You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.cpp 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. /**
  2. * \file dnn/test/cuda/pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/cuda/fixture.h"
  12. #include "megdnn/tensor_iter.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/pooling.h"
  15. #include "src/common/utils.h"
  16. #include "test/cuda/utils.h"
  17. // to check cudnn version
  18. #include <cudnn.h>
  19. #include "test/cuda/benchmark.h"
  20. namespace {
  21. #define V1(v) #v
  22. #define V(v) V1(v)
  23. #define DEF_NAME(NAME) \
  24. #NAME "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
  25. } // namespace
  26. namespace megdnn {
  27. namespace test {
  28. TEST_F(CUDA, POOLING_FORWARD)
  29. {
  30. auto args = pooling::get_args();
  31. using Format = param::Pooling::Format;
  32. std::vector<DType> dtypes{dtype::Float16(), dtype::BFloat16(), dtype::Float32()};
  33. if (check_compute_capability(6, 0)) {
  34. // int pooling is supported only for Pascal or higher
  35. dtypes.push_back(dtype::Int8());
  36. }
  37. for (auto dtype: dtypes)
  38. for (auto format: {Format::NCHW, Format::NHWC})
  39. for (auto &&arg: args) {
  40. auto param = arg.param;
  41. auto src = arg.ishape;
  42. param.format = format;
  43. if (param.format == Format::NHWC) {
  44. src = cvt_src_or_dst_nchw2nhwc(src);
  45. }
  46. Checker<Pooling> checker(handle_cuda());
  47. if (dtype == dtype::Int8()) {
  48. // different versions of cuDNN differs in rounding behavior;
  49. // setting eps to 1 to allow for rounding errors.
  50. checker.set_epsilon(1 + 1e-3);
  51. } else if (dtype == dtype::BFloat16()) {
  52. checker.set_epsilon(2e-2);
  53. } else {
  54. checker.set_epsilon(1e-2);
  55. }
  56. checker.set_param(param)
  57. .set_dtype(0, dtype)
  58. .set_dtype(1, dtype)
  59. .exec(TensorShapeArray{
  60. src, {}});
  61. }
  62. /* add test for new Mode temporarily */
  63. for (auto dtype: dtypes)
  64. for (auto format: {Format::NCHW, Format::NHWC})
  65. for(auto &&arg : args) {
  66. auto param = arg.param;
  67. if(param.mode == Pooling::Mode::AVERAGE)
  68. param.mode = Pooling::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  69. else continue;
  70. auto src = arg.ishape;
  71. param.format = format;
  72. if (param.format == Format::NHWC) {
  73. src = cvt_src_or_dst_nchw2nhwc(src);
  74. }
  75. Checker<Pooling> checker(handle_cuda());
  76. if (dtype == dtype::Int8()) {
  77. // different versions of cuDNN differs in rounding behavior;
  78. // setting eps to 1 to allow for rounding errors.
  79. checker.set_epsilon(1 + 1e-3);
  80. } else if (dtype == dtype::BFloat16()) {
  81. checker.set_epsilon(2e-2);
  82. }
  83. else {
  84. checker.set_epsilon(1e-2);
  85. }
  86. checker.set_param(param)
  87. .set_dtype(0, dtype)
  88. .set_dtype(1, dtype)
  89. .exec(TensorShapeArray{
  90. src, {}});
  91. }
  92. }
  93. TEST_F(CUDA, POOLING_BACKWARD)
  94. {
  95. auto args = pooling::get_args();
  96. for (auto &&arg: args) {
  97. Checker<PoolingBackward> checker(handle_cuda());
  98. TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32());
  99. TensorLayout olayout;
  100. auto constraint = [this,
  101. arg](CheckerHelper::TensorValueArray& tensors_orig) {
  102. megdnn_assert(tensors_orig.size() == 4);
  103. auto opr = handle_cuda()->create_operator<PoolingForward>();
  104. opr->param() = arg.param;
  105. auto tensors_cuda_storage = CheckerHelper::alloc_tensors(
  106. handle_cuda(),
  107. {tensors_orig[0].layout, tensors_orig[1].layout}, 0);
  108. auto&& tensors_cuda = *tensors_cuda_storage;
  109. auto span = tensors_cuda[0].layout.span();
  110. auto dst = static_cast<dt_byte*>(tensors_cuda[0].raw_ptr) +
  111. span.low_byte;
  112. auto src = static_cast<const dt_byte*>(tensors_orig[0].raw_ptr) +
  113. span.low_byte;
  114. megdnn_memcpy_H2D(handle_cuda(), dst, src, span.dist_byte());
  115. auto workspace_size = opr->get_workspace_in_bytes(
  116. tensors_cuda[0].layout, tensors_cuda[1].layout);
  117. auto workspace_cuda = megdnn_malloc(handle_cuda(), workspace_size);
  118. Workspace workspace{static_cast<dt_byte*>(workspace_cuda),
  119. workspace_size};
  120. opr->exec(tensors_cuda[0], tensors_cuda[1], workspace);
  121. megdnn_free(handle_cuda(), workspace_cuda);
  122. span = tensors_cuda[1].layout.span();
  123. dst = static_cast<dt_byte*>(tensors_orig[1].raw_ptr) +
  124. span.low_byte;
  125. src = static_cast<const dt_byte*>(tensors_cuda[1].raw_ptr) +
  126. span.low_byte;
  127. megdnn_memcpy_D2H(handle_cuda(), dst, src, span.dist_byte());
  128. };
  129. {
  130. auto opr = handle_cuda()->create_operator<PoolingForward>();
  131. opr->param() = arg.param;
  132. opr->deduce_layout(ilayout, olayout);
  133. }
  134. auto set_dtype = [&checker](DType dtype)
  135. {
  136. checker.set_dtype(0, dtype).
  137. set_dtype(1, dtype).
  138. set_dtype(2, dtype).
  139. set_dtype(3, dtype);
  140. };
  141. checker.set_tensors_constraint(constraint);
  142. set_dtype(dtype::Float32());
  143. checker.set_param(arg.param).exec(TensorShapeArray{
  144. ilayout, olayout, olayout, ilayout});
  145. Float16PeriodicalRNG rng;
  146. set_dtype(dtype::Float16());
  147. checker
  148. .set_param(arg.param)
  149. .set_rng(0, &rng)
  150. .set_epsilon(1e-2)
  151. .exec(TensorShapeArray{
  152. ilayout, olayout, olayout, ilayout});
  153. BFloat16PeriodicalRNG bf16_rng;
  154. set_dtype(dtype::BFloat16());
  155. checker.set_param(arg.param)
  156. .set_rng(0, &bf16_rng)
  157. .set_epsilon(1e-2)
  158. .exec(TensorShapeArray{ilayout, olayout, olayout, ilayout});
  159. }
  160. /* add test for new Mode temporarily */
  161. for(auto &&arg : args) {
  162. if(arg.param.mode == Pooling::Mode::AVERAGE)
  163. arg.param.mode = Pooling::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  164. else continue;
  165. Checker<PoolingBackward> checker(handle_cuda());
  166. TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32());
  167. TensorLayout olayout;
  168. auto constraint = [this,
  169. arg](CheckerHelper::TensorValueArray& tensors_orig) {
  170. megdnn_assert(tensors_orig.size() == 4);
  171. auto opr = handle_cuda()->create_operator<PoolingForward>();
  172. opr->param() = arg.param;
  173. auto tensors_cuda_storage = CheckerHelper::alloc_tensors(
  174. handle_cuda(),
  175. {tensors_orig[0].layout, tensors_orig[1].layout}, 0);
  176. auto&& tensors_cuda = *tensors_cuda_storage;
  177. auto span = tensors_cuda[0].layout.span();
  178. auto dst = static_cast<dt_byte*>(tensors_cuda[0].raw_ptr) +
  179. span.low_byte;
  180. auto src = static_cast<const dt_byte*>(tensors_orig[0].raw_ptr) +
  181. span.low_byte;
  182. megdnn_memcpy_H2D(handle_cuda(), dst, src, span.dist_byte());
  183. auto workspace_size = opr->get_workspace_in_bytes(
  184. tensors_cuda[0].layout, tensors_cuda[1].layout);
  185. auto workspace_cuda = megdnn_malloc(handle_cuda(), workspace_size);
  186. Workspace workspace{static_cast<dt_byte*>(workspace_cuda),
  187. workspace_size};
  188. opr->exec(tensors_cuda[0], tensors_cuda[1], workspace);
  189. megdnn_free(handle_cuda(), workspace_cuda);
  190. span = tensors_cuda[1].layout.span();
  191. dst = static_cast<dt_byte*>(tensors_orig[1].raw_ptr) +
  192. span.low_byte;
  193. src = static_cast<const dt_byte*>(tensors_cuda[1].raw_ptr) +
  194. span.low_byte;
  195. megdnn_memcpy_D2H(handle_cuda(), dst, src, span.dist_byte());
  196. };
  197. {
  198. auto opr = handle_cuda()->create_operator<PoolingForward>();
  199. opr->param() = arg.param;
  200. opr->deduce_layout(ilayout, olayout);
  201. }
  202. auto set_dtype = [&checker](DType dtype)
  203. {
  204. checker.set_dtype(0, dtype).
  205. set_dtype(1, dtype).
  206. set_dtype(2, dtype).
  207. set_dtype(3, dtype);
  208. };
  209. checker.set_tensors_constraint(constraint);
  210. set_dtype(dtype::Float32());
  211. checker.set_param(arg.param).exec(TensorShapeArray{
  212. ilayout, olayout, olayout, ilayout});
  213. Float16PeriodicalRNG rng;
  214. set_dtype(dtype::Float16());
  215. checker
  216. .set_param(arg.param)
  217. .set_rng(0, &rng)
  218. .set_epsilon(1e-2)
  219. .exec(TensorShapeArray{
  220. ilayout, olayout, olayout, ilayout});
  221. BFloat16PeriodicalRNG bf16_rng;
  222. set_dtype(dtype::BFloat16());
  223. checker.set_param(arg.param)
  224. .set_rng(0, &bf16_rng)
  225. .set_epsilon(1e-2)
  226. .exec(TensorShapeArray{ilayout, olayout, olayout, ilayout});
  227. }
  228. }
  229. TEST_F(CUDA, POOLING_FORWARD_NCHW_Q4) {
  230. require_compute_capability(7, 5);
  231. using Param = param::Pooling;
  232. Checker<Pooling> checker(handle_cuda());
  233. Param param{Param::Mode::MAX, 0, 0, 2, 2, 2, 2};
  234. checker.set_dtype(0, dtype::QuantizedS4(3.1415926f));
  235. param.format = Param::Format::NCHW;
  236. checker.set_param(param).exec({{20, 64, 22, 33}, {}});
  237. param.mode = Param::Mode::AVERAGE;
  238. checker.set_param(param).exec({{20, 96, 22, 33}, {}});
  239. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  240. checker.set_param(param).exec({{20, 24, 22, 33}, {}});
  241. checker.set_dtype(0, dtype::Quantized4Asymm(3.1415926f, 3));
  242. param.format = Param::Format::NCHW;
  243. checker.set_param(param).exec({{20, 64, 22, 33}, {}});
  244. param.mode = Param::Mode::AVERAGE;
  245. checker.set_param(param).exec({{20, 96, 22, 33}, {}});
  246. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  247. checker.set_param(param).exec({{20, 24, 22, 33}, {}});
  248. }
  249. TEST_F(CUDA, POOLING_FORWARD_NCHW4_NCHW32) {
  250. require_compute_capability(7, 5);
  251. using Param = param::Pooling;
  252. Checker<Pooling> checker(handle_cuda());
  253. Param param;
  254. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  255. checker.set_epsilon(1 + 1e-3);
  256. checker.set_before_exec_callback(
  257. AlgoChecker<PoolingForward>(DEF_NAME(cudnnForward)));
  258. for (auto format : {Param::Format::NCHW4, Param::Format::NCHW32}) {
  259. param.format = format;
  260. param.mode = Param::Mode::MAX;
  261. checker.set_param(param).exec({{4, 3, 28, 28, 32}, {}});
  262. param.mode = Param::Mode::AVERAGE;
  263. checker.set_param(param).exec({{4, 3, 28, 28, 64}, {}});
  264. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  265. checker.set_param(param).exec({{4, 3, 28, 28, 32}, {}});
  266. }
  267. }
  268. #if CUDNN_VERSION >= 7500
  269. TEST_F(CUDA, POOLING_FORWARD_NCHW32) {
  270. require_compute_capability(7, 5);
  271. using Param = param::Pooling;
  272. Checker<Pooling> checker(handle_cuda());
  273. Param param;
  274. auto i8_min = std::numeric_limits<int8_t>().min();
  275. auto i8_max = std::numeric_limits<int8_t>().max();
  276. UniformIntRNG int_rng{i8_min, i8_max};
  277. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  278. checker.set_before_exec_callback(
  279. AlgoChecker<PoolingForward>("CUDA_NCHW32"));
  280. param.format = Param::Format::NCHW32;
  281. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  282. checker.set_param(param).exec({{64, 8, 28, 28, 32}, {}});
  283. param.mode = Param::Mode::AVERAGE;
  284. checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
  285. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  286. checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
  287. }
  288. #endif
  289. TEST_F(CUDA, POOLING_FORWARD_NCHW64_Q4) {
  290. require_compute_capability(7, 5);
  291. using Param = param::Pooling;
  292. Checker<Pooling> checker(handle_cuda());
  293. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  294. UniformIntRNG int_rng{-8, 7};
  295. checker.set_dtype(0, dtype::QuantizedS4(1.f));
  296. param.format = Param::Format::NCHW64;
  297. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  298. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  299. param.mode = Param::Mode::AVERAGE;
  300. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  301. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  302. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  303. }
  304. TEST_F(CUDA, POOLING_FORWARD_NCHW64_U4) {
  305. require_compute_capability(7, 5);
  306. using Param = param::Pooling;
  307. Checker<Pooling> checker(handle_cuda());
  308. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  309. UniformIntRNG int_rng{0, 15};
  310. checker.set_dtype(0, dtype::Quantized4Asymm(1.f, 3));
  311. param.format = Param::Format::NCHW64;
  312. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  313. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  314. param.mode = Param::Mode::AVERAGE;
  315. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  316. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  317. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  318. }
  319. TEST_F(CUDA, POOLING_FORWARD_NHWC_Q4) {
  320. require_compute_capability(7, 5);
  321. using Param = param::Pooling;
  322. Checker<Pooling> checker(handle_cuda());
  323. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  324. UniformIntRNG int_rng{-8, 7};
  325. checker.set_dtype(0, dtype::QuantizedS4(1.f));
  326. param.format = Param::Format::NHWC;
  327. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  328. checker.set_param(param).exec({{2, 28, 28, 16}, {}});
  329. checker.set_param(param).exec({{2, 177, 233, 16}, {}});
  330. param.mode = Param::Mode::AVERAGE;
  331. checker.set_param(param).exec({{3, 13, 28, 32}, {}});
  332. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  333. checker.set_param(param).exec({{4, 29, 28, 64}, {}});
  334. }
  335. TEST_F(CUDA, POOLING_FORWARD_NHWC_U4) {
  336. require_compute_capability(7, 5);
  337. using Param = param::Pooling;
  338. Checker<Pooling> checker(handle_cuda());
  339. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  340. UniformIntRNG int_rng{0, 15};
  341. checker.set_dtype(0, dtype::Quantized4Asymm(1.f, 3));
  342. param.format = Param::Format::NHWC;
  343. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  344. checker.set_param(param).exec({{2, 28, 28, 16}, {}});
  345. checker.set_param(param).exec({{2, 177, 233, 16}, {}});
  346. param.mode = Param::Mode::AVERAGE;
  347. checker.set_param(param).exec({{3, 13, 28, 32}, {}});
  348. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  349. checker.set_param(param).exec({{4, 29, 28, 64}, {}});
  350. }
  351. TEST_F(CUDA, POOLING_FORWARD_CHWN4) {
  352. require_compute_capability(6, 1);
  353. using Param = param::Pooling;
  354. Checker<Pooling> checker(handle_cuda());
  355. Param param;
  356. auto i8_min = std::numeric_limits<int8_t>().min();
  357. auto i8_max = std::numeric_limits<int8_t>().max();
  358. UniformIntRNG int_rng{i8_min, i8_max};
  359. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  360. param.format = Param::Format::CHWN4;
  361. for (auto mode : {Param::Mode::MAX, Param::Mode::AVERAGE,
  362. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING}) {
  363. param.mode = mode;
  364. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  365. checker.set_param(param).exec({{8, 28, 28, 64, 4}, {}});
  366. checker.set_param(param).exec({{8, 28, 28, 15, 4}, {}});
  367. checker.set_param(param).exec({{8, 28, 28, 30, 4}, {}});
  368. }
  369. }
  370. TEST_F(CUDA, POOLING_FORWARD_INT8_NCHW4) {
  371. require_compute_capability(6, 1);
  372. using Param = param::Pooling;
  373. Checker<Pooling> checker(handle_cuda());
  374. Param param;
  375. auto i8_min = std::numeric_limits<int8_t>().min();
  376. auto i8_max = std::numeric_limits<int8_t>().max();
  377. UniformIntRNG int_rng{i8_min, i8_max};
  378. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  379. param.format = Param::Format::NCHW4;
  380. checker.set_before_exec_callback(AlgoChecker<PoolingForward>("CUDA_NCHW4"));
  381. for (auto mode : {Param::Mode::MAX, Param::Mode::AVERAGE,
  382. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING}) {
  383. param.mode = mode;
  384. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  385. checker.set_param(param).exec({{64, 8, 28, 28, 4}, {}});
  386. checker.set_param(param).exec({{15, 8, 28, 28, 4}, {}});
  387. checker.set_param(param).exec({{30, 8, 28, 28, 4}, {}});
  388. }
  389. }
  390. TEST_F(CUDA, POOLING_FORWARD_INT8_NCHW32) {
  391. require_compute_capability(6, 1);
  392. using Param = param::Pooling;
  393. Checker<Pooling> checker(handle_cuda());
  394. Param param;
  395. auto i8_min = std::numeric_limits<int8_t>().min();
  396. auto i8_max = std::numeric_limits<int8_t>().max();
  397. UniformIntRNG int_rng{i8_min, i8_max};
  398. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  399. checker.set_before_exec_callback(
  400. AlgoChecker<PoolingForward>("CUDA_NCHW32"));
  401. param.format = Param::Format::NCHW32;
  402. for (auto mode : {Param::Mode::MAX, Param::Mode::AVERAGE,
  403. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING}) {
  404. param.mode = mode;
  405. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  406. checker.set_param(param).exec({{64, 8, 28, 28, 32}, {}});
  407. checker.set_param(param).exec({{15, 8, 28, 28, 32}, {}});
  408. checker.set_param(param).exec({{30, 8, 28, 28, 32}, {}});
  409. }
  410. }
  411. #if MEGDNN_WITH_BENCHMARK
  412. TEST_F(CUDA, BENCHMARK_POOLING_CHWN4) {
  413. CUBenchmarker<Pooling> bencher(handle_cuda());
  414. size_t nr_times = 1000;
  415. bencher.set_times(nr_times);
  416. using Param = param::Pooling;
  417. Param param;
  418. auto run_bench = [&](size_t N, size_t C, size_t H, size_t W, size_t stride,
  419. size_t padding, size_t window,
  420. Param::Mode mode = Param::Mode::MAX) {
  421. param.mode = mode;
  422. param.pad_h = param.pad_w = padding;
  423. param.window_h = param.window_w = window;
  424. param.stride_h = param.stride_w = stride;
  425. param.format = Param::Format::NCHW4;
  426. bencher.set_dtype(0, dtype::QuantizedS8{0.1f});
  427. bencher.set_param(param);
  428. auto time_cudnn = bencher.execs({{N, C / 4, H, W, 4}, {}}) / nr_times;
  429. param.format = Param::Format::CHWN4;
  430. bencher.set_param(param);
  431. auto time_chwn4 = bencher.execs({{C / 4, H, W, N, 4}, {}}) / nr_times;
  432. auto time_nchw32 =
  433. bencher.execs({{N, C / 32, H, W, 32}, {}}) / nr_times;
  434. size_t oh = infer_conv_shape(H, window, stride, padding),
  435. ow = infer_conv_shape(W, window, stride, padding);
  436. float io = (N * C * H * W + N * C * oh * ow) * sizeof(int8_t);
  437. printf("time(cudnn)=%.2f ms, time(chwn4)=%.2f ms, time(nchw32)=%.2f "
  438. "ms, "
  439. "bandwidth(cudnn)=%.2f Gb/s, bandwidth(chwn4)=%.2f Gb/s, "
  440. "bandwidth(nchw32)=%.2f Gb/s\n",
  441. time_cudnn, time_chwn4, time_nchw32, io / (1e6 * time_cudnn),
  442. io / (1e6 * time_chwn4), io / (1e6 * time_nchw32));
  443. };
  444. run_bench(64, 64, 112, 112, 2, 1, 2);
  445. run_bench(256, 64, 112, 112, 2, 1, 2);
  446. run_bench(64, 64, 112, 112, 2, 1, 2, Param::Mode::AVERAGE);
  447. run_bench(256, 64, 112, 112, 2, 1, 2, Param::Mode::AVERAGE);
  448. run_bench(64, 64, 112, 112, 2, 1, 2,
  449. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING);
  450. run_bench(256, 64, 112, 112, 2, 1, 2,
  451. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING);
  452. }
  453. #endif
  454. } // namespace test
  455. } // namespace megdnn
  456. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台