You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. /**
  2. * \file dnn/test/common/rng.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #include "megdnn/dtype.h"
  13. #include <random>
  14. #include <set>
  15. #include "test/common/random_state.h"
  16. #include "test/common/utils.h"
  17. namespace megdnn {
  18. namespace test {
  19. #if __cplusplus >= 201703L
  20. #define COMPAT_RANDOM(begin, end) \
  21. { \
  22. std::default_random_engine rng_engine; \
  23. std::shuffle(begin, end, rng_engine); \
  24. }
  25. #else
  26. #define COMPAT_RANDOM(begin, end) std::random_shuffle(begin, end);
  27. #endif
  28. class RNG {
  29. protected:
  30. class RNGxorshf;
  31. public:
  32. virtual void gen(const TensorND& tensor) = 0;
  33. virtual ~RNG() = default;
  34. };
  35. class Float16PeriodicalRNG : public RNG {
  36. public:
  37. Float16PeriodicalRNG();
  38. Float16PeriodicalRNG(size_t range);
  39. void gen(const TensorND& tensor) override;
  40. dt_float16 get_single_val();
  41. private:
  42. void gen_all_valid_float16();
  43. size_t m_offset;
  44. std::vector<dt_float16> m_sequence;
  45. };
  46. class BFloat16PeriodicalRNG : public RNG {
  47. public:
  48. BFloat16PeriodicalRNG() {
  49. size_t bits = sizeof(dt_bfloat16) * 8;
  50. size_t mantissa_bits = std::numeric_limits<dt_bfloat16>::digits - 1;
  51. size_t exponent_bits = bits - mantissa_bits - 1;
  52. for (size_t exp = 1u << (exponent_bits - 2);
  53. exp < (1u << exponent_bits) - (1u << (exponent_bits - 2)); ++exp) {
  54. for (size_t x = 0; x < 1u << mantissa_bits; ++x) {
  55. size_t pos_num = (exp << mantissa_bits) + x;
  56. size_t neg_num =
  57. (1u << (bits - 1)) + (exp << mantissa_bits) + x;
  58. union U {
  59. U() {}
  60. uint16_t i;
  61. dt_bfloat16 f;
  62. } i2f;
  63. i2f.i = static_cast<uint16_t>(pos_num);
  64. m_sequence.push_back(i2f.f);
  65. i2f.i = static_cast<uint16_t>(neg_num);
  66. m_sequence.push_back(i2f.f);
  67. }
  68. }
  69. std::shuffle(m_sequence.begin(), m_sequence.end(),
  70. RandomState::generator());
  71. }
  72. void gen(const TensorND& tensor) override {
  73. megdnn_assert(tensor.layout.dtype.enumv() ==
  74. DTypeTrait<dt_bfloat16>::enumv);
  75. size_t nr_elems = tensor.layout.span().dist_elem();
  76. auto offset = tensor.layout.span().low_elem;
  77. for (size_t i = 0; i < nr_elems; ++i) {
  78. tensor.ptr<dt_bfloat16>()[offset + i] = get_single_val();
  79. }
  80. }
  81. dt_bfloat16 get_single_val() {
  82. if (m_offset >= m_sequence.size()) {
  83. m_offset = 0;
  84. }
  85. return m_sequence[m_offset++];
  86. }
  87. private:
  88. size_t m_offset = 0;
  89. std::vector<dt_bfloat16> m_sequence;
  90. };
  91. class IIDRNG : public RNG {
  92. public:
  93. void gen(const TensorND& tensor) override;
  94. virtual dt_float32 gen_single_val() = 0;
  95. virtual bool output_is_float() { return true; }
  96. protected:
  97. virtual bool has_fast_float32();
  98. virtual void fill_fast_float32(dt_float32* dest, size_t size);
  99. };
  100. class NormalRNG final : public IIDRNG {
  101. public:
  102. NormalRNG(dt_float32 mean = 0.0f, dt_float32 stddev = 1.0f)
  103. : m_dist(mean, stddev) {}
  104. void fill_fast_float32(dt_float32* dest, size_t size) override;
  105. protected:
  106. dt_float32 gen_single_val() override;
  107. private:
  108. std::normal_distribution<dt_float32> m_dist;
  109. bool has_fast_float32() override;
  110. };
  111. class ConstValue final : public IIDRNG {
  112. public:
  113. ConstValue(dt_float32 value = 0.0f) : value_(value) {}
  114. void fill_fast_float32(dt_float32* dest, size_t size) override;
  115. protected:
  116. dt_float32 gen_single_val() override { return value_; }
  117. private:
  118. dt_float32 value_;
  119. bool has_fast_float32() override { return true; }
  120. };
  121. class UniformIntRNG : public IIDRNG {
  122. public:
  123. UniformIntRNG(dt_int32 a, dt_int32 b) : m_dist(a, b) {}
  124. dt_float32 gen_single_val() override;
  125. bool output_is_float() override { return false; }
  126. protected:
  127. std::uniform_int_distribution<dt_int32> m_dist;
  128. };
  129. //! range must be positive; each value would be negated with prob 0.5
  130. class UniformIntNonZeroRNG : public UniformIntRNG {
  131. std::uniform_int_distribution<dt_int32> m_dist_flip{0, 1};
  132. public:
  133. UniformIntNonZeroRNG(int a, int b) : UniformIntRNG(a, b) {
  134. megdnn_assert(a > 0 && b > a);
  135. }
  136. dt_float32 gen_single_val() override;
  137. };
  138. class UniformFloatRNG : public IIDRNG {
  139. public:
  140. UniformFloatRNG(dt_float32 a, dt_float32 b) : m_dist(a, b) {}
  141. dt_float32 gen_single_val() override;
  142. protected:
  143. std::uniform_real_distribution<dt_float32> m_dist;
  144. bool has_fast_float32() override;
  145. void fill_fast_float32(dt_float32* dest, size_t size) override;
  146. };
  147. //! range must be positive; each value would be negated with prob 0.5
  148. class UniformFloatNonZeroRNG : public UniformFloatRNG {
  149. std::uniform_int_distribution<dt_int32> m_dist_flip{0, 1};
  150. public:
  151. UniformFloatNonZeroRNG(float a, float b) : UniformFloatRNG(a, b) {
  152. megdnn_assert(a > 0 && b > a);
  153. }
  154. dt_float32 gen_single_val() override;
  155. void fill_fast_float32(dt_float32* dest, size_t size) override;
  156. };
  157. class UniformFloatWithValueRNG : public UniformFloatRNG {
  158. public:
  159. UniformFloatWithValueRNG(dt_float32 a, dt_float32 b, float val_proportion,
  160. float val)
  161. : UniformFloatRNG(a, b), val_(val) {
  162. if (val_proportion < 0.f)
  163. val_proportion_ = 0.f;
  164. else if (val_proportion > 1.f)
  165. val_proportion_ = 1.f;
  166. else
  167. val_proportion_ = val_proportion;
  168. }
  169. private:
  170. float val_proportion_, val_;
  171. void fill_fast_float32(dt_float32* dest, size_t size) override;
  172. };
  173. class UniformFloatWithZeroRNG final : public UniformFloatWithValueRNG {
  174. public:
  175. UniformFloatWithZeroRNG(dt_float32 a, dt_float32 b,
  176. float zero_val_proportion)
  177. : UniformFloatWithValueRNG(a, b, zero_val_proportion, 0.f) {}
  178. };
  179. class BernoulliRNG final : public IIDRNG {
  180. public:
  181. BernoulliRNG(dt_float32 probability_);
  182. dt_float32 gen_single_val() override;
  183. private:
  184. dt_float32 m_probability;
  185. std::uniform_real_distribution<dt_float32> m_dist;
  186. };
  187. /**
  188. * \brief RNG without replacement, so that no two values in the tensor are
  189. * equal.
  190. *
  191. * Each value is generated repeatedly by IIDRNG, until the newly-generated value
  192. * differs from any previous value.
  193. */
  194. class NoReplacementRNG final : public RNG {
  195. private:
  196. IIDRNG* m_iid_rng;
  197. public:
  198. NoReplacementRNG(IIDRNG* iid_rng) : m_iid_rng(iid_rng) {}
  199. void gen(const TensorND& tensor) override;
  200. };
  201. //! generate a batch of matrices that are likely to have a small condition num
  202. class InvertibleMatrixRNG final : public RNG {
  203. std::unique_ptr<RNGxorshf> m_rng;
  204. public:
  205. InvertibleMatrixRNG();
  206. ~InvertibleMatrixRNG() noexcept;
  207. void gen(const TensorND& tensor) override;
  208. private:
  209. template <typename ctype>
  210. void do_gen(ctype* ptr, size_t batch, size_t n);
  211. };
  212. //! generate a continuous number of delta, start from value
  213. class ConsecutiveRNG final : public IIDRNG {
  214. public:
  215. ConsecutiveRNG(dt_float32 value = 0.0f, dt_float32 delta = 1.0f)
  216. : value_(value), delta_(delta) {}
  217. void fill_fast_float32(dt_float32* dest, size_t size) override;
  218. protected:
  219. dt_float32 gen_single_val() override {
  220. auto res = value_;
  221. value_ += delta_;
  222. return res;
  223. }
  224. private:
  225. dt_float32 value_, delta_;
  226. bool has_fast_float32() override { return true; }
  227. };
  228. } // namespace test
  229. } // namespace megdnn
  230. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台