You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 41 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #include <chrono>
  16. #include <memory>
  17. #include <random>
  18. #include <unordered_map>
  19. using namespace lite;
  20. namespace {
  21. class CheckAllocator : public lite::Allocator {
  22. public:
  23. //! allocate memory of size in the given device with the given align
  24. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  25. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  26. m_nr_left++;
  27. m_nr_allocated++;
  28. #ifdef WIN32
  29. return _aligned_malloc(size, align);
  30. #elif defined(__ANDROID__) || defined(ANDROID)
  31. return memalign(align, size);
  32. #else
  33. void* ptr = nullptr;
  34. auto err = posix_memalign(&ptr, align, size);
  35. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  36. return ptr;
  37. #endif
  38. };
  39. //! free the memory pointed by ptr in the given device
  40. void free(LiteDeviceType device, int, void* ptr) override {
  41. m_nr_left--;
  42. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  43. #ifdef WIN32
  44. _aligned_free(ptr);
  45. #else
  46. ::free(ptr);
  47. #endif
  48. };
  49. std::atomic_size_t m_nr_left{0};
  50. std::atomic_size_t m_nr_allocated{0};
  51. };
  52. } // namespace
  53. TEST(TestNetWork, Basic) {
  54. Config config;
  55. auto lite_tensor = get_input_data("./input_data.npy");
  56. std::string model_path = "./shufflenet.mge";
  57. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  58. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  59. compare_lite_tensor<float>(result_lite, result_mgb);
  60. }
  61. TEST(TestNetWork, SetDeviceId) {
  62. Config config;
  63. auto lite_tensor = get_input_data("./input_data.npy");
  64. std::string model_path = "./shufflenet.mge";
  65. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  66. network->set_device_id(4);
  67. network->load_model(model_path);
  68. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  69. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  70. network->forward();
  71. network->wait();
  72. ASSERT_EQ(input_tensor->get_device_id(), 4);
  73. ASSERT_EQ(output_tensor->get_device_id(), 4);
  74. }
  75. TEST(TestNetWork, GetAllName) {
  76. Config config;
  77. auto lite_tensor = get_input_data("./input_data.npy");
  78. std::string model_path = "./shufflenet.mge";
  79. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  80. network->load_model(model_path);
  81. auto input_names = network->get_all_input_name();
  82. auto output_names = network->get_all_output_name();
  83. auto output_tensor = network->get_output_tensor(0);
  84. auto out_layout = output_tensor->get_layout();
  85. ASSERT_EQ(out_layout.ndim, 2);
  86. ASSERT_EQ(out_layout.shapes[0], 1);
  87. ASSERT_EQ(out_layout.shapes[1], 1000);
  88. ASSERT_EQ(input_names.size(), 1);
  89. ASSERT_EQ(output_names.size(), 1);
  90. ASSERT_TRUE(input_names[0] == "data");
  91. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  92. }
  93. TEST(TestNetWork, LoadFBSModel) {
  94. Config config;
  95. std::string model_path = "./ax.mge";
  96. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  97. network->load_model(model_path);
  98. auto output_tensor = network->get_output_tensor(0);
  99. auto out_layout = output_tensor->get_layout();
  100. ASSERT_EQ(out_layout.ndim, 4);
  101. ASSERT_EQ(out_layout.shapes[0], 1);
  102. ASSERT_EQ(out_layout.shapes[1], 1);
  103. ASSERT_EQ(out_layout.shapes[2], 40);
  104. ASSERT_EQ(out_layout.shapes[3], 180);
  105. }
  106. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  107. Config config;
  108. auto lite_tensor = get_input_data("./input_data.npy");
  109. std::string model_path = "./shufflenet.mge";
  110. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  111. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  112. Runtime::set_cpu_inplace_mode(network);
  113. network->load_model(model_path);
  114. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  115. int affinity_set = false;
  116. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  117. ASSERT_EQ(id, 0);
  118. affinity_set = true;
  119. });
  120. auto src_ptr = lite_tensor->get_memory_ptr();
  121. auto src_layout = lite_tensor->get_layout();
  122. input_tensor->reset(src_ptr, src_layout);
  123. //! inplace mode not support async mode
  124. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  125. network->forward();
  126. network->wait();
  127. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  128. ASSERT_EQ(affinity_set, true);
  129. compare_lite_tensor<float>(output_tensor, result_mgb);
  130. }
  131. TEST(TestNetWork, NetworkShareWeights) {
  132. Config config;
  133. auto lite_tensor = get_input_data("./input_data.npy");
  134. std::string model_path = "./shufflenet.mge";
  135. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  136. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  137. network->load_model(model_path);
  138. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  139. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  140. Runtime::set_cpu_inplace_mode(network2);
  141. Runtime::shared_weight_with_network(network2, network);
  142. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  143. auto src_ptr = lite_tensor->get_memory_ptr();
  144. auto src_layout = lite_tensor->get_layout();
  145. input_tensor->reset(src_ptr, src_layout);
  146. input_tensor2->reset(src_ptr, src_layout);
  147. ASSERT_NE(input_tensor, input_tensor2);
  148. network->forward();
  149. network->wait();
  150. network2->forward();
  151. network2->wait();
  152. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  153. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  154. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  155. compare_lite_tensor<float>(output_tensor, result_mgb);
  156. compare_lite_tensor<float>(output_tensor2, result_mgb);
  157. }
  158. TEST(TestNetWork, SharedRuntimeMem) {
  159. Config config;
  160. auto lite_tensor = get_input_data("./input_data.npy");
  161. std::string model_path = "./shufflenet.mge";
  162. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  163. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  164. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  165. Runtime::share_runtime_memory_with(network_dst, network_src);
  166. network_src->load_model(model_path);
  167. network_dst->load_model(model_path);
  168. }
  169. TEST(TestNetWork, UserAllocator) {
  170. auto allocator = std::make_shared<CheckAllocator>();
  171. {
  172. Config config;
  173. auto lite_tensor = get_input_data("./input_data.npy");
  174. std::string model_path = "./shufflenet.mge";
  175. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  176. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  177. Runtime::set_memory_allocator(network, allocator);
  178. network->load_model(model_path);
  179. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  180. auto src_ptr = lite_tensor->get_memory_ptr();
  181. auto src_layout = lite_tensor->get_layout();
  182. input_tensor->reset(src_ptr, src_layout);
  183. network->forward();
  184. network->wait();
  185. ASSERT_GE(allocator->m_nr_allocated, 1);
  186. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  187. compare_lite_tensor<float>(output_tensor, result_mgb);
  188. }
  189. ASSERT_EQ(allocator->m_nr_left, 0);
  190. }
  191. TEST(TestNetWork, BasicMultiThread) {
  192. Config config;
  193. auto lite_tensor = get_input_data("./input_data.npy");
  194. std::string model_path = "./shufflenet.mge";
  195. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  196. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  197. Runtime::set_cpu_threads_number(network, 2);
  198. network->load_model(model_path);
  199. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  200. auto src_ptr = lite_tensor->get_memory_ptr();
  201. auto src_layout = lite_tensor->get_layout();
  202. input_tensor->reset(src_ptr, src_layout);
  203. network->forward();
  204. network->wait();
  205. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  206. compare_lite_tensor<float>(output_tensor, result_mgb);
  207. }
  208. TEST(TestNetWork, ThreadAffinity) {
  209. size_t nr_threads = 4;
  210. Config config;
  211. auto lite_tensor = get_input_data("./input_data.npy");
  212. std::string model_path = "./shufflenet.mge";
  213. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  214. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  215. Runtime::set_cpu_threads_number(network, nr_threads);
  216. ASSERT_THROW(
  217. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  218. network->load_model(model_path);
  219. std::vector<std::thread::id> thread_ids(nr_threads);
  220. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  221. Runtime::set_runtime_thread_affinity(network, affinity);
  222. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  223. auto src_ptr = lite_tensor->get_memory_ptr();
  224. auto src_layout = lite_tensor->get_layout();
  225. input_tensor->reset(src_ptr, src_layout);
  226. network->forward();
  227. network->wait();
  228. for (size_t i = 0; i < nr_threads; i++) {
  229. for (size_t j = i + 1; j < nr_threads; j++) {
  230. ASSERT_NE(thread_ids[i], thread_ids[j]);
  231. }
  232. }
  233. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  234. compare_lite_tensor<float>(output_tensor, result_mgb);
  235. }
  236. TEST(TestNetWork, BasicCryptAes) {
  237. Config config;
  238. auto lite_tensor = get_input_data("./input_data.npy");
  239. std::string model_path = "./shufflenet.mge";
  240. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  241. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  242. config.bare_model_cryption_name = "AES_default";
  243. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  244. compare_lite_tensor<float>(result_lite, result_mgb);
  245. }
  246. TEST(TestNetWork, BasicCryptRc4) {
  247. Config config;
  248. auto lite_tensor = get_input_data("./input_data.npy");
  249. std::string model_path = "./shufflenet.mge";
  250. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  251. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  252. config.bare_model_cryption_name = "RC4_default";
  253. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  254. compare_lite_tensor<float>(result_lite, result_mgb);
  255. }
  256. TEST(TestNetWork, PackedCryptRc4) {
  257. Config config;
  258. auto lite_tensor = get_input_data("./input_data.npy");
  259. std::string model_path = "./shufflenet.mge";
  260. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  261. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  262. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  263. compare_lite_tensor<float>(result_lite, result_mgb);
  264. }
  265. TEST(TestNetWork, BasicCryptSfRc4) {
  266. Config config;
  267. auto lite_tensor = get_input_data("./input_data.npy");
  268. std::string model_path = "./shufflenet.mge";
  269. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  270. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  271. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  272. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  273. compare_lite_tensor<float>(result_lite, result_mgb);
  274. }
  275. TEST(TestNetWork, ResetInput) {
  276. Config config;
  277. auto tensor = get_input_data("./input_data.npy");
  278. std::string model_path = "./shufflenet.mge";
  279. std::string input_name = "data";
  280. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  281. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  282. network->load_model(model_path);
  283. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  284. auto src_ptr = tensor->get_memory_ptr();
  285. auto src_layout = tensor->get_layout();
  286. input_tensor->reset(src_ptr, src_layout);
  287. network->forward();
  288. network->wait();
  289. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  290. compare_lite_tensor<float>(output_tensor, result_mgb);
  291. }
  292. TEST(TestNetWork, ChangeInputShape) {
  293. Config config;
  294. auto tensor = get_input_data("./input_data.npy");
  295. std::string model_path = "./shufflenet.mge";
  296. std::string input_name = "data";
  297. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  298. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  299. network->load_model(model_path);
  300. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  301. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  302. input_tensor->set_layout(src_layout);
  303. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  304. //! Check memory is equal
  305. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  306. network->forward();
  307. network->wait();
  308. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  309. auto output_layout = output_tensor->get_layout();
  310. ASSERT_EQ(output_layout.shapes[0], 2);
  311. ASSERT_EQ(output_layout.shapes[1], 1000);
  312. }
  313. TEST(TestNetWork, ResetOutput) {
  314. Config config;
  315. auto tensor = get_input_data("./input_data.npy");
  316. std::string model_path = "./shufflenet.mge";
  317. std::string input_name = "data";
  318. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  319. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  320. network->load_model(model_path);
  321. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  322. auto src_ptr = tensor->get_memory_ptr();
  323. auto src_layout = tensor->get_layout();
  324. input_tensor->reset(src_ptr, src_layout);
  325. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  326. auto result_tensor = std::make_shared<Tensor>(
  327. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  328. void* out_data = result_tensor->get_memory_ptr();
  329. output_tensor->reset(out_data, result_tensor->get_layout());
  330. network->forward();
  331. network->wait();
  332. compare_lite_tensor<float>(output_tensor, result_mgb);
  333. }
  334. namespace {
  335. void test_output_no_copy(int record) {
  336. Config config;
  337. config.options.force_output_use_user_specified_memory = true;
  338. config.options.comp_node_seq_record_level = record;
  339. auto tensor = get_input_data("./input_data.npy");
  340. std::string model_path = "./shufflenet.mge";
  341. std::string input_name = "data";
  342. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  343. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  344. network->load_model(model_path);
  345. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  346. auto src_ptr = tensor->get_memory_ptr();
  347. auto src_layout = tensor->get_layout();
  348. input_tensor->reset(src_ptr, src_layout);
  349. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  350. size_t times = 5;
  351. std::vector<std::shared_ptr<Tensor>> result_tensors;
  352. for (size_t i = 0; i < times; i++) {
  353. auto tmp = std::make_shared<Tensor>(
  354. LiteDeviceType::LITE_CPU,
  355. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  356. result_tensors.push_back(tmp);
  357. }
  358. for (size_t i = 0; i < times; i++) {
  359. void* out_data = result_tensors[i]->get_memory_ptr();
  360. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  361. network->forward();
  362. network->wait();
  363. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  364. compare_lite_tensor<float>(output_tensor, result_mgb);
  365. }
  366. for (size_t i = 0; i < times; i++) {
  367. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  368. }
  369. }
  370. void test_input_no_copy(int record) {
  371. Config config;
  372. config.options.force_output_use_user_specified_memory = true;
  373. config.options.comp_node_seq_record_level = record;
  374. std::string model_path = "./shufflenet.mge";
  375. std::string input_name = "data";
  376. Layout layout_in{{1, 3, 224, 224}, 4};
  377. std::vector<std::shared_ptr<Tensor>> inputs;
  378. std::vector<std::shared_ptr<Tensor>> outputs;
  379. for (int i = 0; i < 3; i++) {
  380. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, layout_in);
  381. auto ptr = static_cast<float*>(tmp_in->get_memory_ptr());
  382. for (size_t id = 0; id < 2 * 224 * 224; id++) {
  383. ptr[id] = i + 1;
  384. }
  385. inputs.push_back(tmp_in);
  386. outputs.push_back(mgb_lar(model_path, config, input_name, tmp_in));
  387. }
  388. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  389. network->load_model(model_path);
  390. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  391. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  392. for (int i = 0; i < 3; i++) {
  393. auto ptr = inputs[i]->get_memory_ptr();
  394. input_tensor->reset(ptr, layout_in);
  395. auto tmp_out = std::make_shared<Tensor>(
  396. LiteDeviceType::LITE_CPU,
  397. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  398. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  399. network->forward();
  400. network->wait();
  401. compare_lite_tensor<float>(output_tensor, outputs[i]);
  402. }
  403. }
  404. } // namespace
  405. TEST(TestNetWork, OutputNoCopy) {
  406. test_output_no_copy(0);
  407. }
  408. TEST(TestNetWork, OutputNoCopyRecord) {
  409. test_output_no_copy(1);
  410. }
  411. TEST(TestNetWork, IONoCopy) {
  412. test_input_no_copy(0);
  413. }
  414. TEST(TestNetWork, IONoCopyRecord) {
  415. test_input_no_copy(1);
  416. }
  417. TEST(TestNetWork, OutputDynamicAlloc) {
  418. Config config;
  419. config.options.force_output_dynamic_alloc = true;
  420. auto tensor = get_input_data("./input_data.npy");
  421. std::string model_path = "./shufflenet.mge";
  422. std::string input_name = "data";
  423. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  424. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  425. network->load_model(model_path);
  426. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  427. auto src_ptr = tensor->get_memory_ptr();
  428. auto src_layout = tensor->get_layout();
  429. input_tensor->reset(src_ptr, src_layout);
  430. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  431. size_t times = 5;
  432. for (size_t i = 0; i < times; i++) {
  433. network->forward();
  434. network->wait();
  435. compare_lite_tensor<float>(output_tensor, result_mgb);
  436. }
  437. }
  438. TEST(TestNetWork, AsyncExec) {
  439. Config config;
  440. config.options.var_sanity_check_first_run = false;
  441. auto tensor = get_input_data("./input_data.npy");
  442. std::string model_path = "./shufflenet.mge";
  443. std::string input_name = "data";
  444. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  445. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  446. network->load_model(model_path);
  447. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  448. auto src_ptr = tensor->get_memory_ptr();
  449. auto src_layout = tensor->get_layout();
  450. input_tensor->reset(src_ptr, src_layout);
  451. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  452. auto result_tensor = std::make_shared<Tensor>(
  453. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  454. void* out_data = result_tensor->get_memory_ptr();
  455. output_tensor->reset(out_data, result_tensor->get_layout());
  456. //! set async mode and callback
  457. volatile bool finished = false;
  458. network->set_async_callback([&finished]() { finished = true; });
  459. network->forward();
  460. size_t count = 0;
  461. while (finished == false) {
  462. count++;
  463. }
  464. ASSERT_GT(count, 0);
  465. compare_lite_tensor<float>(output_tensor, result_mgb);
  466. }
  467. TEST(TestNetWork, CPUDeviceInput) {
  468. auto tensor = get_input_data("./input_data.npy");
  469. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  470. std::string model_path = "./shufflenet.mge";
  471. std::string input_name = "data";
  472. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  473. NetworkIO IO;
  474. bool is_host = false;
  475. IO.inputs.push_back({input_name, is_host});
  476. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  477. network->load_model(model_path);
  478. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  479. auto src_ptr = tensor->get_memory_ptr();
  480. input_tensor->reset(src_ptr, layout);
  481. network->forward();
  482. network->wait();
  483. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  484. compare_lite_tensor<float>(output_tensor, result_mgb);
  485. }
  486. TEST(TestNetWork, ShareTensorWith) {
  487. auto tensor = get_input_data("./input_data.npy");
  488. std::string model_path = "./shufflenet.mge";
  489. std::string input_name = "data";
  490. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  491. std::shared_ptr<Network> network = std::make_shared<Network>();
  492. network->load_model(model_path);
  493. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  494. input_tensor->share_memory_with(*tensor);
  495. network->forward();
  496. network->wait();
  497. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  498. compare_lite_tensor<float>(output_tensor, result_mgb);
  499. }
  500. TEST(TestNetWork, InputCallBack) {
  501. auto tensor = get_input_data("./input_data.npy");
  502. std::string model_path = "./shufflenet.mge";
  503. std::string input_name = "data";
  504. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  505. NetworkIO ios;
  506. bool is_host = false;
  507. ios.inputs.push_back({input_name, is_host});
  508. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  509. network->load_model(model_path);
  510. volatile bool finised_check_input = false;
  511. auto input_callback =
  512. [&tensor, &finised_check_input,
  513. input_name](const std::unordered_map<
  514. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  515. input_map) {
  516. ASSERT_EQ(input_map.size(), 1);
  517. auto tensor_input = input_map.at(input_name).second;
  518. compare_lite_tensor<float>(tensor_input, tensor);
  519. finised_check_input = true;
  520. };
  521. network->set_start_callback(input_callback);
  522. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  523. input_tensor->share_memory_with(*tensor);
  524. network->forward();
  525. network->wait();
  526. ASSERT_TRUE(finised_check_input);
  527. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  528. compare_lite_tensor<float>(output_tensor, result_mgb);
  529. }
  530. TEST(TestNetWork, OutputCallBack) {
  531. auto tensor = get_input_data("./input_data.npy");
  532. std::string model_path = "./shufflenet.mge";
  533. std::string input_name = "data";
  534. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  535. std::shared_ptr<Network> network = std::make_shared<Network>();
  536. network->load_model(model_path);
  537. auto output_name = network->get_output_name(0);
  538. volatile bool finised_check_output = false;
  539. auto output_callback =
  540. [&result_mgb, &finised_check_output,
  541. output_name](const std::unordered_map<
  542. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  543. output_map) {
  544. ASSERT_EQ(output_map.size(), 1);
  545. auto tensor_output = output_map.at(output_name).second;
  546. compare_lite_tensor<float>(tensor_output, result_mgb);
  547. finised_check_output = true;
  548. };
  549. network->set_finish_callback(output_callback);
  550. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  551. input_tensor->share_memory_with(*tensor);
  552. network->forward();
  553. network->wait();
  554. ASSERT_TRUE(finised_check_output);
  555. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  556. compare_lite_tensor<float>(output_tensor, result_mgb);
  557. }
  558. TEST(TestNetWork, OutputShapeOnly) {
  559. auto tensor = get_input_data("./input_data.npy");
  560. std::string model_path = "./shufflenet.mge";
  561. std::string input_name = "data";
  562. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  563. NetworkIO IO;
  564. bool is_host = true;
  565. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  566. Config config;
  567. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  568. network->load_model(model_path);
  569. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  570. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  571. auto src_ptr = tensor->get_memory_ptr();
  572. auto src_layout = tensor->get_layout();
  573. input_tensor->reset(src_ptr, src_layout);
  574. network->forward();
  575. network->wait();
  576. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  577. }
  578. TEST(TestNetWork, ProfileIOdump) {
  579. auto tensor = get_input_data("./input_data.npy");
  580. std::string model_path = "./shufflenet.mge";
  581. std::string input_name = "data";
  582. NetworkIO IO;
  583. Config config;
  584. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  585. network->enable_profile_performance("./profile.json");
  586. network->load_model(model_path);
  587. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  588. auto src_ptr = tensor->get_memory_ptr();
  589. auto src_layout = tensor->get_layout();
  590. input_tensor->reset(src_ptr, src_layout);
  591. network->forward();
  592. network->wait();
  593. ASSERT_TRUE(fopen("./profile.json", "r"));
  594. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  595. network->forward();
  596. network->wait();
  597. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  598. }
  599. TEST(TestNetWork, LoadPackedModel) {
  600. auto tensor = get_input_data("./input_data.npy");
  601. std::string model_path = "./test_packed_model.lite";
  602. std::string input_name = "data";
  603. NetworkIO IO;
  604. Config config;
  605. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  606. network->load_model(model_path);
  607. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  608. auto src_ptr = tensor->get_memory_ptr();
  609. auto src_layout = tensor->get_layout();
  610. input_tensor->reset(src_ptr, src_layout);
  611. network->forward();
  612. network->wait();
  613. }
  614. TEST(TestNetWork, GetDeviceType) {
  615. auto tensor = get_input_data("./input_data.npy");
  616. std::string model_path = "./shufflenet.mge";
  617. Config config;
  618. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  619. network->load_model(model_path);
  620. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  621. }
  622. TEST(TestNetWork, GetModelExtraInfo) {
  623. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  624. Config config;
  625. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  626. network->load_model(model_path);
  627. auto& extra_info = network->get_model_extra_info();
  628. ASSERT_TRUE(extra_info.size() > 0);
  629. printf("extra_info %s \n", extra_info.c_str());
  630. }
  631. #ifndef __IN_TEE_ENV__
  632. #if MGB_ENABLE_JSON
  633. TEST(TestNetWork, GetMemoryInfo) {
  634. Config config;
  635. auto lite_tensor = get_input_data("./input_data.npy");
  636. std::string model_path = "./shufflenet.mge";
  637. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  638. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  639. Runtime::set_cpu_threads_number(network, 2);
  640. network->load_model(model_path);
  641. network->get_static_memory_alloc_info();
  642. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  643. auto src_ptr = lite_tensor->get_memory_ptr();
  644. auto src_layout = lite_tensor->get_layout();
  645. input_tensor->reset(src_ptr, src_layout);
  646. network->forward();
  647. network->wait();
  648. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  649. compare_lite_tensor<float>(output_tensor, result_mgb);
  650. }
  651. #endif
  652. #endif
  653. #if LITE_WITH_CUDA
  654. TEST(TestNetWork, BasicDevice) {
  655. auto lite_tensor = get_input_data("./input_data.npy");
  656. Config config;
  657. config.device_type = LiteDeviceType::LITE_CUDA;
  658. std::string model_path = "./shufflenet.mge";
  659. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  660. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  661. compare_lite_tensor<float>(result_lite, result_mgb);
  662. }
  663. TEST(TestNetWork, DeviceInput) {
  664. auto tensor = get_input_data("./input_data.npy");
  665. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  666. std::string model_path = "./shufflenet.mge";
  667. std::string input_name = "data";
  668. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  669. NetworkIO IO;
  670. bool is_host = false;
  671. IO.inputs.push_back({input_name, is_host});
  672. Config config;
  673. config.device_type = LiteDeviceType::LITE_CUDA;
  674. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  675. network->load_model(model_path);
  676. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  677. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  678. tensor_cuda.copy_from(*tensor);
  679. auto src_ptr = tensor_cuda.get_memory_ptr();
  680. input_tensor->reset(src_ptr, layout);
  681. network->forward();
  682. network->wait();
  683. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  684. compare_lite_tensor<float>(output_tensor, result_mgb);
  685. }
  686. TEST(TestNetWork, ChangeInputShapeDevice) {
  687. Config config;
  688. auto tensor = get_input_data("./input_data.npy");
  689. std::string model_path = "./shufflenet.mge";
  690. std::string input_name = "data";
  691. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  692. config.device_type = LiteDeviceType::LITE_CUDA;
  693. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  694. network->load_model(model_path);
  695. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  696. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  697. input_tensor->set_layout(src_layout);
  698. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  699. //! Check memory is equal
  700. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  701. network->forward();
  702. network->wait();
  703. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  704. auto output_layout = output_tensor->get_layout();
  705. ASSERT_EQ(output_layout.shapes[0], 2);
  706. ASSERT_EQ(output_layout.shapes[1], 1000);
  707. }
  708. TEST(TestNetWork, DeviceOutput) {
  709. auto tensor = get_input_data("./input_data.npy");
  710. std::string model_path = "./shufflenet.mge";
  711. std::string input_name = "data";
  712. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  713. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  714. NetworkIO IO;
  715. bool is_host = false;
  716. IO.outputs.push_back({output_name, is_host});
  717. Config config;
  718. config.device_type = LiteDeviceType::LITE_CUDA;
  719. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  720. network->load_model(model_path);
  721. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  722. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  723. auto src_ptr = tensor->get_memory_ptr();
  724. auto src_layout = tensor->get_layout();
  725. input_tensor->reset(src_ptr, src_layout);
  726. network->forward();
  727. network->wait();
  728. auto output_tensor = std::make_shared<Tensor>();
  729. output_tensor->copy_from(*output_tensor_cuda);
  730. compare_lite_tensor<float>(output_tensor, result_mgb);
  731. }
  732. TEST(TestNetWork, WrongIONameDevice) {
  733. auto tensor = get_input_data("./input_data.npy");
  734. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  735. std::string model_path = "./shufflenet.mge";
  736. std::string input_name = "data";
  737. std::string input_name_wrong = "data0";
  738. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  739. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  740. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  741. NetworkIO IO;
  742. bool is_host = false;
  743. IO.inputs.push_back({input_name, is_host});
  744. IO.outputs.push_back({output_name, is_host});
  745. IO.outputs.push_back({output_name_wrong, is_host});
  746. Config config;
  747. config.device_type = LiteDeviceType::LITE_CUDA;
  748. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  749. network->load_model(model_path);
  750. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  751. tensor_cuda.copy_from(*tensor);
  752. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  753. auto src_ptr = tensor_cuda.get_memory_ptr();
  754. auto src_layout = tensor_cuda.get_layout();
  755. input_tensor->reset(src_ptr, src_layout);
  756. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  757. network->forward();
  758. network->wait();
  759. auto output_tensor = std::make_shared<Tensor>();
  760. output_tensor->copy_from(*output_tensor_cuda);
  761. compare_lite_tensor<float>(output_tensor, result_mgb);
  762. }
  763. TEST(TestNetWork, ConfigIONameDevice) {
  764. std::string model_path = "./model.mgb";
  765. NetworkIO IO;
  766. bool is_host = false;
  767. IO.outputs.push_back({"clsfy", is_host});
  768. Config config;
  769. config.device_type = LiteDeviceType::LITE_CUDA;
  770. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  771. network->compute_only_configured_output();
  772. network->load_model(model_path);
  773. ASSERT_EQ(network->get_all_output_name().size(), 1);
  774. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  775. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  776. network2->load_model(model_path);
  777. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  778. }
  779. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  780. #if LITE_WITH_CUDA
  781. if (get_device_count(LITE_CUDA) <= 1)
  782. return;
  783. #endif
  784. std::string model_path = "./model.mgb";
  785. NetworkIO IO;
  786. bool is_host = false;
  787. IO.inputs.push_back({"data", is_host});
  788. IO.outputs.push_back({"clsfy", is_host});
  789. Config config;
  790. config.device_type = LiteDeviceType::LITE_CUDA;
  791. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  792. network->set_device_id(1);
  793. network->load_model(model_path);
  794. auto inputs_names = network->get_all_input_name();
  795. for (auto name : inputs_names) {
  796. auto tensor = network->get_io_tensor(name);
  797. ASSERT_EQ(tensor->get_device_id(), 1);
  798. if (name == "idx") {
  799. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  800. for (int i = 0; i < 23; i++) {
  801. index_ptr[i] = i % 3;
  802. }
  803. }
  804. if (name == "landmark") {
  805. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  806. for (int i = 0; i < 23 * 18 * 2; i++) {
  807. landmakrk_ptr[i] = 0.1f;
  808. }
  809. }
  810. }
  811. auto outputs_names = network->get_all_output_name();
  812. for (auto name : outputs_names) {
  813. auto tensor = network->get_io_tensor(name);
  814. ASSERT_EQ(tensor->get_device_id(), 1);
  815. }
  816. network->forward();
  817. network->wait();
  818. }
  819. TEST(TestNetWork, SetStreamIdDeviceTest) {
  820. std::string model_path = "./model.mgb";
  821. NetworkIO IO;
  822. bool is_host = false;
  823. IO.inputs.push_back({"data", is_host});
  824. IO.outputs.push_back({"clsfy", is_host});
  825. Config config;
  826. config.device_type = LiteDeviceType::LITE_CUDA;
  827. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  828. network->set_stream_id(1);
  829. network->load_model(model_path);
  830. auto inputs_names = network->get_all_input_name();
  831. for (auto name : inputs_names) {
  832. auto tensor = network->get_io_tensor(name);
  833. if (name == "idx") {
  834. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  835. for (int i = 0; i < 23; i++) {
  836. index_ptr[i] = i % 3;
  837. }
  838. }
  839. if (name == "landmark") {
  840. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  841. for (int i = 0; i < 23 * 18 * 2; i++) {
  842. landmakrk_ptr[i] = 0.1f;
  843. }
  844. }
  845. }
  846. network->forward();
  847. network->wait();
  848. }
  849. #if CUDART_VERSION >= 10000
  850. TEST(TestNetWork, DeviceAsyncExec) {
  851. auto tensor = get_input_data("./input_data.npy");
  852. Config config;
  853. config.device_type = LiteDeviceType::LITE_CUDA;
  854. config.options.var_sanity_check_first_run = false;
  855. std::string model_path = "./shufflenet.mge";
  856. std::string input_name = "data";
  857. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  858. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  859. network->load_model(model_path);
  860. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  861. auto src_ptr = tensor->get_memory_ptr();
  862. auto src_layout = tensor->get_layout();
  863. input_tensor->reset(src_ptr, src_layout);
  864. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  865. auto result_tensor = std::make_shared<Tensor>(
  866. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  867. void* out_data = result_tensor->get_memory_ptr();
  868. output_tensor->reset(out_data, result_tensor->get_layout());
  869. //! set async mode and callback
  870. volatile bool finished = false;
  871. network->set_async_callback([&finished]() { finished = true; });
  872. network->forward();
  873. size_t count = 0;
  874. while (finished == false) {
  875. count++;
  876. }
  877. ASSERT_GT(count, 0);
  878. compare_lite_tensor<float>(output_tensor, result_mgb);
  879. }
  880. #endif
  881. #endif
  882. #if MGB_ATLAS
  883. TEST(TestNetWork, AtlasLoadNoDevice) {
  884. lite::Config config;
  885. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  886. auto network = std::make_shared<lite::Network>(config);
  887. network->load_model("./model_atlas.mgb");
  888. network->forward();
  889. network->wait();
  890. }
  891. TEST(TestNetWork, AtlasLoadDeviceInput) {
  892. lite::NetworkIO networkio;
  893. lite::IO input_data_io = {};
  894. input_data_io.name = "data";
  895. input_data_io.is_host = false;
  896. networkio.inputs.emplace_back(input_data_io);
  897. lite::IO input_input0_io = {};
  898. input_input0_io.name = "input0";
  899. input_input0_io.is_host = false;
  900. networkio.inputs.emplace_back(input_input0_io);
  901. lite::Config config;
  902. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  903. auto network = std::make_shared<lite::Network>(config, networkio);
  904. network->load_model("./model_atlas.mgb");
  905. network->forward();
  906. network->wait();
  907. }
  908. TEST(TestNetWork, AtlasLoadAtlas) {
  909. lite::Config config;
  910. config.device_type = LiteDeviceType::LITE_ATLAS;
  911. auto network = std::make_shared<lite::Network>(config);
  912. network->load_model("./model_atlas.mgb");
  913. network->forward();
  914. network->wait();
  915. }
  916. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  917. lite::NetworkIO networkio;
  918. lite::IO input_data_io = {};
  919. input_data_io.name = "data";
  920. input_data_io.is_host = false;
  921. networkio.inputs.emplace_back(input_data_io);
  922. lite::IO input_input0_io = {};
  923. input_input0_io.name = "input0";
  924. input_input0_io.is_host = false;
  925. networkio.inputs.emplace_back(input_input0_io);
  926. lite::Config config;
  927. config.device_type = LiteDeviceType::LITE_ATLAS;
  928. auto network = std::make_shared<lite::Network>(config, networkio);
  929. network->load_model("./model_atlas.mgb");
  930. network->forward();
  931. network->wait();
  932. }
  933. TEST(TestNetWork, AtlasDeviceID) {
  934. lite::Config config;
  935. config.device_type = LiteDeviceType::LITE_ATLAS;
  936. auto network = std::make_shared<lite::Network>(config);
  937. network->set_device_id(1);
  938. network->load_model("./model_atlas.mgb");
  939. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  940. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  941. network->forward();
  942. network->wait();
  943. ASSERT_EQ(output_tensor->get_device_id(), 1);
  944. }
  945. #endif
  946. #endif
  947. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台