You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. /**
  2. * \file dnn/test/arm_common/pooling_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include <vector>
  12. #include "megdnn/dtype.h"
  13. #include "megdnn/opr_param_defs.h"
  14. #include "test/arm_common/fixture.h"
  15. #include "test/common/benchmarker.h"
  16. #include "test/common/checker.h"
  17. #include "test/common/pooling.h"
  18. #include "test/common/rng.h"
  19. #include "test/common/task_record_check.h"
  20. namespace megdnn {
  21. namespace test {
  22. /*********************** mutli threads *********************************/
  23. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  24. using Param = param::Pooling;
  25. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  26. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  27. for (size_t p : {1, 2}) {
  28. Param param;
  29. param.mode = Param::Mode::MAX;
  30. param.window_h = param.window_w = 3;
  31. param.stride_h = param.stride_w = 2;
  32. param.pad_h = param.pad_w = p;
  33. Checker<Pooling> checker(handle());
  34. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  35. param.mode = Param::Mode::AVERAGE;
  36. param.window_h = param.window_w = 3;
  37. param.stride_h = param.stride_w = 2;
  38. param.pad_h = param.pad_w = p;
  39. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  40. param.mode = Param::Mode::MAX;
  41. param.window_h = param.window_w = 4;
  42. param.stride_h = param.stride_w = 2;
  43. param.pad_h = param.pad_w = p;
  44. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  45. param.mode = Param::Mode::MAX;
  46. param.window_h = param.window_w = 5;
  47. param.stride_h = param.stride_w = 2;
  48. param.pad_h = param.pad_w = p;
  49. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  50. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  51. }
  52. }
  53. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_RECORD) {
  54. using Param = param::Pooling;
  55. TaskRecordChecker<Pooling> checker(0);
  56. for (size_t ih : {2, 3, 5, 7, 11, 13, 17})
  57. for (size_t iw : {2, 3, 5, 7, 11, 13, 17})
  58. for (size_t p : {1, 2}) {
  59. Param param;
  60. param.mode = Param::Mode::MAX;
  61. param.window_h = param.window_w = 3;
  62. param.stride_h = param.stride_w = 2;
  63. param.pad_h = param.pad_w = p;
  64. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  65. param.mode = Param::Mode::AVERAGE;
  66. param.window_h = param.window_w = 3;
  67. param.stride_h = param.stride_w = 2;
  68. param.pad_h = param.pad_w = p;
  69. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  70. param.mode = Param::Mode::MAX;
  71. param.window_h = param.window_w = 4;
  72. param.stride_h = param.stride_w = 2;
  73. param.pad_h = param.pad_w = p;
  74. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  75. param.mode = Param::Mode::MAX;
  76. param.window_h = param.window_w = 5;
  77. param.stride_h = param.stride_w = 2;
  78. param.pad_h = param.pad_w = p;
  79. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  80. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  81. }
  82. }
  83. std::vector<std::pair<param::Pooling, TensorShapeArray>> get_nchw44_pool_args(
  84. size_t filter, size_t stride) {
  85. constexpr size_t ic_step = 4;
  86. std::vector<std::pair<param::Pooling, TensorShapeArray>> args;
  87. for (size_t n : {1, 2})
  88. for (size_t c : {4, 8})
  89. for (size_t ih : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
  90. for (size_t iw : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
  91. for (size_t ph : {0, 1, 2})
  92. for (size_t pw : {0, 1, 2})
  93. for (auto mode :
  94. {param::Pooling::Mode::MAX,
  95. param::Pooling::Mode::AVERAGE})
  96. if (ih + 2 * ph >= filter && iw + 2 * pw >= filter &&
  97. filter > ph && filter > pw) {
  98. param::Pooling param;
  99. param.mode = mode;
  100. param.format = param::Pooling::Format::NCHW44;
  101. param.pad_h = ph;
  102. param.pad_w = pw;
  103. param.stride_h = param.stride_w = stride;
  104. param.window_h = param.window_w = filter;
  105. args.emplace_back(std::make_pair(
  106. param,
  107. TensorShapeArray{
  108. {n, c / ic_step, ih, iw, ic_step},
  109. {}}));
  110. }
  111. return args;
  112. }
  113. void run_pooling_check(
  114. Handle* handle, std::vector<std::pair<param::Pooling, TensorShapeArray>> args,
  115. bool is_int8) {
  116. Checker<Pooling> checker(handle);
  117. UniformIntRNG rng_int8{INT8_MIN >> 1, INT8_MAX >> 1};
  118. UniformIntRNG rng_fp32{-10, 10};
  119. if (is_int8) {
  120. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  121. checker.set_rng(0, &rng_int8);
  122. } else {
  123. checker.set_rng(0, &rng_fp32);
  124. }
  125. for (auto arg : args) {
  126. checker.set_param(arg.first).exec(arg.second);
  127. }
  128. }
  129. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_NCHW44_FP32) {
  130. for (auto filter : {2, 3, 4, 5})
  131. for (auto stride : {1, 2}) {
  132. run_pooling_check(handle(), get_nchw44_pool_args(filter, stride), false);
  133. }
  134. }
  135. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W9_w13_NCHW44) {
  136. UniformIntRNG rng{-10, 10};
  137. Checker<Pooling> checker(handle());
  138. checker.set_rng(0, &rng);
  139. // clang-format off
  140. for (size_t ih: {20, 15})
  141. for (size_t iw: {15, 20})
  142. for (size_t kernel: {9, 13})
  143. for (size_t pad: {4, 6})
  144. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  145. if (kernel > pad)
  146. {
  147. param::Pooling param;
  148. param.mode = mode;
  149. param.format = param::Pooling::Format::NCHW44;
  150. param.pad_h = pad;
  151. param.pad_w = pad;
  152. param.stride_h = param.stride_w = 1;
  153. param.window_h = param.window_w = kernel ;
  154. checker.set_param(param).exec(TensorShapeArray{{2, 8, ih, iw, 4}, {}});
  155. }
  156. // clang-format on
  157. }
  158. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W3x3_NCHW44) {
  159. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  160. Checker<Pooling> checker(handle());
  161. checker.set_rng(0, &rng);
  162. // clang-format off
  163. for (size_t ih: {3, 5, 10})
  164. for (size_t iw: {3, 5, 7, 9, 15, 20})
  165. for (size_t ph: {0, 1, 2})
  166. for (size_t pw: {0, 1, 2})
  167. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  168. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  169. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  170. {
  171. checker.set_dtype(0, data_type);
  172. param::Pooling param;
  173. param.mode = mode;
  174. param.format = param::Pooling::Format::NCHW44;
  175. param.pad_h = ph;
  176. param.pad_w = pw;
  177. param.stride_h = param.stride_w = 1;
  178. param.window_h = param.window_w = 3;
  179. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  180. param.stride_h = param.stride_w = 2;
  181. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  182. }
  183. // clang-format on
  184. }
  185. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W2x2_NCHW44) {
  186. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  187. Checker<Pooling> checker(handle());
  188. checker.set_rng(0, &rng);
  189. // clang-format off
  190. for (size_t ih: {2, 5, 10, 17})
  191. for (size_t iw: {2, 6, 8, 16, 26})
  192. for (size_t ph: {0, 1})
  193. for (size_t pw: {0, 1})
  194. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  195. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  196. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  197. {
  198. checker.set_dtype(0, data_type);
  199. checker.set_dtype(1, data_type);
  200. param::Pooling param;
  201. param.mode = mode;
  202. param.format = param::Pooling::Format::NCHW44;
  203. param.pad_h = ph;
  204. param.pad_w = pw;
  205. param.stride_h = param.stride_w = 1;
  206. param.window_h = param.window_w = 2;
  207. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  208. param.stride_h = param.stride_w = 2;
  209. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  210. }
  211. // clang-format on
  212. }
  213. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W4x4_NCHW44) {
  214. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  215. Checker<Pooling> checker(handle());
  216. checker.set_rng(0, &rng);
  217. // clang-format off
  218. for (size_t ih: {4, 10, 18, 25, 30})
  219. for (size_t iw: {4, 12, 17, 20, 25})
  220. for (size_t ph: {0, 1, 2})
  221. for (size_t pw: {0, 1, 2})
  222. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  223. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  224. if (ih+2*ph >= 4 && iw+2*pw >= 4)
  225. {
  226. checker.set_dtype(0, data_type);
  227. param::Pooling param;
  228. param.mode = mode;
  229. param.format = param::Pooling::Format::NCHW44;
  230. param.pad_h = ph;
  231. param.pad_w = pw;
  232. param.stride_h = param.stride_w = 1;
  233. param.window_h = param.window_w = 4;
  234. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  235. param.stride_h = param.stride_w = 2;
  236. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  237. }
  238. // clang-format on
  239. }
  240. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W5x5_NCHW44) {
  241. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  242. Checker<Pooling> checker(handle());
  243. checker.set_rng(0, &rng);
  244. // clang-format off
  245. for (size_t ih: {5, 9, 19, 20, 39})
  246. for (size_t iw: {5, 12, 23, 27, 39})
  247. for (size_t ph: {0, 1, 2})
  248. for (size_t pw: {0, 1, 2})
  249. for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
  250. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  251. if (ih+2*ph >= 5 && iw+2*pw >= 5)
  252. {
  253. checker.set_dtype(0, data_type);
  254. param::Pooling param;
  255. param.mode = mode;
  256. param.format = param::Pooling::Format::NCHW44;
  257. param.pad_h = ph;
  258. param.pad_w = pw;
  259. param.stride_h = param.stride_w = 1;
  260. param.window_h = param.window_w = 5;
  261. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  262. param.stride_h = param.stride_w = 2;
  263. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  264. }
  265. // clang-format on
  266. }
  267. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2) {
  268. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  269. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  270. for (size_t ph : {0, 1, 2})
  271. for (size_t pw : {0, 1, 2})
  272. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  273. Checker<Pooling> checker(handle());
  274. checker.set_dtype(0, dtype::Int8());
  275. param::Pooling param;
  276. param.mode = param::Pooling::Mode::MAX;
  277. param.pad_h = ph;
  278. param.pad_w = pw;
  279. param.stride_h = param.stride_w = 2;
  280. param.window_h = param.window_w = 3;
  281. checker.set_param(param).exec(
  282. TensorShapeArray{{2, 3, ih, iw}, {}});
  283. }
  284. }
  285. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2) {
  286. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  287. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  288. for (size_t ph : {0, 1})
  289. for (size_t pw : {0, 1})
  290. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  291. Checker<Pooling> checker(handle());
  292. checker.set_dtype(0, dtype::Int8());
  293. param::Pooling param;
  294. param.mode = param::Pooling::Mode::MAX;
  295. param.pad_h = ph;
  296. param.pad_w = pw;
  297. param.stride_h = param.stride_w = 2;
  298. param.window_h = param.window_w = 2;
  299. checker.set_param(param).exec(
  300. TensorShapeArray{{2, 3, ih, iw}, {}});
  301. }
  302. }
  303. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  304. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  305. Checker<Pooling> checker(handle());
  306. checker.set_dtype(0, dtype::Float16{})
  307. .set_dtype(1, dtype::Float16{})
  308. .set_epsilon(3e-3);
  309. using Param = param::Pooling;
  310. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  311. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  312. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  313. for (size_t window : {2, 3}) {
  314. Param param;
  315. param.mode = mode;
  316. param.window_h = param.window_w = window;
  317. param.stride_h = param.stride_w = 1;
  318. param.pad_h = param.pad_w = window / 2;
  319. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  320. //! == 3)
  321. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  322. //! test for SH = SW = 2 && FH = FW = 2
  323. param.stride_h = param.stride_w = 2;
  324. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  325. }
  326. }
  327. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  328. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  329. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  330. for (size_t ph : {0, 1, 2})
  331. for (size_t pw : {0, 1, 2})
  332. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  333. param::Pooling param;
  334. param.mode = param::Pooling::Mode::MAX;
  335. param.pad_h = ph;
  336. param.pad_w = pw;
  337. param.stride_h = param.stride_w = 2;
  338. param.window_h = param.window_w = 3;
  339. checker.set_param(param).exec(
  340. TensorShapeArray{{2, 3, ih, iw}, {}});
  341. }
  342. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  343. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  344. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  345. for (size_t p : {1, 2}) {
  346. Param param;
  347. param.mode = Param::Mode::MAX;
  348. param.window_h = param.window_w = 4;
  349. param.stride_h = param.stride_w = 2;
  350. param.pad_h = param.pad_w = p;
  351. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  352. }
  353. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  354. for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  355. for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  356. for (size_t p : {1, 2}) {
  357. Param param;
  358. param.mode = Param::Mode::MAX;
  359. param.window_h = param.window_w = 5;
  360. param.stride_h = param.stride_w = 2;
  361. param.pad_h = param.pad_w = p;
  362. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  363. }
  364. }
  365. #endif
  366. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  367. Checker<Pooling> checker(handle());
  368. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  369. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  370. using Param = param::Pooling;
  371. for (auto type : std::vector<DType>{
  372. dtype::QuantizedS8(1.1f),
  373. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  374. if (type.enumv() == DTypeEnum::QuantizedS8) {
  375. checker.set_rng(0, &rng1);
  376. } else {
  377. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  378. checker.set_rng(0, &rng2);
  379. }
  380. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  381. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  382. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  383. for (size_t window : {2, 3}) {
  384. Param param;
  385. param.mode = mode;
  386. param.window_h = param.window_w = window;
  387. param.stride_h = param.stride_w = 1;
  388. param.pad_h = param.pad_w = window / 2;
  389. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  390. //! FH
  391. //! == 3)
  392. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  393. //! test for SH = SW = 2 && FH = FW = 2
  394. param.stride_h = param.stride_w = 2;
  395. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  396. }
  397. }
  398. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  399. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  400. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  401. for (size_t ph : {0, 1, 2})
  402. for (size_t pw : {0, 1, 2})
  403. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  404. param::Pooling param;
  405. param.mode = param::Pooling::Mode::MAX;
  406. param.pad_h = ph;
  407. param.pad_w = pw;
  408. param.window_h = param.window_w = 3;
  409. param.stride_h = param.stride_w = 2;
  410. checker.set_param(param).exec(
  411. TensorShapeArray{{2, 3, ih, iw}, {}});
  412. }
  413. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  414. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  415. for (size_t iw :
  416. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  417. for (size_t p : {1, 2}) {
  418. Param param;
  419. param.mode = Param::Mode::MAX;
  420. param.window_h = param.window_w = 4;
  421. param.stride_h = param.stride_w = 2;
  422. param.pad_h = param.pad_w = p;
  423. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  424. }
  425. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  426. for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  427. for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  428. for (size_t p : {1, 2}) {
  429. Param param;
  430. param.mode = Param::Mode::MAX;
  431. param.window_h = param.window_w = 5;
  432. param.stride_h = param.stride_w = 2;
  433. param.pad_h = param.pad_w = p;
  434. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  435. }
  436. }
  437. }
  438. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  439. using Param = param::Pooling;
  440. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  441. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  442. for (size_t p : {1, 2}) {
  443. Param param;
  444. param.mode = Param::Mode::MAX;
  445. param.window_h = param.window_w = 3;
  446. param.stride_h = param.stride_w = 2;
  447. param.pad_h = param.pad_w = p;
  448. Checker<Pooling> checker(handle());
  449. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  450. }
  451. }
  452. #if MEGDNN_WITH_BENCHMARK
  453. namespace {
  454. template <typename Opr>
  455. void benchmark_impl(
  456. const typename Opr::Param& param, std::vector<SmallVector<TensorShape>> shapes,
  457. size_t RUNS, TaskExecutorConfig&& multi_thread_config,
  458. TaskExecutorConfig&& single_thread_config, DType data_type) {
  459. std::vector<float> multi_thread_times, single_thread_times;
  460. {
  461. auto multi_thread_hanle = create_cpu_handle(0, true, &multi_thread_config);
  462. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  463. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  464. benchmarker.set_dtype(0, data_type);
  465. for (auto shape : shapes) {
  466. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  467. }
  468. }
  469. {
  470. auto single_thread_handle = create_cpu_handle(0, true, &single_thread_config);
  471. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  472. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  473. benchmarker.set_dtype(0, data_type);
  474. for (auto shape : shapes) {
  475. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  476. }
  477. }
  478. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  479. printf("core_ids:");
  480. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  481. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  482. }
  483. printf(", Single thread core_id %zu\n", single_thread_config.affinity_core_set[0]);
  484. for (size_t i = 0; i < shapes.size(); i++) {
  485. auto shape = shapes[i];
  486. printf("Case: ");
  487. for (auto sh : shape)
  488. printf("%s ", sh.to_string().c_str());
  489. printf("%zu threads time: %f,\n single thread time: "
  490. "%f. spead up = %f, speedup/cores=%f\n",
  491. multi_thread_config.nr_thread, multi_thread_times[i],
  492. single_thread_times[i], single_thread_times[i] / multi_thread_times[i],
  493. single_thread_times[i] / multi_thread_times[i] /
  494. multi_thread_config.nr_thread);
  495. }
  496. }
  497. } // namespace
  498. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  499. constexpr size_t RUNS = 50;
  500. using Param = param::Pooling;
  501. Param param;
  502. param.window_h = param.window_w = 3;
  503. param.stride_h = param.stride_w = 2;
  504. param.pad_h = param.pad_w = 1;
  505. std::vector<SmallVector<TensorShape>> shapes;
  506. shapes.push_back({{32, 32, 215, 215}, {}});
  507. shapes.push_back({{32, 32, 128, 128}, {}});
  508. shapes.push_back({{8, 256, 100, 100}, {}});
  509. shapes.push_back({{1, 256, 100, 100}, {}});
  510. shapes.push_back({{1, 32, 100, 100}, {}});
  511. shapes.push_back({{1, 256, 80, 80}, {}});
  512. shapes.push_back({{1, 256, 60, 60}, {}});
  513. shapes.push_back({{1, 256, 30, 30}, {}});
  514. param.window_h = param.window_w = 3;
  515. param.stride_h = param.stride_w = 2;
  516. param.pad_h = param.pad_w = 1;
  517. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  518. param.window_w, param.stride_h, static_cast<int>(param.mode));
  519. benchmark_impl<Pooling>(
  520. param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32());
  521. benchmark_impl<Pooling>(
  522. param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32());
  523. benchmark_impl<Pooling>(
  524. param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32());
  525. }
  526. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) {
  527. constexpr size_t RUNS = 50;
  528. using Param = param::Pooling;
  529. Param param;
  530. param.pad_h = param.pad_w = 0;
  531. param.mode = Param::Mode::MAX;
  532. std::vector<SmallVector<TensorShape>> shapes;
  533. std::vector<std::vector<size_t>> filter_and_stride = {
  534. {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}};
  535. for (auto mode : {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) {
  536. for (auto filter : filter_and_stride) {
  537. shapes.push_back({{1, 32 * 4, 215, 215}, {}});
  538. shapes.push_back({{1, 32 * 4, 128, 128}, {}});
  539. shapes.push_back({{1, 16 * 4, 56, 56}, {}});
  540. param.mode = mode;
  541. param.window_h = param.window_w = filter[0];
  542. param.stride_h = param.stride_w = filter[1];
  543. param.format = Param::Format::NCHW;
  544. printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  545. param.window_h, param.window_h, param.stride_h,
  546. static_cast<int>(param.mode));
  547. benchmark_impl<Pooling>(
  548. param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
  549. dtype::QuantizedS8(1.1f));
  550. shapes.clear();
  551. shapes.push_back({{1, 32, 215, 215, 4}, {}});
  552. shapes.push_back({{1, 32, 128, 128, 4}, {}});
  553. shapes.push_back({{1, 16, 56, 56, 4}, {}});
  554. param.format = Param::Format::NCHW44;
  555. printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  556. param.window_h, param.window_w, param.stride_h,
  557. static_cast<int>(param.mode));
  558. benchmark_impl<Pooling>(
  559. param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}},
  560. dtype::QuantizedS8(1.1f));
  561. shapes.clear();
  562. }
  563. }
  564. }
  565. #endif
  566. } // namespace test
  567. } // namespace megdnn
  568. // vim: syntax=cpp.doxygen