You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_qat.py 2.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. from itertools import product
  2. import numpy as np
  3. from megengine import tensor
  4. from megengine.module import (
  5. Conv2d,
  6. ConvBn2d,
  7. ConvRelu2d,
  8. DequantStub,
  9. Module,
  10. QuantStub,
  11. )
  12. from megengine.quantization.quantize import disable_fake_quant, quantize_qat
  13. from megengine.test import assertTensorClose
  14. def test_qat_convbn2d():
  15. in_channels = 32
  16. out_channels = 64
  17. kernel_size = 3
  18. for groups, bias in product([1, 4], [True, False]):
  19. module = ConvBn2d(
  20. in_channels, out_channels, kernel_size, groups=groups, bias=bias
  21. )
  22. module.train()
  23. qat_module = quantize_qat(module, inplace=False)
  24. disable_fake_quant(qat_module)
  25. inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
  26. normal_outputs = module(inputs)
  27. qat_outputs = qat_module(inputs)
  28. assertTensorClose(normal_outputs, qat_outputs, max_err=5e-6)
  29. assertTensorClose(
  30. module.bn.running_mean, qat_module.bn.running_mean, max_err=5e-8
  31. )
  32. assertTensorClose(
  33. module.bn.running_var, qat_module.bn.running_var, max_err=5e-7
  34. )
  35. module.eval()
  36. normal_outputs = module(inputs)
  37. qat_module.eval()
  38. qat_outputs = qat_module(inputs)
  39. assertTensorClose(normal_outputs, qat_outputs, max_err=5e-6)
  40. def test_qat_conv():
  41. in_channels = 32
  42. out_channels = 64
  43. kernel_size = 3
  44. class TestNet(Module):
  45. def __init__(self, groups, bias):
  46. super().__init__()
  47. self.quant = QuantStub()
  48. self.dequant = DequantStub()
  49. self.conv = Conv2d(
  50. in_channels, out_channels, kernel_size, groups=groups, bias=bias
  51. )
  52. self.conv_relu = ConvRelu2d(
  53. out_channels, in_channels, kernel_size, groups=groups, bias=bias
  54. )
  55. def forward(self, inp):
  56. out = self.quant(inp)
  57. out = self.conv(out)
  58. out = self.conv_relu(out)
  59. out = self.dequant(out)
  60. return out
  61. inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
  62. for groups, bias in product([1, 4], [True, False]):
  63. net = TestNet(groups, bias)
  64. net.train()
  65. qat_net = quantize_qat(net, inplace=False)
  66. disable_fake_quant(qat_net)
  67. normal_outputs = net(inputs)
  68. qat_outputs = qat_net(inputs)
  69. assertTensorClose(normal_outputs, qat_outputs)
  70. net.eval()
  71. normal_outputs = net(inputs)
  72. qat_net.eval()
  73. qat_outputs = qat_net(inputs)
  74. assertTensorClose(normal_outputs, qat_outputs)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台