|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import itertools
-
- import numpy as np
-
- from megengine import Parameter, tensor
- from megengine.module import ConvTranspose2d, LocalConv2d
- from megengine.test import assertTensorClose
-
-
- def test_conv_transpose2d():
- SH, SW = 3, 1
- PH, PW = 2, 0
- N, IC, IH, IW = 4, 5, 8, 6
- KH, KW = 3, 4
- OC = 3
- BIAS = True
-
- def getsize(inp, kern, stride):
- return (inp - 1) * stride + kern
-
- OH = getsize(IH, KH, SH)
- OW = getsize(IW, KW, SW)
-
- inp = np.random.normal(size=(N, IC, IH, IW)).astype(np.float32)
- out = np.zeros((N, OC, OH, OW), dtype=np.float32)
- weight = np.random.normal(size=(IC, OC, KH, KW)).astype(np.float32)
- bias = np.random.normal(size=(1, OC, 1, 1)).astype(np.float32)
-
- # naive calculation use numpy
- for n, ic, ih, iw in itertools.product(*map(range, [N, IC, IH, IW])):
- oh, ow = ih * SH, iw * SW
- out[n, :, oh : oh + KH, ow : ow + KW] += inp[n, ic, ih, iw] * weight[ic]
- out = out[:, :, PH : OH - PH, PW : OW - PW]
- if BIAS:
- out += bias
-
- # megengine conv_transpose2d calculation
- conv_transpose2d = ConvTranspose2d(IC, OC, (KH, KW), (SH, SW), (PH, PW), bias=BIAS)
- conv_transpose2d.weight = Parameter(weight, dtype=np.float32)
- if BIAS:
- conv_transpose2d.bias = Parameter(bias, dtype=np.float32)
- y = conv_transpose2d(tensor(inp))
-
- assertTensorClose(out, y.numpy(), max_err=2e-6)
-
-
- def test_local_conv2d():
- batch_size = 10
- in_channels = 4
- out_channels = 8
- input_height = 8
- input_width = 8
- kernel_size = 3
- stride = 1
- padding = 1
- dilation = 1
- groups = 1
- local_conv2d = LocalConv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- input_height=input_height,
- input_width=input_width,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- groups=groups,
- )
- inputs = np.random.normal(
- size=(batch_size, in_channels, input_height, input_width)
- ).astype(np.float32)
- output_height = (input_height + padding * 2 - kernel_size) // stride + 1
- output_width = (input_width + padding * 2 - kernel_size) // stride + 1
- weights = np.random.normal(
- size=(
- groups,
- output_height,
- output_width,
- in_channels // groups,
- kernel_size,
- kernel_size,
- out_channels // groups,
- )
- ).astype(np.float32)
- local_conv2d.weight = Parameter(weights)
- outputs = local_conv2d(tensor(inputs))
- # naive calculation use numpy
- # only test output_height == input_height, output_width == input_width, group == 1
- inputs = np.pad(inputs, ((0, 0), (0, 0), (1, 1), (1, 1)))
- expected = np.zeros(
- (batch_size, out_channels, output_height, output_width), dtype=np.float32,
- )
- for n, oc, oh, ow in itertools.product(
- *map(range, [batch_size, out_channels, output_height, output_width])
- ):
- ih, iw = oh * stride, ow * stride
- expected[n, oc, ih, iw] = np.sum(
- inputs[n, :, ih : ih + kernel_size, iw : iw + kernel_size]
- * weights[0, oh, ow, :, :, :, oc]
- )
-
- assertTensorClose(outputs.numpy(), expected, max_err=1e-5)
|