You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network_options.cpp 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /**
  2. * \file test/test_network_options.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "../src/common.h"
  14. #include "../src/mge/network_impl.h"
  15. #include "../src/misc.h"
  16. #include "lite/global.h"
  17. #include "megbrain/tensor.h"
  18. #include "test_common.h"
  19. #include <string.h>
  20. #include <chrono>
  21. #include <memory>
  22. #include <random>
  23. using namespace lite;
  24. TEST(TestNetWorkOptions, no_var_sanity_check_and_record) {
  25. Config config;
  26. auto tensor = get_input_data("./input_data.npy");
  27. std::string model_path = "./shufflenet.mge";
  28. std::string input_name = "data";
  29. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  30. config.options.var_sanity_check_first_run = false;
  31. config.options.comp_node_seq_record_level = 1;
  32. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  33. network->load_model(model_path);
  34. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  35. auto src_ptr = tensor->get_memory_ptr();
  36. auto src_layout = tensor->get_layout();
  37. input_tensor->reset(src_ptr, src_layout);
  38. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  39. auto result_tensor = std::make_shared<Tensor>(
  40. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  41. void* out_data = result_tensor->get_memory_ptr();
  42. output_tensor->reset(out_data, result_tensor->get_layout());
  43. network->forward();
  44. network->wait();
  45. compare_lite_tensor<float>(output_tensor, result_mgb);
  46. }
  47. TEST(TestNetWorkOptions, const_shape) {
  48. Config config;
  49. auto tensor = get_input_data("./input_data.npy");
  50. std::string model_path = "./shufflenet.mge";
  51. std::string input_name = "data";
  52. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  53. config.options.var_sanity_check_first_run = false;
  54. config.options.const_shape = true;
  55. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  56. network->load_model(model_path);
  57. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  58. auto src_ptr = tensor->get_memory_ptr();
  59. auto src_layout = tensor->get_layout();
  60. input_tensor->reset(src_ptr, src_layout);
  61. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  62. auto result_tensor = std::make_shared<Tensor>(
  63. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  64. void* out_data = result_tensor->get_memory_ptr();
  65. output_tensor->reset(out_data, result_tensor->get_layout());
  66. network->forward();
  67. network->wait();
  68. compare_lite_tensor<float>(output_tensor, result_mgb);
  69. }
  70. TEST(TestNetWorkOptions, NCHW44) {
  71. Config config;
  72. auto tensor = get_input_data("./input_data.npy");
  73. std::string model_path = "./shufflenet.mge";
  74. std::string input_name = "data";
  75. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  76. config.options.var_sanity_check_first_run = false;
  77. config.options.enable_nchw44 = true;
  78. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  79. Runtime::set_network_algo_policy(
  80. network, LiteAlgoSelectStrategy::LITE_ALGO_PROFILE |
  81. LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE);
  82. network->load_model(model_path);
  83. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  84. auto src_ptr = tensor->get_memory_ptr();
  85. auto src_layout = tensor->get_layout();
  86. input_tensor->reset(src_ptr, src_layout);
  87. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  88. auto result_tensor = std::make_shared<Tensor>(
  89. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  90. void* out_data = result_tensor->get_memory_ptr();
  91. output_tensor->reset(out_data, result_tensor->get_layout());
  92. network->forward();
  93. network->wait();
  94. compare_lite_tensor<float>(output_tensor, result_mgb);
  95. }
  96. TEST(TestNetWorkOptions, test_cache) {
  97. Config config;
  98. auto tensor = get_input_data("./input_data.npy");
  99. std::string model_path = "./shufflenet.mge";
  100. std::string input_name = "data";
  101. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  102. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  103. set_persistent_cache("./algo_cache.txt", true);
  104. network->load_model(model_path);
  105. Runtime::set_network_algo_policy(
  106. network, LiteAlgoSelectStrategy::LITE_ALGO_PROFILE |
  107. LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE);
  108. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  109. auto src_ptr = tensor->get_memory_ptr();
  110. auto src_layout = tensor->get_layout();
  111. input_tensor->reset(src_ptr, src_layout);
  112. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  113. auto result_tensor = std::make_shared<Tensor>(
  114. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  115. void* out_data = result_tensor->get_memory_ptr();
  116. output_tensor->reset(out_data, result_tensor->get_layout());
  117. network->forward();
  118. network->wait();
  119. compare_lite_tensor<float>(output_tensor, result_mgb);
  120. dump_persistent_cache("./algo_cache.txt");
  121. ASSERT_TRUE(fopen("./algo_cache.txt", "r"));
  122. set_persistent_cache("./algo_cache.txt");
  123. network->forward();
  124. network->wait();
  125. compare_lite_tensor<float>(output_tensor, result_mgb);
  126. }
  127. TEST(TestNetWorkOptions, FastRunIgnorBatch) {
  128. Config config;
  129. auto tensor = get_input_data("./input_data.npy");
  130. std::string model_path = "./shufflenet.mge";
  131. std::string input_name = "data";
  132. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  133. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  134. set_persistent_cache("./algo_cache.txt");
  135. network->load_model(model_path);
  136. Runtime::set_network_algo_policy(
  137. network,
  138. LiteAlgoSelectStrategy::LITE_ALGO_PROFILE |
  139. LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE,
  140. 1, true);
  141. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  142. auto src_ptr = tensor->get_memory_ptr();
  143. auto src_layout = tensor->get_layout();
  144. input_tensor->reset(src_ptr, src_layout);
  145. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  146. auto result_tensor = std::make_shared<Tensor>(
  147. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  148. void* out_data = result_tensor->get_memory_ptr();
  149. output_tensor->reset(out_data, result_tensor->get_layout());
  150. network->forward();
  151. network->wait();
  152. compare_lite_tensor<float>(output_tensor, result_mgb);
  153. dump_persistent_cache("./algo_cache.txt");
  154. ASSERT_TRUE(fopen("./algo_cache.txt", "r"));
  155. }
  156. #if LITE_WITH_CUDA
  157. TEST(TestNetWorkOptions, NCHW4) {
  158. Config config;
  159. config.device_type = LiteDeviceType::LITE_CUDA;
  160. auto tensor = get_input_data("./input_data.npy");
  161. std::string model_path = "./shufflenet.mge";
  162. std::string input_name = "data";
  163. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  164. config.options.enable_nchw4 = 1;
  165. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  166. network->load_model(model_path);
  167. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  168. auto src_ptr = tensor->get_memory_ptr();
  169. auto src_layout = tensor->get_layout();
  170. input_tensor->reset(src_ptr, src_layout);
  171. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  172. auto result_tensor = std::make_shared<Tensor>(
  173. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  174. void* out_data = result_tensor->get_memory_ptr();
  175. output_tensor->reset(out_data, result_tensor->get_layout());
  176. network->forward();
  177. network->wait();
  178. compare_lite_tensor<float>(output_tensor, result_mgb);
  179. }
  180. TEST(TestNetWorkOptions, NCHW32) {
  181. Config config;
  182. config.device_type = LiteDeviceType::LITE_CUDA;
  183. auto tensor = get_input_data("./input_data.npy");
  184. std::string model_path = "./shufflenet.mge";
  185. std::string input_name = "data";
  186. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  187. config.options.enable_nchw32 = 1;
  188. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  189. Runtime::set_network_algo_policy(
  190. network, LiteAlgoSelectStrategy::LITE_ALGO_PROFILE |
  191. LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE);
  192. network->load_model(model_path);
  193. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  194. auto src_ptr = tensor->get_memory_ptr();
  195. auto src_layout = tensor->get_layout();
  196. input_tensor->reset(src_ptr, src_layout);
  197. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  198. auto result_tensor = std::make_shared<Tensor>(
  199. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  200. void* out_data = result_tensor->get_memory_ptr();
  201. output_tensor->reset(out_data, result_tensor->get_layout());
  202. network->forward();
  203. network->wait();
  204. compare_lite_tensor<float>(output_tensor, result_mgb);
  205. }
  206. TEST(TestNetWorkOptions, jit_level) {
  207. Config config;
  208. config.device_type = LiteDeviceType::LITE_CUDA;
  209. auto tensor = get_input_data("./input_data.npy");
  210. std::string model_path = "./shufflenet.mge";
  211. std::string input_name = "data";
  212. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  213. config.options.jit_level = 1;
  214. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  215. network->load_model(model_path);
  216. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  217. auto src_ptr = tensor->get_memory_ptr();
  218. auto src_layout = tensor->get_layout();
  219. input_tensor->reset(src_ptr, src_layout);
  220. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  221. auto result_tensor = std::make_shared<Tensor>(
  222. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  223. void* out_data = result_tensor->get_memory_ptr();
  224. output_tensor->reset(out_data, result_tensor->get_layout());
  225. network->forward();
  226. network->wait();
  227. compare_lite_tensor<float>(output_tensor, result_mgb);
  228. }
  229. #endif
  230. #if MGB_ENABLE_TENSOR_RT && LITE_WITH_CUDA
  231. TEST(TestNetWorkOptions, TensorRT) {
  232. Config config;
  233. config.device_type = LiteDeviceType::LITE_CUDA;
  234. auto tensor = get_input_data("./input_data.npy");
  235. std::string model_path = "./shufflenet.mge";
  236. std::string input_name = "data";
  237. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  238. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  239. Runtime::use_tensorrt(network);
  240. set_tensor_rt_cache("./tensorrt_cache.txt");
  241. network->load_model(model_path);
  242. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  243. auto src_ptr = tensor->get_memory_ptr();
  244. auto src_layout = tensor->get_layout();
  245. input_tensor->reset(src_ptr, src_layout);
  246. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  247. auto result_tensor = std::make_shared<Tensor>(
  248. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  249. void* out_data = result_tensor->get_memory_ptr();
  250. output_tensor->reset(out_data, result_tensor->get_layout());
  251. network->forward();
  252. network->wait();
  253. dump_tensor_rt_cache();
  254. ASSERT_TRUE(fopen("./tensorrt_cache.txt", "r"));
  255. compare_lite_tensor<float>(output_tensor, result_mgb);
  256. }
  257. #endif
  258. #endif
  259. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}