward);
  50. cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
  51. cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
  52. cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
  53. cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
  54. cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
  55. cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
  56. cb(CONVBIAS_FORWARD, ConvBiasForward);
  57. #undef cb
  58. // clang-format off
  59. #define FOREACH_OPR_TYPE(cb) \
  60. cb(MATRIX_MUL_FORWARD) \
  61. cb(BATCHED_MATRIX_MUL_FORWARD) \
  62. cb(CONVOLUTION_FORWARD) \
  63. cb(CONVOLUTION_BACKWARD_DATA) \
  64. cb(CONVOLUTION_BACKWARD_FILTER) \
  65. cb(CONVOLUTION3D_FORWARD) \
  66. cb(CONVOLUTION3D_BACKWARD_DATA) \
  67. cb(CONVOLUTION3D_BACKWARD_FILTER) \
  68. cb(LOCAL_SHARE_FORWARD) \
  69. cb(LOCAL_SHARE_BACKWARD_DATA) \
  70. cb(LOCAL_SHARE_BACKWARD_FILTER) \
  71. cb(DEFORMABLE_CONV_FORWARD) \
  72. cb(DEFORMABLE_CONV_BACKWARD_DATA) \
  73. cb(DEFORMABLE_CONV_BACKWARD_FILTER) \
  74. cb(BATCH_CONV_FORWARD) \
  75. cb(CONVBIAS_FORWARD)
  76. #define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt) \
  77. cb(MATRIX_MUL_FORWARD, stmt) \
  78. cb(BATCHED_MATRIX_MUL_FORWARD, stmt) \
  79. cb(CONVOLUTION_FORWARD, stmt) \
  80. cb(CONVOLUTION_BACKWARD_DATA, stmt) \
  81. cb(CONVOLUTION_BACKWARD_FILTER, stmt) \
  82. cb(CONVOLUTION3D_FORWARD, stmt) \
  83. cb(CONVOLUTION3D_BACKWARD_DATA, stmt) \
  84. cb(CONVOLUTION3D_BACKWARD_FILTER, stmt) \
  85. cb(LOCAL_SHARE_FORWARD, stmt) \
  86. cb(LOCAL_SHARE_BACKWARD_DATA, stmt) \
  87. cb(LOCAL_SHARE_BACKWARD_FILTER, stmt) \
  88. cb(DEFORMABLE_CONV_FORWARD, stmt) \
  89. cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt) \
  90. cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
  91. cb(BATCH_CONV_FORWARD, stmt) \
  92. cb(CONVBIAS_FORWARD, stmt)
  93. // clang-format on
  94. #define _OPR_TYPE_CASE(_opr_type, _stmt) \
  95. case Algorithm::OprType::_opr_type: { \
  96. using _Opr = typename OprFromOprTypeTrait< \
  97. Algorithm::OprType::_opr_type>::Opr; \
  98. _stmt; \
  99. break; \
  100. }
  101. #define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt) \
  102. for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
  103. _item_idx++) { \
  104. auto&& _item = _search_items[_item_idx]; \
  105. switch (_item.opr_type) { \
  106. FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt) \
  107. default: \
  108. megdnn_throw("unknown opr_type"); \
  109. } \
  110. }
  111. template <typename Opr, size_t arity = OprTrait<Opr>::arity,
  112. bool has_workspace = OprTrait<Opr>::has_workspace,
  113. bool can_deduce_layout = OprTrait<Opr>::can_deduce_layout>
  114. struct OprProxyDefaultImpl
  115. : public DeduceLayoutProxy<Opr, arity, can_deduce_layout>,
  116. public ExecProxy<Opr, arity, has_workspace> {};
  117. template <typename Opr>
  118. struct OprProxy : public OprProxyDefaultImpl<Opr> {};
  119. template <typename Opr>
  120. struct OprWeightPreprocessProxy : public OprProxyDefaultImpl<Opr> {};
  121. template <typename Opr>
  122. struct OprProxyVectorToSingle {};
  123. template <>
  124. struct OprProxy<ElemwiseForward> {
  125. static void deduce_layout(ElemwiseForward* opr,
  126. TensorLayoutArray& layouts) {
  127. megdnn_assert(layouts.size() >= 2);
  128. auto inp = layouts;
  129. inp.pop_back();
  130. opr->deduce_layout(inp, layouts.back());
  131. }
  132. static void exec(ElemwiseForward* opr, const TensorNDArray& tensors) {
  133. megdnn_assert(tensors.size() >= 2);
  134. auto inp = tensors;
  135. inp.pop_back();
  136. opr->exec(inp, tensors.back());
  137. }
  138. };
  139. template <>
  140. struct OprProxy<ElemwiseMultiType> {
  141. static void deduce_layout(ElemwiseMultiType* opr,
  142. TensorLayoutArray& layouts) {
  143. megdnn_assert(layouts.size() >= 2);
  144. auto inp = layouts;
  145. inp.pop_back();
  146. opr->deduce_layout(inp, layouts.back());
  147. }
  148. static void exec(ElemwiseMultiType* opr, const TensorNDArray& tensors) {
  149. megdnn_assert(tensors.size() >= 2);
  150. auto inp = tensors;
  151. inp.pop_back();
  152. opr->exec(inp, tensors.back());
  153. }
  154. };
  155. template <>
  156. struct OprProxy<ConcatForward> {
  157. static void deduce_layout(ConcatForward* opr, TensorLayoutArray& layouts) {
  158. megdnn_assert(layouts.size() >= 2);
  159. auto inp = layouts;
  160. inp.pop_back();
  161. opr->deduce_layout(inp, layouts.back());
  162. }
  163. static void exec(ConcatForward* opr, const TensorNDArray& tensors) {
  164. megdnn_assert(tensors.size() >= 2);
  165. auto inp = tensors;
  166. inp.pop_back();
  167. TensorLayoutArray layouts(tensors.size());
  168. std::transform(tensors.begin(), tensors.end(), layouts.begin(),
  169. [](const TensorND& tensor) { return tensor.layout; });
  170. auto inp_layouts = layouts;
  171. inp_layouts.pop_back();
  172. WorkspaceWrapper W(opr->handle(), opr->get_workspace_in_bytes(
  173. inp_layouts, layouts.back()));
  174. auto inp_tensors = tensors;
  175. inp_tensors.pop_back();
  176. opr->exec(inp_tensors, tensors.back(), W.workspace());
  177. }
  178. };
  179. template <>
  180. struct OprProxy<SplitForward> : DeduceLayoutProxy<SplitForward, 0, false> {
  181. static void exec(SplitForward* opr, const TensorNDArray& tensors) {
  182. megdnn_assert(tensors.size() >= 2);
  183. auto out = tensors;
  184. out.erase(out.begin());
  185. TensorLayoutArray layouts(tensors.size());
  186. std::transform(tensors.begin(), tensors.end(), layouts.begin(),
  187. [](const TensorND& tensor) { return tensor.layout; });
  188. auto out_layouts = layouts;
  189. out_layouts.erase(out_layouts.begin());
  190. WorkspaceWrapper W(
  191. opr->handle(),
  192. opr->get_workspace_in_bytes(layouts.front(), out_layouts));
  193. auto out_tensors = tensors;
  194. out_tensors.erase(out_tensors.begin());
  195. opr->exec(tensors.front(), out_tensors, W.workspace());
  196. }
  197. };
  198. //! OprProxy impl for tenary oprs with profiling support
  199. template <class Opr>
  200. struct OprProxyProfilingBase
  201. : public DeduceLayoutProxy<Opr, OprTrait<Opr>::arity,
  202. OprTrait<Opr>::can_deduce_layout> {
  203. static constexpr int arity = OprTrait<Opr>::arity;
  204. size_t warmup_times = 10, exec_times = 100;
  205. //! whether to enable profiling
  206. bool m_profiling;
  207. WorkspaceWrapper W;
  208. //! target algo setup by profiler; it can also be directly specified by the
  209. //! caller
  210. ExecutionPolicy target_execution_policy;
  211. OprProxyProfilingBase(bool profile = false) { m_profiling = profile; }
  212. //! used for alloc tensor for weight preprocess
  213. static std::shared_ptr<TensorNDArray> alloc_tensors(
  214. Handle* handle, const TensorLayoutArray& layouts) {
  215. auto deleter = [handle](TensorNDArray* ptr) {
  216. for (auto&& i : *ptr) {
  217. auto pdata = static_cast<dt_byte*>(i.raw_ptr) +
  218. i.layout.span().low_byte;
  219. megdnn_free(handle, pdata);
  220. }
  221. delete ptr;
  222. };
  223. std::shared_ptr<TensorNDArray> ret{new TensorNDArray, deleter};
  224. for (size_t i = 0; i < layouts.size(); ++i) {
  225. auto span = layouts[i].span();
  226. ret->emplace_back(static_cast<dt_byte*>(
  227. megdnn_malloc(handle, span.dist_byte())) -
  228. span.low_byte,
  229. layouts[i]);
  230. }
  231. return ret;
  232. }
  233. /**
  234. * flatten search space in postorder traversal
  235. * The subopr search construct a search tree
  236. *
  237. * A
  238. * / \
  239. * B1B2 C
  240. * / \
  241. * D1D2D3 E
  242. * We use postorder traverse the search tree.
  243. * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
  244. */
  245. static std::vector<Algorithm::SearchItem> flatten_search_space(
  246. const TensorLayoutArray layouts, const std::string& param,
  247. Handle* handle) {
  248. megdnn_assert(layouts.size() == arity);
  249. auto opr = handle->create_operator<Opr>();
  250. opr->param() =
  251. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  252. std::vector<Algorithm::SearchItem> ret;
  253. for (auto algo_info : AlgoProxy<Opr, arity>::get_all_algorithms_info(
  254. opr.get(), layouts)) {
  255. Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
  256. std::vector<Algorithm::SearchItem>&& sub_items =
  257. algo->get_subopr_list(layouts, opr.get());
  258. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  259. auto space = OprProxyProfilingBase<_Opr>::flatten_search_space(
  260. _item.layouts, _item.param, handle);
  261. ret.insert(ret.end(), space.begin(), space.end());
  262. });
  263. }
  264. ret.push_back({OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  265. return ret;
  266. }
  267. static void construct_execution_policy(
  268. const TensorLayoutArray& layouts, const std::string& param,
  269. Handle* handle, FastRunCache& cache,
  270. ExecutionPolicy& policy) {
  271. megdnn_assert(layouts.size() == arity);
  272. auto opr = handle->create_operator<Opr>();
  273. opr->param() =
  274. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  275. if (!policy.algo.valid()) {
  276. policy.algo = cache.get(Algorithm::SearchItem{
  277. OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  278. megdnn_assert(policy.algo.valid(),
  279. "No cache found, maybe some error occured in "
  280. "flatten_search_space or get_subopr_list");
  281. }
  282. policy.sub_policy.clear();
  283. Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
  284. std::vector<Algorithm::SearchItem>&& sub_items =
  285. algo->get_subopr_list(layouts, opr.get());
  286. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  287. policy.sub_policy.push_back({});
  288. OprProxyProfilingBase<_Opr>::construct_execution_policy(
  289. _item.layouts, _item.param, handle, cache,
  290. policy.sub_policy.back());
  291. });
  292. return;
  293. }
  294. /**
  295. * \brief search and get the best execution_policy
  296. */
  297. static void search(const TensorLayoutArray& layouts,
  298. const std::string& param,
  299. WorkspaceWrapper& workspace_wrapper, Handle* handle,
  300. size_t warmup_times, size_t exec_times,
  301. FastRunCache& cache) {
  302. megdnn_assert(layouts.size() == arity);
  303. auto opr = handle->create_operator<Opr>();
  304. opr->param() =
  305. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  306. SmallVector<size_t> sizes_in_bytes;
  307. for (const auto& layout : layouts) {
  308. sizes_in_bytes.push_back(layout.span().dist_byte());
  309. }
  310. float min_time = std::numeric_limits<float>::max();
  311. Algorithm::Info::Desc best_algo;
  312. std::string log_info = "Profiling start: ";
  313. for (auto&& layout : layouts) {
  314. log_info += layout.to_string() + " ";
  315. }
  316. megdnn_log("%s", log_info.c_str());
  317. best_algo = cache.get(Algorithm::SearchItem{
  318. OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  319. if (best_algo.valid()) {
  320. auto&& algo = opr->get_algorithm_from_desc(best_algo);
  321. MEGDNN_MARK_USED_VAR(algo);
  322. megdnn_log("Find best algo %s in cache", algo->name());
  323. return;
  324. }
  325. for (auto algo : AlgoProxy<Opr, arity>::get_all_algorithms_info(
  326. opr.get(), layouts)) {
  327. //! construct execution_policy
  328. opr->execution_policy().algo = algo.desc;
  329. construct_execution_policy(layouts, param, handle, cache,
  330. opr->execution_policy());
  331. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  332. opr.get(), layouts);
  333. sizes_in_bytes.push_back(workspace_size);
  334. WorkspaceBundle wb(nullptr, sizes_in_bytes);
  335. workspace_wrapper.update(wb.total_size_in_bytes());
  336. wb.set(workspace_wrapper.workspace().raw_ptr);
  337. TensorNDArray tensors;
  338. for (size_t i = 0; i < arity; i++) {
  339. tensors.push_back({wb.get(i), layouts[i]});
  340. }
  341. for (size_t times = 0; times < warmup_times; ++times) {
  342. AlgoProxy<Opr, arity>::exec(opr.get(), tensors,
  343. wb.get_workspace(arity));
  344. }
  345. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  346. Timer timer;
  347. timer.start();
  348. for (size_t times = 0; times < exec_times; ++times) {
  349. AlgoProxy<Opr, arity>::exec(opr.get(), tensors,
  350. wb.get_workspace(arity));
  351. }
  352. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  353. timer.stop();
  354. megdnn_log("%.3fms %s", timer.get_time_in_us() / 1e3,
  355. algo.name.c_str());
  356. if (min_time > timer.get_time_in_us()) {
  357. min_time = timer.get_time_in_us();
  358. best_algo = algo.desc;
  359. }
  360. sizes_in_bytes.pop_back();
  361. }
  362. auto&& algo = opr->get_algorithm_from_desc(best_algo);
  363. MEGDNN_MARK_USED_VAR(algo);
  364. megdnn_log("Profiling end, got best algo: %s", algo->name());
  365. cache.put(Algorithm::SearchItem{OprTypeFromOprTrait<Opr>::opr_type,
  366. param, layouts},
  367. best_algo);
  368. }
  369. void exec(Opr* opr, const TensorNDArray& tensors) {
  370. megdnn_assert(tensors.size() == arity);
  371. if (!W.valid()) {
  372. W = WorkspaceWrapper(opr->handle(), 0);
  373. }
  374. TensorLayoutArray layouts;
  375. for (auto&& tensor : tensors) {
  376. layouts.push_back(tensor.layout);
  377. }
  378. if (m_profiling && !target_execution_policy.algo.valid()) {
  379. FastRunCache cache;
  380. std::string param_str;
  381. Algorithm::serialize_write_pod(opr->param(), param_str);
  382. auto&& search_items =
  383. flatten_search_space(layouts, param_str, opr->handle());
  384. FOREACH_OPR_TYPE_DISPATCH(search_items, {
  385. OprProxyProfilingBase<_Opr>::search(
  386. _item.layouts, _item.param, W, opr->handle(),
  387. warmup_times, exec_times, cache);
  388. });
  389. construct_execution_policy(layouts, param_str, opr->handle(), cache,
  390. opr->execution_policy());
  391. target_execution_policy = opr->execution_policy();
  392. auto workspace_size =
  393. AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
  394. W.update(workspace_size);
  395. }
  396. if (!target_execution_policy.algo.valid()) {
  397. auto workspace_size =
  398. AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
  399. W.update(workspace_size);
  400. }
  401. AlgoProxy<Opr, arity>::exec(opr, tensors, W.workspace());
  402. }
  403. };
  404. #define DEF_PROF(c) \
  405. template <> \
  406. struct OprProxy<c> : public OprProxyProfilingBase<c> { \
  407. using OprProxyProfilingBase<c>::OprProxyProfilingBase; \
  408. }
  409. DEF_PROF(MatrixMulForward);
  410. DEF_PROF(ConvolutionForward);
  411. DEF_PROF(ConvolutionBackwardData);
  412. DEF_PROF(ConvolutionBackwardFilter);
  413. DEF_PROF(LocalShareForward);
  414. DEF_PROF(LocalShareBackwardData);
  415. DEF_PROF(LocalShareBackwardFilter);
  416. DEF_PROF(DeformableConvForward);
  417. DEF_PROF(DeformableConvBackwardFilter);
  418. DEF_PROF(BatchConvBiasForward);
  419. DEF_PROF(ConvBiasForward);
  420. DEF_PROF(DeformableConvBackwardData);
  421. #undef DEF_PROF
  422. template <class Opr>
  423. struct OprWeightPreprocessProxyImpl : public OprProxyProfilingBase<Opr> {
  424. using Base = OprProxyProfilingBase<Opr>;
  425. static constexpr int arity = OprTrait<Opr>::arity;
  426. void exec(Opr* opr, const TensorNDArray& tensors) {
  427. megdnn_assert(tensors.size() == arity);
  428. if (!Base::W.valid()) {
  429. Base::W = WorkspaceWrapper(opr->handle(), 0);
  430. }
  431. TensorLayoutArray layouts;
  432. for (auto&& tensor : tensors) {
  433. layouts.push_back(tensor.layout);
  434. }
  435. if (Base::m_profiling && !Base::target_execution_policy.algo.valid()) {
  436. size_t min_time = std::numeric_limits<size_t>::max();
  437. for (auto algo :
  438. AlgoProxy<Opr, arity>::get_all_algorithms_info(opr, layouts)) {
  439. opr->execution_policy().algo = algo.desc;
  440. auto preprocess_tensors =
  441. weight_prerocess(opr, tensors, algo.desc);
  442. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  443. typename Opr::PreprocessedFilter preprocessed_filter{
  444. nullptr, *preprocess_tensors};
  445. auto workspace_size =
  446. AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  447. opr, layouts, &preprocessed_filter);
  448. Base::W.update(workspace_size);
  449. for (size_t times = 0; times < Base::warmup_times; ++times) {
  450. AlgoProxy<Opr, arity>::exec(opr, tensors,
  451. &preprocessed_filter,
  452. Base::W.workspace());
  453. }
  454. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  455. Timer timer;
  456. timer.start();
  457. for (size_t times = 0; times < Base::exec_times; ++times) {
  458. AlgoProxy<Opr, arity>::exec(opr, tensors,
  459. &preprocessed_filter,
  460. Base::W.workspace());
  461. }
  462. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  463. timer.stop();
  464. printf("%.3fms %s\n", timer.get_time_in_us() / 1e3,
  465. algo.name.c_str());
  466. if (min_time > timer.get_time_in_us()) {
  467. min_time = timer.get_time_in_us();
  468. Base::target_execution_policy.algo = algo.desc;
  469. }
  470. }
  471. opr->execution_policy() = Base::target_execution_policy;
  472. auto preprocess_tensors = weight_prerocess(
  473. opr, tensors, Base::target_execution_policy.algo);
  474. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  475. typename Opr::PreprocessedFilter preprocessed_filter{
  476. nullptr, *preprocess_tensors};
  477. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  478. opr, layouts, &preprocessed_filter);
  479. Base::W.update(workspace_size);
  480. }
  481. auto preprocess_tensors = weight_prerocess(
  482. opr, tensors, Base::target_execution_policy.algo);
  483. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  484. typename Opr::PreprocessedFilter preprocessed_filter{
  485. nullptr, *preprocess_tensors};
  486. if (!Base::target_execution_policy.algo.valid()) {
  487. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  488. opr, layouts, &preprocessed_filter);
  489. Base::W.update(workspace_size);
  490. }
  491. AlgoProxy<Opr, arity>::exec(opr, tensors, &preprocessed_filter,
  492. Base::W.workspace());
  493. }
  494. //! handle weight preprocess
  495. std::shared_ptr<TensorNDArray> weight_prerocess(
  496. Opr* opr, const TensorNDArray& tensors,
  497. const typename Opr::AlgorithmDesc&) {
  498. TensorLayoutArray layouts;
  499. for (auto&& tensor : tensors) {
  500. layouts.push_back(tensor.layout);
  501. }
  502. auto weight_perprocess_layouts =
  503. AlgoProxy<Opr, arity>::deduce_preprocessed_filter_layout(
  504. opr, layouts);
  505. auto preprocessed_filter_tensors_ptr =
  506. Base::alloc_tensors(opr->handle(), weight_perprocess_layouts);
  507. typename Opr::PreprocessedFilter preprocessed_filter{
  508. nullptr, *preprocessed_filter_tensors_ptr};
  509. size_t preprocess_workspace_size =
  510. AlgoProxy<Opr, arity>::get_preprocess_workspace_in_bytes(
  511. opr, layouts);
  512. WorkspaceWrapper preprocess_workspace(opr->handle(),
  513. preprocess_workspace_size);
  514. AlgoProxy<Opr, arity>::exec_preprocess(
  515. opr, tensors, layouts, &preprocessed_filter,
  516. preprocess_workspace.workspace());
  517. return preprocessed_filter_tensors_ptr;
  518. }
  519. };
  520. #define DEF_PROF(c) \
  521. template <> \
  522. struct OprWeightPreprocessProxy<c> \
  523. : public OprWeightPreprocessProxyImpl<c> { \
  524. using OprWeightPreprocessProxyImpl<c>::OprWeightPreprocessProxyImpl; \
  525. }
  526. DEF_PROF(ConvolutionForward);
  527. DEF_PROF(ConvBias);
  528. #undef DEF_PROF
  529. } // namespace test
  530. } // namespace megdnn
  531. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台