You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv_bias.cpp 59 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507
  1. #include "test/common/conv_bias.h"
  2. #include "megdnn/opr_param_defs.h"
  3. #include "src/common/utils.h"
  4. #include "test/common/benchmarker.h"
  5. namespace megdnn {
  6. namespace test {
  7. namespace conv_bias {
  8. namespace {
  9. void convert_arg_from_nchw4_to_chwn4(TestArg& arg) {
  10. arg.param.format = param::ConvBias::Format::CHWN4;
  11. arg.src = TensorShape{arg.src[1], arg.src[2], arg.src[3], arg.src[0], 4};
  12. arg.filter =
  13. TensorShape{arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0], 4};
  14. arg.bias = TensorShape{arg.bias[1], arg.bias[2], arg.bias[3], arg.bias[0], 4};
  15. }
  16. } // namespace
  17. std::vector<TestArg> get_args() {
  18. std::vector<TestArg> args;
  19. param::ConvBias cur_param;
  20. using NLMode = param::ConvBias::NonlineMode;
  21. // clang-format off
  22. for (auto nlmode :
  23. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  24. for (size_t i : {9, 63}) {
  25. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  26. cur_param.nonlineMode = nlmode;
  27. // fallback case
  28. args.emplace_back(cur_param, TensorShape{10, 1, i, i},
  29. TensorShape{1, 1, 8, 8}, TensorShape{1, 1, 1, 1});
  30. args.emplace_back(cur_param, TensorShape{10, 4, i, i},
  31. TensorShape{3, 4, 4, 4}, TensorShape{1, 3, 1, 1});
  32. cur_param.mode = param::ConvBias::Mode::CONVOLUTION;
  33. args.emplace_back(cur_param, TensorShape{10, 4, i, i},
  34. TensorShape{1, 4, 3, 3}, TensorShape{1, 1, 1, 1});
  35. args.emplace_back(cur_param, TensorShape{1, 4, i, i},
  36. TensorShape{5, 4, 3, 3}, TensorShape{1, 5, 1, 1});
  37. } }
  38. // clang-format on
  39. return args;
  40. }
  41. std::vector<TestArg> get_chanwise_args() {
  42. std::vector<TestArg> args;
  43. param::ConvBias cur_param;
  44. using NLMode = param::ConvBias::NonlineMode;
  45. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  46. cur_param.sparse = ConvBias::Param::Sparse::GROUP;
  47. for (auto nlmode :
  48. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  49. cur_param.nonlineMode = nlmode;
  50. // simple case
  51. for (uint32_t s : {1, 2})
  52. for (uint32_t p : {0, 1, 2, 3})
  53. for (size_t f : {2, 3, 5, 7})
  54. for (size_t ocpg : {1, 3}) {
  55. cur_param.pad_h = cur_param.pad_w = p;
  56. cur_param.stride_h = cur_param.stride_w = s;
  57. args.emplace_back(
  58. cur_param, TensorShape{2, 3, 16, 16},
  59. TensorShape{3, ocpg, 1, f, f},
  60. TensorShape{1, 3 * ocpg, 1, 1});
  61. }
  62. args.emplace_back(
  63. cur_param, TensorShape{32, 12, 20, 10}, TensorShape{12, 2, 1, 4, 5},
  64. TensorShape{1, 24, 1, 1});
  65. // padding larger than kern
  66. args.emplace_back(
  67. cur_param, TensorShape{32, 12, 20, 10}, TensorShape{12, 2, 1, 4, 5},
  68. TensorShape{1, 24, 1, 1});
  69. }
  70. return args;
  71. }
  72. std::vector<TestArg> get_args_1x1() {
  73. std::vector<TestArg> args;
  74. param::ConvBias cur_param;
  75. using NLMode = param::ConvBias::NonlineMode;
  76. for (auto nlmode :
  77. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  78. cur_param.nonlineMode = nlmode;
  79. for (size_t i : {16, 19}) {
  80. cur_param.mode = param::ConvBias::Mode::CONVOLUTION;
  81. args.emplace_back(
  82. cur_param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 1, 1},
  83. TensorShape{1, 30, 1, 1});
  84. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  85. args.emplace_back(
  86. cur_param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 1, 1},
  87. TensorShape{1, 30, 1, 1});
  88. }
  89. }
  90. return args;
  91. }
  92. std::vector<TestArg> get_winograd_args(size_t kernel_size) {
  93. std::vector<TestArg> args;
  94. param::ConvBias cur_param;
  95. using NLMode = param::ConvBias::NonlineMode;
  96. // clang-format off
  97. for (auto nlmode :
  98. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  99. for (size_t ic : {1, 3, 4, 7}) {
  100. for (size_t oc : {1, 3, 4, 7}) {
  101. for (size_t i : {9, 63}) {
  102. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  103. cur_param.nonlineMode = nlmode;
  104. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  105. cur_param.pad_h = cur_param.pad_w = 0;
  106. //! no bias
  107. args.emplace_back(cur_param, TensorShape{1, ic, i, i},
  108. TensorShape{oc, ic, kernel_size, kernel_size},
  109. TensorShape{});
  110. //! bias
  111. args.emplace_back(
  112. cur_param, TensorShape{2, ic, i, i},
  113. TensorShape{oc, ic, kernel_size, kernel_size},
  114. TensorShape{2, oc, (i + cur_param.pad_h * 2 - kernel_size) + 1,
  115. (i + cur_param.pad_w * 2 - kernel_size) + 1});
  116. //! bias channel
  117. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  118. TensorShape{oc, ic, kernel_size, kernel_size},
  119. TensorShape{1, oc, 1, 1});
  120. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  121. args.emplace_back(
  122. cur_param, TensorShape{2, 2 * ic, i, i},
  123. TensorShape{2, oc, ic, kernel_size, kernel_size},
  124. TensorShape{2, 2 * oc,
  125. (i + cur_param.pad_h * 2 - kernel_size) + 1,
  126. (i + cur_param.pad_w * 2 - kernel_size) + 1});
  127. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  128. TensorShape{2, oc, ic, kernel_size, kernel_size},
  129. TensorShape{1, 2 * oc, 1, 1});
  130. } } } }
  131. // clang-format on
  132. //! test for multi-thread OC parallel
  133. for (size_t i : {9, 63}) {
  134. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  135. cur_param.pad_h = cur_param.pad_w = 1;
  136. args.emplace_back(
  137. cur_param, TensorShape{1, 8, i, i},
  138. TensorShape{128, 8, kernel_size, kernel_size},
  139. TensorShape{1, 128, 1, 1});
  140. args.emplace_back(
  141. cur_param, TensorShape{2, 8, i, i},
  142. TensorShape{128, 8, kernel_size, kernel_size},
  143. TensorShape{1, 128, 1, 1});
  144. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  145. args.emplace_back(
  146. cur_param, TensorShape{2, 2 * 8, i, i},
  147. TensorShape{2, 128, 8, kernel_size, kernel_size},
  148. TensorShape{1, 2 * 128, 1, 1});
  149. }
  150. return args;
  151. }
  152. std::vector<TestArg> get_winograd_mk_packed_args(size_t pack_size) {
  153. std::vector<TestArg> args;
  154. param::ConvBias cur_param;
  155. using NLMode = param::ConvBias::NonlineMode;
  156. // clang-format off
  157. for (auto nlmode :
  158. {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
  159. for (size_t ic : {pack_size, 2 * pack_size}) {
  160. for (size_t oc : {pack_size, 2 * pack_size}) {
  161. for (size_t i : {9, 63}) {
  162. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  163. cur_param.nonlineMode = nlmode;
  164. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  165. cur_param.pad_h = cur_param.pad_w = 1;
  166. args.emplace_back(cur_param, TensorShape{1, pack_size, 3, 3},
  167. TensorShape{pack_size, pack_size, 3, 3},
  168. TensorShape{1, pack_size, 1, 1});
  169. //! no bias
  170. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  171. TensorShape{oc, ic, 3, 3}, TensorShape{});
  172. //! bias
  173. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  174. TensorShape{oc, ic, 3, 3}, TensorShape{2, oc, i, i});
  175. //! bias channel
  176. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  177. TensorShape{oc, ic, 3, 3}, TensorShape{1, oc, 1, 1});
  178. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  179. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  180. TensorShape{2, oc, ic, 3, 3},
  181. TensorShape{2, 2 * oc, i, i});
  182. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  183. TensorShape{2, oc, ic, 3, 3},
  184. TensorShape{1, 2 * oc, 1, 1});
  185. } } } }
  186. // clang-format on
  187. //! test for multi-thread OC parallel
  188. for (size_t i : {9, 63}) {
  189. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  190. cur_param.pad_h = cur_param.pad_w = 1;
  191. args.emplace_back(
  192. cur_param, TensorShape{1, 8, i, i}, TensorShape{128, 8, 3, 3},
  193. TensorShape{1, 128, 1, 1});
  194. args.emplace_back(
  195. cur_param, TensorShape{2, 8, i, i}, TensorShape{128, 8, 3, 3},
  196. TensorShape{1, 128, 1, 1});
  197. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  198. args.emplace_back(
  199. cur_param, TensorShape{2, 2 * 8, i, i}, TensorShape{2, 128, 8, 3, 3},
  200. TensorShape{1, 2 * 128, 1, 1});
  201. }
  202. return args;
  203. }
  204. std::vector<TestArg> get_quantized_winograd_mk_packed_args(
  205. size_t pack_size, bool compute_float32) {
  206. std::vector<TestArg> args;
  207. param::ConvBias cur_param;
  208. using NLMode = param::ConvBias::NonlineMode;
  209. // clang-format off
  210. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  211. for (size_t ic : {pack_size, 2 * pack_size}) {
  212. for (size_t oc : {pack_size, 2 * pack_size}) {
  213. for (size_t i : {9, 63}) {
  214. cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
  215. cur_param.nonlineMode = nlmode;
  216. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  217. cur_param.pad_h = cur_param.pad_w = 1;
  218. if(compute_float32){
  219. cur_param.compute_mode = param::ConvBias::ComputeMode::FLOAT32;
  220. }
  221. args.emplace_back(cur_param, TensorShape{1, pack_size, 3, 3},
  222. TensorShape{pack_size, pack_size, 3, 3},
  223. TensorShape{1, pack_size, 1, 1});
  224. //! no bias
  225. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  226. TensorShape{oc, ic, 3, 3}, TensorShape{});
  227. //! bias
  228. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  229. TensorShape{oc, ic, 3, 3}, TensorShape{2, oc, i, i});
  230. //! bias channel
  231. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  232. TensorShape{oc, ic, 3, 3}, TensorShape{1, oc, 1, 1});
  233. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  234. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  235. TensorShape{2, oc, ic, 3, 3},
  236. TensorShape{2, 2 * oc, i, i});
  237. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  238. TensorShape{2, oc, ic, 3, 3},
  239. TensorShape{1, 2 * oc, 1, 1});
  240. } } } }
  241. // clang-format on
  242. //! test for multi-thread OC parallel
  243. for (size_t i : {9, 63}) {
  244. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  245. cur_param.pad_h = cur_param.pad_w = 1;
  246. args.emplace_back(
  247. cur_param, TensorShape{1, 8, i, i}, TensorShape{128, 8, 3, 3},
  248. TensorShape{1, 128, 1, 1});
  249. args.emplace_back(
  250. cur_param, TensorShape{2, 8, i, i}, TensorShape{128, 8, 3, 3},
  251. TensorShape{1, 128, 1, 1});
  252. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  253. args.emplace_back(
  254. cur_param, TensorShape{2, 2 * 8, i, i}, TensorShape{2, 128, 8, 3, 3},
  255. TensorShape{1, 2 * 128, 1, 1});
  256. }
  257. return args;
  258. }
  259. std::vector<TestArg> get_quantized_args_with_nlmode(
  260. param::ConvBias::NonlineMode nlmode) {
  261. std::vector<TestArg> args;
  262. param::ConvBias cur_param;
  263. // clang-format off
  264. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION,
  265. param::ConvBias::Mode::CONVOLUTION}) {
  266. for (size_t ic : {1, 2, 3, 4, 5, 7}) {
  267. for (size_t oc : {1, 2, 3, 4, 5, 7}) {
  268. for (size_t i : {9, 63}) {
  269. cur_param.mode = mode;
  270. cur_param.nonlineMode = nlmode;
  271. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  272. cur_param.pad_h = cur_param.pad_w = 1;
  273. //! no bias
  274. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  275. TensorShape{oc, ic, 3, 3}, TensorShape{});
  276. //! bias
  277. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  278. TensorShape{oc, ic, 3, 3}, TensorShape{2, oc, i, i});
  279. //! bias channel
  280. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  281. TensorShape{oc, ic, 3, 3}, TensorShape{1, oc, 1, 1});
  282. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  283. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  284. TensorShape{2, oc, ic, 3, 3},
  285. TensorShape{2, 2 * oc, i, i});
  286. args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i},
  287. TensorShape{2, oc, ic, 3, 3},
  288. TensorShape{1, 2 * oc, 1, 1});
  289. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  290. cur_param.pad_h = cur_param.pad_w = 0;
  291. args.emplace_back(cur_param, TensorShape{2, ic, i, i},
  292. TensorShape{oc, ic, 1, 1}, TensorShape{});
  293. } } } }
  294. // clang-format on
  295. return args;
  296. }
  297. std::vector<TestArg> get_quantized_args() {
  298. using NLMode = param::ConvBias::NonlineMode;
  299. auto arg_p1 = get_quantized_args_with_nlmode(NLMode::IDENTITY),
  300. arg_p2 = get_quantized_args_with_nlmode(NLMode::RELU),
  301. arg_p3 = get_quantized_args_with_nlmode(NLMode::H_SWISH);
  302. std::vector<TestArg> args;
  303. args.insert(args.end(), arg_p1.begin(), arg_p1.end());
  304. args.insert(args.end(), arg_p2.begin(), arg_p2.end());
  305. args.insert(args.end(), arg_p3.begin(), arg_p3.end());
  306. return args;
  307. }
  308. std::vector<TestArg> get_int8_nchw4_args(size_t kernel_size) {
  309. std::vector<TestArg> args;
  310. param::ConvBias cur_param;
  311. using NLMode = param::ConvBias::NonlineMode;
  312. // clang-format off
  313. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  314. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  315. for (size_t b : {64, 16}) {
  316. for (size_t ic : {16, 32}) {
  317. for (size_t oc : {16, 32}) {
  318. for (size_t h : {8}) {
  319. for (size_t w : {8, 11}) {
  320. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  321. for (size_t s : {2, 1}) {
  322. if (kernel_size == 7) {
  323. b = std::min(b, 32_z);
  324. }
  325. size_t f = kernel_size;
  326. cur_param.mode = mode;
  327. cur_param.nonlineMode = nlmode;
  328. cur_param.format = param::ConvBias::Format::NCHW4;
  329. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  330. cur_param.pad_h = cur_param.pad_w = p;
  331. cur_param.stride_h = cur_param.stride_w = s;
  332. //! bias channel
  333. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  334. TensorShape{oc, ic / 4, f, f, 4},
  335. TensorShape{1, oc / 4, 1, 1, 4});
  336. } } } } } } } } }
  337. // clang-format on
  338. return args;
  339. }
  340. std::vector<TestArg> get_int8_nchw44_args(
  341. size_t kernel_size, size_t pack_size, bool compute_float32, bool group_mode) {
  342. std::vector<TestArg> args;
  343. param::ConvBias cur_param;
  344. megdnn_assert(pack_size > 0, "not support pack_size");
  345. megdnn_assert(kernel_size > 0, "not support kernel_size");
  346. using NLMode = param::ConvBias::NonlineMode;
  347. // clang-format off
  348. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  349. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  350. for (size_t b : {1,2}) {
  351. for (size_t ic : {8,16}) {
  352. for (size_t oc : {8,16}) {
  353. for (size_t h : {9,23}) {
  354. for (size_t w : {9,23}) {
  355. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  356. for (size_t s : {1}) {
  357. if (kernel_size == 7) {
  358. b = std::min(b, 32_z);
  359. }
  360. size_t f = kernel_size;
  361. cur_param.mode = mode;
  362. cur_param.nonlineMode = nlmode;
  363. if (pack_size == 4){
  364. cur_param.format = param::ConvBias::Format::NCHW44;
  365. } else if(pack_size == 8){
  366. cur_param.format = param::ConvBias::Format::NCHW88;
  367. }
  368. if(compute_float32){
  369. cur_param.compute_mode =
  370. param::ConvBias::ComputeMode::FLOAT32;
  371. }
  372. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  373. cur_param.pad_h = cur_param.pad_w = p;
  374. cur_param.stride_h = cur_param.stride_w = s;
  375. if (!group_mode) {
  376. //! no bias
  377. args.emplace_back(cur_param,
  378. TensorShape{b, ic / pack_size, h, w, pack_size},
  379. TensorShape{oc / pack_size, ic / pack_size, f, f,
  380. pack_size, pack_size},
  381. TensorShape{});
  382. //! bias channel
  383. args.emplace_back(cur_param,
  384. TensorShape{b, ic / pack_size, h, w, pack_size},
  385. TensorShape{oc / pack_size, ic / pack_size, f, f,
  386. pack_size, pack_size},
  387. TensorShape{1, oc / pack_size, 1, 1, pack_size});
  388. //! bias
  389. args.emplace_back(
  390. cur_param, TensorShape{b, ic / pack_size, h, w, pack_size},
  391. TensorShape{oc / pack_size, ic / pack_size, f, f, pack_size,
  392. pack_size},
  393. TensorShape{b, oc / pack_size, (h - f + 2 * p) / s + 1,
  394. (w - f + 2 * p) / s + 1, pack_size});
  395. } else {
  396. cur_param.sparse = param::ConvBias::Sparse::GROUP;
  397. args.emplace_back(
  398. cur_param,
  399. TensorShape{2, 2 * ic / pack_size, h, w, pack_size},
  400. TensorShape{2, oc / pack_size, ic / pack_size, 3, 3,
  401. pack_size, pack_size},
  402. TensorShape{2, 2 * oc / pack_size, (h - f + 2 * p) / s + 1,
  403. (w - f + 2 * p) / s + 1, pack_size});
  404. args.emplace_back(
  405. cur_param,
  406. TensorShape{2, 2 * ic / pack_size, h, w, pack_size},
  407. TensorShape{2, oc / pack_size, ic / pack_size, f, f,
  408. pack_size, pack_size},
  409. TensorShape{1, 2 * oc / pack_size, 1, 1, pack_size});
  410. args.emplace_back(
  411. cur_param,
  412. TensorShape{2, 2 * ic / pack_size, h, w, pack_size},
  413. TensorShape{2, oc / pack_size, ic / pack_size, f, f,
  414. pack_size, pack_size},
  415. TensorShape{});
  416. }
  417. } } } } } } } } }
  418. // clang-format on
  419. return args;
  420. }
  421. std::vector<TestArg> get_int8_nchw4_args_check_bounds(size_t kernel_size) {
  422. std::vector<TestArg> args;
  423. param::ConvBias cur_param;
  424. using NLMode = param::ConvBias::NonlineMode;
  425. // clang-format off
  426. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  427. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  428. for (size_t b : {7, 8, 4, 1}) {
  429. for (size_t ic : {16, 32}) {
  430. for (size_t oc : {16, 8, 4}) {
  431. for (size_t h : {8}) {
  432. for (size_t w : {8, 11}) {
  433. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  434. for (size_t s : {1, 2}) {
  435. size_t f = kernel_size;
  436. cur_param.mode = mode;
  437. cur_param.nonlineMode = nlmode;
  438. cur_param.format = param::ConvBias::Format::NCHW4;
  439. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  440. cur_param.pad_h = cur_param.pad_w = p;
  441. cur_param.stride_h = cur_param.stride_w = s;
  442. //! bias channel
  443. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  444. TensorShape{oc, ic / 4, f, f, 4},
  445. TensorShape{1, oc / 4, 1, 1, 4});
  446. } } } } } } } } }
  447. // clang-format on
  448. return args;
  449. }
  450. std::vector<TestArg> get_int8_nchw4_args_small_batch(size_t kernel_size) {
  451. std::vector<TestArg> args;
  452. param::ConvBias cur_param;
  453. using NLMode = param::ConvBias::NonlineMode;
  454. // clang-format off
  455. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  456. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  457. for (size_t b : {12, 8, 4}) {
  458. for (size_t ic : {16, 32}) {
  459. for (size_t oc : {16, 8, 4}) {
  460. for (size_t h : {8}) {
  461. for (size_t w : {8, 9, 10, 11, 12, 13, 14, 15, 16}) {
  462. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  463. for (size_t s : {1, 2}) {
  464. size_t f = kernel_size;
  465. cur_param.mode = mode;
  466. cur_param.nonlineMode = nlmode;
  467. cur_param.format = param::ConvBias::Format::NCHW4;
  468. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  469. cur_param.pad_h = cur_param.pad_w = p;
  470. cur_param.stride_h = cur_param.stride_w = s;
  471. //! bias channel
  472. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  473. TensorShape{oc, ic / 4, f, f, 4},
  474. TensorShape{1, oc / 4, 1, 1, 4});
  475. } } } } } } } } }
  476. // clang-format on
  477. return args;
  478. }
  479. std::vector<TestArg> get_int8_nchw4_small_channel_args(size_t kernel_size) {
  480. std::vector<TestArg> args;
  481. param::ConvBias cur_param;
  482. using NLMode = param::ConvBias::NonlineMode;
  483. // clang-format off
  484. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  485. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  486. for (size_t b : {64, 16}) {
  487. for (size_t ic : {4, 12}) {
  488. for (size_t oc : {128, 32}) {
  489. for (size_t h : {8}) {
  490. for (size_t w : {8, 11}) {
  491. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  492. for (size_t s : {1, 2}) {
  493. size_t f = kernel_size;
  494. cur_param.mode = mode;
  495. cur_param.nonlineMode = nlmode;
  496. cur_param.format =
  497. param::ConvBias::Format::NCHW4;
  498. cur_param.sparse =
  499. param::ConvBias::Sparse::DENSE;
  500. cur_param.pad_h = cur_param.pad_w = p;
  501. cur_param.stride_h =
  502. cur_param.stride_w = s;
  503. //! bias channel
  504. args.emplace_back(
  505. cur_param,
  506. TensorShape{b, ic / 4, h, w, 4},
  507. TensorShape{oc, ic / 4, f, f,
  508. 4},
  509. TensorShape{1, oc / 4, 1, 1,
  510. 4});
  511. } } } } } } } } }
  512. // clang-format on
  513. return args;
  514. }
  515. std::vector<TestArg> get_int8_nchw4_small_channel_args_check_bounds(
  516. size_t kernel_size) {
  517. std::vector<TestArg> args;
  518. param::ConvBias cur_param;
  519. using NLMode = param::ConvBias::NonlineMode;
  520. // clang-format off
  521. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU}) {
  522. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  523. for (size_t b : {8, 7, 4, 1}) {
  524. for (size_t ic : {4, 12}) {
  525. for (size_t oc : {16, 8, 12, 4}) {
  526. for (size_t h : {8}) {
  527. for (size_t w : {8, 11}) {
  528. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  529. for (size_t s : {1, 2}) {
  530. size_t f = kernel_size;
  531. cur_param.mode = mode;
  532. cur_param.nonlineMode = nlmode;
  533. cur_param.format = param::ConvBias::Format::NCHW4;
  534. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  535. cur_param.pad_h = cur_param.pad_w = p;
  536. cur_param.stride_h = cur_param.stride_w = s;
  537. //! bias channel
  538. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  539. TensorShape{oc, ic / 4, f, f, 4},
  540. TensorShape{1, oc / 4, 1, 1, 4});
  541. } } } } } } } } }
  542. // clang-format on
  543. return args;
  544. }
  545. std::vector<TestArg> get_int8_chwn4_args(size_t kernel_size) {
  546. auto args = get_int8_nchw4_args(kernel_size);
  547. for (auto& arg : args) {
  548. convert_arg_from_nchw4_to_chwn4(arg);
  549. }
  550. return args;
  551. }
  552. std::vector<TestArg> get_int8_chwn4_args_check_bounds(size_t kernel_size) {
  553. auto args = get_int8_nchw4_args_check_bounds(kernel_size);
  554. for (auto& arg : args) {
  555. convert_arg_from_nchw4_to_chwn4(arg);
  556. }
  557. return args;
  558. }
  559. std::vector<TestArg> get_int8_chwn4_small_channel_args(size_t kernel_size) {
  560. auto args = get_int8_nchw4_small_channel_args(kernel_size);
  561. for (auto& arg : args) {
  562. convert_arg_from_nchw4_to_chwn4(arg);
  563. }
  564. return args;
  565. }
  566. std::vector<TestArg> get_int8_chwn4_small_channel_args_check_bounds(
  567. size_t kernel_size) {
  568. auto args = get_int8_nchw4_small_channel_args_check_bounds(kernel_size);
  569. for (auto& arg : args) {
  570. convert_arg_from_nchw4_to_chwn4(arg);
  571. }
  572. return args;
  573. }
  574. std::vector<TestArg> get_int8_chwn4_args_small_batch(size_t kernel_size) {
  575. auto args = get_int8_nchw4_args_small_batch(kernel_size);
  576. for (auto& arg : args) {
  577. convert_arg_from_nchw4_to_chwn4(arg);
  578. }
  579. return args;
  580. }
  581. std::vector<TestArg> get_int8_nchw4_tensorcore_args(size_t kernel_size) {
  582. std::vector<TestArg> args;
  583. param::ConvBias cur_param;
  584. using NLMode = param::ConvBias::NonlineMode;
  585. // clang-format off
  586. for (auto nlmode : {NLMode::IDENTITY, NLMode::RELU, NLMode::H_SWISH}) {
  587. for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) {
  588. size_t b = 64, oc = 128;
  589. for (size_t ic : {32, 64}) {
  590. for (size_t h : {8}) {
  591. for (size_t w : {11}) {
  592. for (int p : {static_cast<int>(kernel_size / 2), 0}) {
  593. for (size_t s : {1, 2}) {
  594. size_t f = kernel_size;
  595. cur_param.mode = mode;
  596. cur_param.nonlineMode = nlmode;
  597. cur_param.format = param::ConvBias::Format::NCHW4;
  598. cur_param.sparse = param::ConvBias::Sparse::DENSE;
  599. cur_param.pad_h = cur_param.pad_w = p;
  600. cur_param.stride_h = cur_param.stride_w = s;
  601. //! bias channel
  602. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  603. TensorShape{oc, ic / 4, f, f, 4},
  604. TensorShape{1, oc / 4, 1, 1, 4});
  605. } } } } }
  606. } }
  607. // clang-format on
  608. return args;
  609. }
  610. std::vector<TestArg> get_int8_chwn4_tensorcore_args(size_t kernel_size) {
  611. auto args = get_int8_nchw4_tensorcore_args(kernel_size);
  612. for (auto& arg : args) {
  613. convert_arg_from_nchw4_to_chwn4(arg);
  614. }
  615. return args;
  616. }
  617. void check_conv_bias(
  618. DType src_dtype, DType filter_dtype, DType bias_dtype, DType dst_dtype,
  619. Handle* handle, const char* algo, param::ConvBias::Format format,
  620. const std::vector<TestArg>& args, bool fuse_z, bool stable_test) {
  621. megdnn_assert(
  622. (src_dtype.enumv() == filter_dtype.enumv()) ||
  623. (src_dtype.enumv() == DTypeEnum::Quantized4Asymm &&
  624. filter_dtype.enumv() == DTypeEnum::QuantizedS4));
  625. Checker<ConvBiasForward> checker(handle, !stable_test);
  626. if (algo) {
  627. checker.set_before_exec_callback(ConvBiasAlgoChecker<ConvBiasForward>(algo));
  628. }
  629. std::unique_ptr<RNG> rng;
  630. std::unique_ptr<RNG> flt_rng;
  631. std::unique_ptr<RNG> bias_rng;
  632. std::unique_ptr<RNG> const_rng;
  633. std::unique_ptr<RNG> zero_rng;
  634. // TODO: check range of rng
  635. if (src_dtype.enumv() == DTypeEnum::QuantizedS8) {
  636. rng = std::make_unique<UniformIntRNG>(-3, 3);
  637. flt_rng = std::make_unique<UniformIntRNG>(-3, 3);
  638. const_rng = std::make_unique<UniformIntRNG>(1, 1);
  639. zero_rng = std::make_unique<UniformIntRNG>(0, 0);
  640. megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32);
  641. bias_rng = std::make_unique<UniformIntRNG>(-50, 50);
  642. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1).set_max_avg_biased_error(
  643. 1e-3);
  644. } else if (src_dtype.enumv() == DTypeEnum::Quantized4Asymm) {
  645. rng = std::make_unique<UniformIntRNG>(0, 6);
  646. flt_rng = std::make_unique<UniformIntRNG>(-3, 3);
  647. const_rng = std::make_unique<UniformIntRNG>(1, 1);
  648. zero_rng = std::make_unique<UniformIntRNG>(0, 0);
  649. megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32);
  650. bias_rng = std::make_unique<UniformIntRNG>(-50, 50);
  651. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1).set_max_avg_biased_error(
  652. 1e-3);
  653. } else if (src_dtype.enumv() == DTypeEnum::QuantizedS4) {
  654. rng = std::make_unique<UniformIntRNG>(-3, 3);
  655. flt_rng = std::make_unique<UniformIntRNG>(-3, 3);
  656. const_rng = std::make_unique<UniformIntRNG>(1, 1);
  657. zero_rng = std::make_unique<UniformIntRNG>(0, 0);
  658. megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32);
  659. bias_rng = std::make_unique<UniformIntRNG>(-50, 50);
  660. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1).set_max_avg_biased_error(
  661. 1e-3);
  662. } else if (src_dtype.enumv() == DTypeEnum::Float16) {
  663. rng = std::make_unique<NormalRNG>(2.f);
  664. flt_rng = std::make_unique<NormalRNG>(2.f);
  665. megdnn_assert(bias_dtype.enumv() == DTypeEnum::Float16);
  666. bias_rng = std::make_unique<NormalRNG>(2.f);
  667. checker.set_epsilon(1e-2);
  668. } else if (src_dtype.enumv() == DTypeEnum::Float32) {
  669. rng = std::make_unique<NormalRNG>(2.f);
  670. flt_rng = std::make_unique<NormalRNG>(2.f);
  671. megdnn_assert(bias_dtype.enumv() == DTypeEnum::Float32);
  672. bias_rng = std::make_unique<NormalRNG>(2.f);
  673. }
  674. using Param = param::ConvBias;
  675. using Format = Param::Format;
  676. auto get_z_shape = [&fuse_z, &format](TestArg arg) -> TensorShape {
  677. TensorShape z{};
  678. if (fuse_z) {
  679. size_t hi, wi, sh, sw, ph, pw, fh, fw;
  680. z = arg.src;
  681. size_t spatial_idx = 2;
  682. if (format == Format::NCHW4) {
  683. hi = arg.src[2];
  684. wi = arg.src[3];
  685. fh = arg.filter[2];
  686. fw = arg.filter[3];
  687. z[1] = arg.filter[0] / 4;
  688. } else if (format == Format::NCHW32) {
  689. hi = arg.src[2];
  690. wi = arg.src[3];
  691. fh = arg.filter[2];
  692. fw = arg.filter[3];
  693. z[1] = arg.filter[0] / 32;
  694. } else if (format == Format::NCHW64) {
  695. hi = arg.src[2];
  696. wi = arg.src[3];
  697. fh = arg.filter[2];
  698. fw = arg.filter[3];
  699. z[1] = arg.filter[0] / 64;
  700. } else {
  701. megdnn_assert(format == Format::CHWN4);
  702. hi = arg.src[1];
  703. wi = arg.src[2];
  704. fh = arg.filter[1];
  705. fw = arg.filter[2];
  706. z[0] = arg.filter[3] / 4;
  707. spatial_idx = 1;
  708. }
  709. sh = arg.param.stride_h;
  710. sw = arg.param.stride_w;
  711. ph = arg.param.pad_h;
  712. pw = arg.param.pad_w;
  713. size_t ho = infer_conv_shape(hi, fh, sh, ph);
  714. size_t wo = infer_conv_shape(wi, fw, sw, pw);
  715. z[spatial_idx] = ho;
  716. z[spatial_idx + 1] = wo;
  717. }
  718. return z;
  719. };
  720. megdnn_assert(rng != nullptr && flt_rng != nullptr && bias_rng != nullptr);
  721. checker.set_rng(0, rng.get())
  722. .set_rng(1, flt_rng.get())
  723. .set_rng(2, bias_rng.get())
  724. .set_rng(3, rng.get());
  725. if (stable_test) {
  726. checker.set_stable_check(true);
  727. checker.set_no_naive_check(true);
  728. }
  729. if (args.empty()) {
  730. std::vector<TestArg> default_args;
  731. if (format == Format::NCHW4) {
  732. default_args = get_int8_nchw4_args(3);
  733. } else if (format == Format::CHWN4) {
  734. default_args = get_int8_chwn4_args(3);
  735. }
  736. for (auto&& arg : default_args) {
  737. auto z = get_z_shape(arg);
  738. checker.set_dtype(0, src_dtype)
  739. .set_dtype(1, filter_dtype)
  740. .set_dtype(2, bias_dtype)
  741. .set_dtype(3, dst_dtype)
  742. .set_dtype(4, dst_dtype)
  743. .set_param(arg.param)
  744. .execs({arg.src, arg.filter, arg.bias, z, {}});
  745. }
  746. } else {
  747. for (auto&& arg : args) {
  748. auto z = get_z_shape(arg);
  749. checker.set_dtype(0, src_dtype)
  750. .set_dtype(1, filter_dtype)
  751. .set_dtype(2, bias_dtype)
  752. .set_dtype(3, dst_dtype)
  753. .set_dtype(4, dst_dtype)
  754. .set_param(arg.param)
  755. .execs({arg.src, arg.filter, arg.bias, z, {}});
  756. }
  757. }
  758. }
  759. #if MEGDNN_WITH_BENCHMARK
  760. std::vector<conv_bias::TestArg> get_winograd_benchmark_args(
  761. size_t kernel, size_t pack_size) {
  762. std::vector<conv_bias::TestArg> args;
  763. auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
  764. if (ic % pack_size != 0 || oc % pack_size != 0)
  765. return;
  766. if (w + 2 * p < kernel || h + 2 * p < kernel)
  767. return;
  768. param::ConvBias param;
  769. param.stride_h = 1;
  770. param.stride_w = 1;
  771. param.pad_h = p;
  772. param.pad_w = p;
  773. args.push_back(conv_bias::TestArg{
  774. param,
  775. TensorShape{1, ic, h, w},
  776. TensorShape{oc, ic, kernel, kernel},
  777. {1, oc, 1, 1}});
  778. };
  779. for (size_t ic : {8, 16, 32, 64}) {
  780. for (size_t oc : {8, 16, 32, 64}) {
  781. pack(oc, ic, 56, 56, kernel, kernel / 2);
  782. pack(oc, ic, 128, 128, kernel, kernel / 2);
  783. pack(oc, ic, 256, 256, kernel, kernel / 2);
  784. }
  785. }
  786. //! conv in vgg16
  787. pack(512, 512, 15, 15, kernel, kernel / 2);
  788. pack(512, 256, 15, 15, kernel, kernel / 2);
  789. pack(256, 256, 29, 29, kernel, kernel / 2);
  790. pack(256, 128, 29, 29, kernel, kernel / 2);
  791. pack(128, 128, 57, 57, kernel, kernel / 2);
  792. pack(128, 64, 57, 57, kernel, kernel / 2);
  793. pack(64, 64, 123, 123, kernel, kernel / 2);
  794. pack(64, 24, 123, 123, kernel, kernel / 2);
  795. pack(24, 24, 224, 224, kernel, kernel / 2);
  796. //! conv in resnet18
  797. pack(64, 64, 56, 56, kernel, kernel / 2);
  798. pack(128, 128, 28, 28, kernel, kernel / 2);
  799. pack(256, 256, 14, 14, kernel, kernel / 2);
  800. pack(512, 512, 7, 7, kernel, kernel / 2);
  801. return args;
  802. }
  803. void benchmark_winograd(
  804. const char* algo_name, Handle* handle, size_t kernel, size_t pack_size) {
  805. auto&& args = get_winograd_benchmark_args(kernel, pack_size);
  806. using namespace conv_bias;
  807. constexpr size_t RUN = 10;
  808. Benchmarker<Convolution> benchmark(handle);
  809. benchmark.set_display(false);
  810. benchmark.set_times(RUN);
  811. Benchmarker<ConvBias> benchmark_winograd(handle);
  812. benchmark_winograd.set_display(false);
  813. benchmark_winograd.set_times(RUN);
  814. for (auto&& arg : args) {
  815. TensorLayout dst_layout;
  816. auto opr = handle->create_operator<ConvBias>();
  817. opr->param() = arg.param;
  818. opr->deduce_layout(
  819. {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
  820. {arg.bias, dtype::Float32()}, {}, dst_layout);
  821. //! dst.nr_elems * IC * FH * FW * 2
  822. float computations = dst_layout.total_nr_elems() * arg.filter[1] *
  823. arg.filter[2] * arg.filter[3] * 2.0 /
  824. (1024 * 1024 * 1024) * 1e3;
  825. param::Convolution conv_param;
  826. conv_param.pad_h = arg.param.pad_h;
  827. conv_param.pad_w = arg.param.pad_w;
  828. conv_param.stride_h = arg.param.stride_h;
  829. conv_param.stride_w = arg.param.stride_w;
  830. auto used =
  831. benchmark.set_param(conv_param).exec({arg.src, arg.filter, {}}) / RUN;
  832. benchmark_winograd.set_param(arg.param);
  833. auto used_winograd = algo_benchmark<ConvBias>(
  834. benchmark_winograd,
  835. {arg.src, arg.filter, {}, {}, {}}, algo_name) /
  836. RUN;
  837. printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops "
  838. "speedup: "
  839. "%f\n",
  840. arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used,
  841. computations / used, used_winograd, computations / used_winograd,
  842. used / used_winograd);
  843. }
  844. }
  845. #endif // MEGDNN_WITH_BENCHMARK
  846. template <class Checker>
  847. void check_winograd(
  848. const char* algo_name, Checker& checker,
  849. const std::vector<conv_bias::TestArg>& args, param::MatrixMul::Format format,
  850. param::ConvBias::Format layout) {
  851. const char* matmul_name;
  852. #if MEGDNN_AARCH64
  853. if (format == param::MatrixMul::Format::MK4) {
  854. matmul_name = "AARCH64_F32_MK4_4x16";
  855. } else if (format == param::MatrixMul::Format::MK8) {
  856. matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
  857. } else {
  858. matmul_name = "AARCH64_F32K8X12X1";
  859. }
  860. #elif MEGDNN_ARMV7
  861. if (format == param::MatrixMul::Format::MK4) {
  862. matmul_name = "ARMV7_F32_MK4_4x8";
  863. } else if (format == param::MatrixMul::Format::MK8) {
  864. matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
  865. } else {
  866. matmul_name = "ARMV7_F32";
  867. }
  868. #else
  869. if (format == param::MatrixMul::Format::MK4) {
  870. matmul_name = "FB_GI_F32_MK4_4x8";
  871. } else {
  872. matmul_name = "FB_GI_F32_4x12";
  873. }
  874. #endif
  875. std::string winograd_algo_name;
  876. if (layout == megdnn::param::ConvBias::Format::NCHW) {
  877. winograd_algo_name = ssprintf("WINOGRAD:%s:%s", matmul_name, algo_name);
  878. } else if (layout == megdnn::param::ConvBias::Format::NCHW44) {
  879. winograd_algo_name = ssprintf("WINOGRAD_NCHW44:%s:%s", matmul_name, algo_name);
  880. } else {
  881. megdnn_throw("Invalid layout");
  882. }
  883. checker.set_before_exec_callback(
  884. conv_bias::ConvBiasAlgoChecker<ConvBias>(winograd_algo_name.c_str()));
  885. for (auto&& arg : args) {
  886. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  887. }
  888. }
  889. template void check_winograd<megdnn::test::Checker<megdnn::ConvBias>>(
  890. const char* algo_name, megdnn::test::Checker<megdnn::ConvBias>& checker,
  891. const std::vector<conv_bias::TestArg>& args, param::MatrixMul::Format format,
  892. param::ConvBias::Format layout);
  893. using WeightPreprocessChecker = megdnn::test::Checker<
  894. megdnn::ConvBias, megdnn::test::OprWeightPreprocessProxy<megdnn::ConvBias>>;
  895. template void check_winograd<WeightPreprocessChecker>(
  896. const char* algo_name, WeightPreprocessChecker& checker,
  897. const std::vector<conv_bias::TestArg>& args, param::MatrixMul::Format format,
  898. param::ConvBias::Format layout);
  899. std::vector<conv_bias::TestArg> get_conv_bias_args(
  900. std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
  901. bool no_nonlinemode, bool quantized_nlmod, bool only_broadcast_bias) {
  902. using namespace conv_bias;
  903. using Param = param::ConvBias;
  904. using NLMode = param::ConvBias::NonlineMode;
  905. std::vector<TestArg> args;
  906. auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
  907. size_t stride, NLMode nlmode) {
  908. Param param;
  909. param.stride_h = stride;
  910. param.stride_w = stride;
  911. if (!no_pad) {
  912. param.pad_h = kernel / 2;
  913. param.pad_w = kernel / 2;
  914. } else {
  915. param.pad_h = 0;
  916. param.pad_w = 0;
  917. }
  918. param.nonlineMode = nlmode;
  919. args.emplace_back(
  920. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, kernel, kernel},
  921. TensorShape{});
  922. if (!no_bias) {
  923. args.emplace_back(
  924. param, TensorShape{n, ic, h, w},
  925. TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1});
  926. if (!only_broadcast_bias) {
  927. args.emplace_back(
  928. param, TensorShape{n, ic, h, w},
  929. TensorShape{oc, ic, kernel, kernel},
  930. TensorShape{
  931. n, oc, (h + 2 * param.pad_h - kernel) / stride + 1,
  932. (w + 2 * param.pad_h - kernel) / stride + 1});
  933. }
  934. }
  935. param.sparse = param::ConvBias::Sparse::GROUP;
  936. args.emplace_back(
  937. param, TensorShape{n, 2 * ic, h, w},
  938. TensorShape{2, oc, ic, kernel, kernel}, TensorShape{});
  939. if (!no_bias) {
  940. if (!only_broadcast_bias) {
  941. args.emplace_back(
  942. param, TensorShape{n, 2 * ic, h, w},
  943. TensorShape{2, oc, ic, kernel, kernel},
  944. TensorShape{
  945. n, 2 * oc, (h + param.pad_h * 2 - kernel) / stride + 1,
  946. (w + param.pad_w * 2 - kernel) / stride + 1});
  947. }
  948. args.emplace_back(
  949. param, TensorShape{n, 2 * ic, h, w},
  950. TensorShape{2, oc, ic, kernel, kernel},
  951. TensorShape{1, 2 * oc, 1, 1});
  952. }
  953. };
  954. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  955. if (!no_nonlinemode) {
  956. nonlinemode.emplace_back(NLMode::RELU);
  957. nonlinemode.emplace_back(NLMode::H_SWISH);
  958. if (!quantized_nlmod) {
  959. nonlinemode.emplace_back(NLMode::SIGMOID);
  960. }
  961. }
  962. for (size_t n : {1, 2}) {
  963. for (auto nlmode : nonlinemode) {
  964. for (size_t ic : {1, 3, 7}) {
  965. for (size_t oc : {1, 3, 7}) {
  966. for (size_t size : {8, 16, 20}) {
  967. for (size_t kern : kernel) {
  968. pack(n, oc, ic, size, size, kern, stride, nlmode);
  969. }
  970. }
  971. }
  972. }
  973. }
  974. }
  975. return args;
  976. }
  977. std::vector<megdnn::test::conv_bias::TestArg> get_conv_bias_1x1_args(
  978. bool no_bias, bool no_nonlinemode, bool quantized_nlmod,
  979. bool only_broadcast_bias) {
  980. using namespace conv_bias;
  981. using Param = param::ConvBias;
  982. using NLMode = param::ConvBias::NonlineMode;
  983. using CONVMode = param::ConvBias::Mode;
  984. std::vector<TestArg> args;
  985. auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h, size_t stride,
  986. NLMode nlmode, CONVMode convmode) {
  987. Param param;
  988. param.stride_h = stride;
  989. param.stride_w = stride;
  990. param.pad_h = 0;
  991. param.pad_w = 0;
  992. param.mode = convmode;
  993. param.nonlineMode = nlmode;
  994. args.emplace_back(
  995. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 1, 1},
  996. TensorShape{});
  997. if (!no_bias) {
  998. args.emplace_back(
  999. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 1, 1},
  1000. TensorShape{1, oc, 1, 1});
  1001. if (!only_broadcast_bias) {
  1002. args.emplace_back(
  1003. param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 1, 1},
  1004. TensorShape{n, oc, (h - 1) / stride + 1, (w - 1) / stride + 1});
  1005. }
  1006. }
  1007. param.sparse = param::ConvBias::Sparse::GROUP;
  1008. args.emplace_back(
  1009. param, TensorShape{n, 2 * ic, h, w}, TensorShape{2, oc, ic, 1, 1},
  1010. TensorShape{});
  1011. if (!no_bias) {
  1012. args.emplace_back(
  1013. param, TensorShape{n, 2 * ic, h, w}, TensorShape{2, oc, ic, 1, 1},
  1014. TensorShape{1, 2 * oc, 1, 1});
  1015. if (!only_broadcast_bias) {
  1016. args.emplace_back(
  1017. param, TensorShape{n, 2 * ic, h, w},
  1018. TensorShape{2, oc, ic, 1, 1},
  1019. TensorShape{
  1020. n, 2 * oc, (h - 1) / stride + 1, (w - 1) / stride + 1});
  1021. }
  1022. }
  1023. };
  1024. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  1025. if (!no_nonlinemode) {
  1026. nonlinemode.emplace_back(NLMode::RELU);
  1027. nonlinemode.emplace_back(NLMode::H_SWISH);
  1028. if (!quantized_nlmod) {
  1029. nonlinemode.emplace_back(NLMode::SIGMOID);
  1030. }
  1031. }
  1032. std::vector<CONVMode> convmodes{
  1033. param::ConvBias::Mode::CONVOLUTION,
  1034. param::ConvBias::Mode::CROSS_CORRELATION};
  1035. for (size_t n : {1, 2})
  1036. for (size_t oc : {1, 9, 33})
  1037. for (size_t ic : {1, 16, 64})
  1038. for (size_t size : {1, 7, 14, 28})
  1039. for (auto nlmode : nonlinemode)
  1040. for (auto convmode : convmodes) {
  1041. pack(n, oc, ic, size, size, 1, nlmode, convmode);
  1042. }
  1043. return args;
  1044. }
  1045. void check_conv_bias(
  1046. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1047. using namespace conv_bias;
  1048. Checker<ConvBias> checker(handle);
  1049. checker.set_before_exec_callback(
  1050. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1051. for (auto&& arg : args) {
  1052. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  1053. }
  1054. }
  1055. void checker_conv_bias_int8x8x16(
  1056. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1057. using namespace conv_bias;
  1058. Checker<ConvBias> checker(handle);
  1059. checker.set_before_exec_callback(
  1060. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1061. checker.set_dtype(0, dtype::Int8());
  1062. checker.set_dtype(1, dtype::Int8());
  1063. checker.set_dtype(2, dtype::Int16());
  1064. checker.set_dtype(4, dtype::Int16());
  1065. for (auto&& arg : args) {
  1066. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1067. }
  1068. }
  1069. void check_conv_bias_preprocess(
  1070. std::vector<conv_bias::TestArg> args, Handle* handle, RNG* rng, float epsilon,
  1071. DType type0, DType type1, DType type2, DType type3, const char* algo_name) {
  1072. using namespace conv_bias;
  1073. Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(handle);
  1074. checker.set_dtype(0, type0);
  1075. checker.set_dtype(1, type1);
  1076. checker.set_dtype(2, type2);
  1077. checker.set_dtype(4, type3);
  1078. checker.set_epsilon(epsilon);
  1079. if (NULL != rng) {
  1080. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
  1081. }
  1082. checker.set_before_exec_callback(
  1083. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1084. for (auto&& arg : args) {
  1085. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  1086. }
  1087. }
  1088. void checker_conv_bias_common(
  1089. std::vector<conv_bias::TestArg> args, Handle* handle, RNG* rng, float epsilon,
  1090. DType type0, DType type1, DType type2, DType type3, const char* algo_name) {
  1091. using namespace conv_bias;
  1092. Checker<ConvBias> checker(handle);
  1093. checker.set_before_exec_callback(
  1094. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1095. checker.set_dtype(0, type0);
  1096. checker.set_dtype(1, type1);
  1097. checker.set_dtype(2, type2);
  1098. checker.set_dtype(4, type3);
  1099. checker.set_epsilon(epsilon);
  1100. if (NULL != rng) {
  1101. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
  1102. }
  1103. for (auto&& arg : args) {
  1104. checker.set_param(arg.param).execs({arg.src, arg.filter, arg.bias, {}, {}});
  1105. }
  1106. }
  1107. void checker_conv_bias_mul_int8x8x32(
  1108. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1109. using namespace conv_bias;
  1110. float epsilon = 0.001;
  1111. #if MEGDNN_ARMV7
  1112. epsilon = 1.0;
  1113. #endif
  1114. Checker<ConvBias> checker(handle);
  1115. checker.set_before_exec_callback(
  1116. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1117. checker.set_dtype(0, dtype::Int8());
  1118. checker.set_dtype(1, dtype::Int8());
  1119. checker.set_dtype(2, dtype::Int32());
  1120. checker.set_dtype(4, dtype::Int32());
  1121. checker.set_epsilon(epsilon);
  1122. for (auto&& arg : args) {
  1123. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1124. }
  1125. UniformIntRNG rng{-50, 50};
  1126. for (auto&& arg : args) {
  1127. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  1128. .set_dtype(1, dtype::QuantizedS8(2.5f))
  1129. .set_dtype(2, dtype::QuantizedS32(6.25f))
  1130. .set_dtype(4, dtype::QuantizedS32(6.25f))
  1131. .set_rng(0, &rng)
  1132. .set_rng(1, &rng)
  1133. .set_rng(2, &rng)
  1134. .set_param(arg.param)
  1135. .set_epsilon(epsilon)
  1136. .execs({arg.src, arg.filter, {}, {}, {}});
  1137. }
  1138. }
  1139. void checker_conv_bias_int8x8x32_preprocess(
  1140. std::vector<conv_bias::TestArg> args, Handle* handle, const char* algo_name) {
  1141. using namespace conv_bias;
  1142. Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker(handle);
  1143. checker.set_before_exec_callback(
  1144. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1145. checker.set_dtype(0, dtype::Int8());
  1146. checker.set_dtype(1, dtype::Int8());
  1147. checker.set_dtype(2, dtype::Int32());
  1148. checker.set_dtype(4, dtype::Int32());
  1149. for (auto&& arg : args) {
  1150. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1151. }
  1152. UniformIntRNG rng{-50, 50};
  1153. for (auto&& arg : args) {
  1154. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  1155. .set_dtype(1, dtype::QuantizedS8(2.5f))
  1156. .set_dtype(2, dtype::QuantizedS32(6.25f))
  1157. .set_dtype(4, dtype::QuantizedS32(6.25f))
  1158. .set_rng(0, &rng)
  1159. .set_rng(1, &rng)
  1160. .set_rng(2, &rng)
  1161. .set_param(arg.param)
  1162. .execs({arg.src, arg.filter, {}, {}, {}});
  1163. }
  1164. }
  1165. std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
  1166. std::vector<size_t> kernel_vec,
  1167. std::vector<param::ConvBias::NonlineMode> nlmode_vec,
  1168. std::vector<megdnn::BiasMode> biasmode_vec, size_t stride, bool no_pad,
  1169. bool is_input_nchw, bool is_nchw44_dot) {
  1170. using namespace conv_bias;
  1171. using NLMode = param::ConvBias::NonlineMode;
  1172. std::vector<TestArg> args;
  1173. MEGDNN_MARK_USED_VAR(no_pad);
  1174. auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w, size_t kernel,
  1175. size_t stride, size_t group, NLMode nlmode,
  1176. megdnn::BiasMode bias_mode, int any_pad = -1) {
  1177. constexpr int pack_c = 4;
  1178. const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
  1179. auto oc_per_group = oc / group;
  1180. auto ic_per_group = ic / group;
  1181. bool ok_group = (oc % group == 0 && ic % group == 0) &&
  1182. oc_per_group % pack_c == 0 && oc_per_group > 0 &&
  1183. ic_per_group > 0;
  1184. bool nchw_disable = group > 1 || ic_per_group >= 4;
  1185. bool nchw44_disable = ic_per_group % pack_c != 0;
  1186. bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
  1187. if (!(ok_group) || invalid_pad) {
  1188. return;
  1189. }
  1190. if ((is_input_nchw && nchw_disable) || (!is_input_nchw && nchw44_disable)) {
  1191. return;
  1192. }
  1193. size_t kernel_h = kernel;
  1194. size_t kernel_w = kernel;
  1195. param::ConvBias param;
  1196. if (!is_nchw44_dot) {
  1197. param.format = param::ConvBias::Format::NCHW44;
  1198. } else {
  1199. param.format = param::ConvBias::Format::NCHW44_DOT;
  1200. }
  1201. param.stride_h = stride;
  1202. param.stride_w = stride;
  1203. param.pad_h = pad;
  1204. param.pad_w = pad;
  1205. param.nonlineMode = nlmode;
  1206. auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
  1207. auto weight_tensor_shape = TensorShape{oc / pack_c, ic / pack_c, kernel_h,
  1208. kernel_w, pack_c, pack_c};
  1209. auto bias_tensor_shape = TensorShape{};
  1210. if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
  1211. bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
  1212. } else if (bias_mode == megdnn::BiasMode::BIAS) {
  1213. bias_tensor_shape = {
  1214. n, oc / pack_c, (h + 2 * pad - kernel) / stride + 1,
  1215. (w + 2 * pad - kernel) / stride + 1, pack_c};
  1216. }
  1217. if (group == 1) {
  1218. param.sparse = param::ConvBias::Sparse::DENSE;
  1219. } else if (group > 1 && ic / group == 1 && oc / group == 1) {
  1220. megdnn_assert(0, "not support channel wise");
  1221. param.sparse = param::ConvBias::Sparse::GROUP;
  1222. weight_tensor_shape =
  1223. TensorShape{group / pack_c, 1, 1, kernel_h, kernel_w, pack_c};
  1224. } else if (
  1225. group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
  1226. ic_per_group % pack_c == 0 && ic / group > 0) {
  1227. param.sparse = param::ConvBias::Sparse::GROUP;
  1228. weight_tensor_shape = TensorShape{group,
  1229. oc_per_group / pack_c,
  1230. ic_per_group / pack_c,
  1231. kernel_h,
  1232. kernel_w,
  1233. pack_c,
  1234. pack_c};
  1235. }
  1236. if (is_input_nchw) {
  1237. src_tensor_shape = TensorShape{n, ic, h, w};
  1238. weight_tensor_shape =
  1239. TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
  1240. }
  1241. args.emplace_back(
  1242. param, src_tensor_shape, weight_tensor_shape, bias_tensor_shape);
  1243. };
  1244. for (auto bias : biasmode_vec)
  1245. for (auto nlmode : nlmode_vec)
  1246. for (size_t n : {1, 2})
  1247. for (size_t kernel : kernel_vec)
  1248. for (size_t oc : {4, 12})
  1249. for (size_t ic : {1, 3, 4, 12})
  1250. for (size_t h : {1, 3, 12})
  1251. for (size_t w : {1, 16, 23}) {
  1252. for (size_t group = 1;
  1253. group <= std::min(std::min(oc, ic), 4_z);
  1254. ++group) {
  1255. if (kernel != 1 && (h == 1 || w == 1)) {
  1256. continue;
  1257. }
  1258. pack(n, oc, ic, h, w, kernel, stride, group,
  1259. nlmode, bias);
  1260. }
  1261. }
  1262. return args;
  1263. }
  1264. std::vector<conv_bias::TestArg> get_nchw88_conv_bias_args(
  1265. std::vector<size_t> kernel_vec,
  1266. std::vector<param::ConvBias::NonlineMode> nlmode_vec,
  1267. std::vector<megdnn::BiasMode> biasmode_vec, size_t stride) {
  1268. using namespace conv_bias;
  1269. using NLMode = param::ConvBias::NonlineMode;
  1270. std::vector<TestArg> args;
  1271. auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w, size_t kernel,
  1272. size_t stride, size_t group, NLMode nlmode,
  1273. megdnn::BiasMode bias_mode) {
  1274. constexpr int pack_c = 8;
  1275. const size_t pad = kernel / 2;
  1276. auto oc_per_group = oc / group;
  1277. auto ic_per_group = ic / group;
  1278. megdnn_assert(
  1279. oc_per_group % pack_c == 0 && ic_per_group % pack_c == 0,
  1280. "ocpg/icpg not divided by 8");
  1281. size_t kernel_h = kernel;
  1282. size_t kernel_w = kernel;
  1283. param::ConvBias param;
  1284. param.format = param::ConvBias::Format::NCHW88;
  1285. param.stride_h = stride;
  1286. param.stride_w = stride;
  1287. param.pad_h = pad;
  1288. param.pad_w = pad;
  1289. param.nonlineMode = nlmode;
  1290. auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
  1291. auto weight_tensor_shape = TensorShape{oc / pack_c, ic / pack_c, kernel_h,
  1292. kernel_w, pack_c, pack_c};
  1293. auto bias_tensor_shape = TensorShape{};
  1294. if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
  1295. bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
  1296. } else if (bias_mode == megdnn::BiasMode::BIAS) {
  1297. bias_tensor_shape = {
  1298. n, oc / pack_c, (h + 2 * pad - kernel) / stride + 1,
  1299. (w + 2 * pad - kernel) / stride + 1, pack_c};
  1300. }
  1301. if (group == 1) {
  1302. param.sparse = param::ConvBias::Sparse::DENSE;
  1303. } else {
  1304. param.sparse = param::ConvBias::Sparse::GROUP;
  1305. weight_tensor_shape = TensorShape{group,
  1306. oc_per_group / pack_c,
  1307. ic_per_group / pack_c,
  1308. kernel_h,
  1309. kernel_w,
  1310. pack_c,
  1311. pack_c};
  1312. }
  1313. args.emplace_back(
  1314. param, src_tensor_shape, weight_tensor_shape, bias_tensor_shape);
  1315. };
  1316. for (auto bias : biasmode_vec)
  1317. for (auto nlmode : nlmode_vec)
  1318. for (size_t n : {1, 2})
  1319. for (size_t kernel : kernel_vec)
  1320. for (size_t oc : {8, 16})
  1321. for (size_t ic : {8, 16, 24})
  1322. for (size_t h : {1, 3, 12})
  1323. for (size_t w : {1, 8, 13}) {
  1324. for (size_t group = 1; group < oc / 8; ++group) {
  1325. if (ic % (group * 8) || oc % (group * 8)) {
  1326. continue;
  1327. }
  1328. if (kernel < h || kernel < w) {
  1329. continue;
  1330. }
  1331. pack(n, oc, ic, h, w, kernel, stride, group,
  1332. nlmode, bias);
  1333. }
  1334. }
  1335. return args;
  1336. }
  1337. } // namespace conv_bias
  1338. } // namespace test
  1339. } // namespace megdnn
  1340. // vim: syntax=cpp.doxygen