You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

loss.py 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. from ..core.tensor.utils import make_shape_tuple
  11. from ..tensor import Tensor
  12. from .elemwise import abs, eq, exp, log, maximum, pow, relu
  13. from .nn import indexing_one_hot
  14. from .tensor import where
  15. __all__ = [
  16. "l1_loss",
  17. "square_loss",
  18. "cross_entropy_with_softmax",
  19. "binary_cross_entropy",
  20. "hinge_loss",
  21. ]
  22. def l1_loss(pred: Tensor, label: Tensor) -> Tensor:
  23. r"""Calculates the mean absolute error (MAE) between
  24. each element in the pred :math:`x` and label :math:`y`.
  25. The mean absolute error can be described as:
  26. .. math:: \ell(x,y) = mean\left(L \right)
  27. where
  28. .. math::
  29. L = \{l_1,\dots,l_N\}, \quad
  30. l_n = \left| x_n - y_n \right|,
  31. :math:`x` and :math:`y` are tensors of arbitrary shapes with a total
  32. of :math:`N` elements each. :math:`N` is the batch size.
  33. :param pred: predicted result from model.
  34. :param label: ground truth to compare.
  35. :return: loss value.
  36. Examples:
  37. .. testcode::
  38. import numpy as np
  39. import megengine as mge
  40. import megengine.functional as F
  41. ipt = mge.tensor(np.array([3, 3, 3, 3]).astype(np.float32))
  42. tgt = mge.tensor(np.array([2, 8, 6, 1]).astype(np.float32))
  43. loss = F.l1_loss(ipt, tgt)
  44. print(loss.numpy())
  45. Outputs:
  46. .. testoutput::
  47. [2.75]
  48. """
  49. diff = pred - label
  50. return abs(diff).mean()
  51. def square_loss(pred: Tensor, label: Tensor) -> Tensor:
  52. r"""Calculates the mean squared error (squared L2 norm) between
  53. each element in the pred :math:`x` and label :math:`y`.
  54. The mean squared error can be described as:
  55. .. math:: \ell(x, y) = mean\left( L \right)
  56. where
  57. .. math::
  58. L = \{l_1,\dots,l_N\}, \quad
  59. l_n = \left( x_n - y_n \right)^2,
  60. :math:`x` and :math:`y` are tensors of arbitrary shapes with a total
  61. of :math:`N` elements each. :math:`N` is the batch size.
  62. :param pred: predicted result from model.
  63. :param label: ground truth to compare.
  64. :return: loss value.
  65. Shape:
  66. - pred: :math:`(N, *)` where :math:`*` means any number of additional
  67. dimensions.
  68. - label: :math:`(N, *)`. Same shape as ``pred``.
  69. Examples:
  70. .. testcode::
  71. import numpy as np
  72. import megengine as mge
  73. import megengine.functional as F
  74. ipt = mge.tensor(np.array([3, 3, 3, 3]).astype(np.float32))
  75. tgt = mge.tensor(np.array([2, 8, 6, 1]).astype(np.float32))
  76. loss = F.square_loss(ipt, tgt)
  77. print(loss.numpy())
  78. Outputs:
  79. .. testoutput::
  80. [9.75]
  81. """
  82. diff = pred - label
  83. return (diff ** 2).mean()
  84. def cross_entropy_with_softmax(
  85. pred: Tensor, label: Tensor, axis: int = 1, label_smooth: float = 0
  86. ) -> Tensor:
  87. r"""Returns loss after applying :func:`~.softmax` + :func:`~.cross_entropy`.
  88. It has better numerical stability compared with sequential calls to :func:`~.softmax` and :func:`~.cross_entropy`.
  89. When using label smoothing, the label distribution is as follows:
  90. .. math:: y^{LS}_{k}=y_{k}\left(1-\alpha\right)+\alpha/K
  91. where :math:`y^{LS}` and :math:`y` are new label distribution and origin label distribution respectively.
  92. k is the index of label distribution. :math:`\alpha` is ``label_smooth`` and :math:`K` is the number of classes.
  93. :param pred: input tensor representing the predicted probability.
  94. :param label: input tensor representing the classification label.
  95. :param axis: an axis along which softmax will be applied. Default: 1
  96. :param label_smooth: a label smoothing of parameter that can re-distribute target distribution. Default: 0
  97. :return: loss value.
  98. Examples:
  99. .. testcode::
  100. import numpy as np
  101. from megengine import tensor
  102. import megengine.functional as F
  103. data_shape = (1, 2)
  104. label_shape = (1, )
  105. pred = tensor(np.array([0.5, 0.5], dtype=np.float32).reshape(data_shape))
  106. label = tensor(np.ones(label_shape, dtype=np.int32))
  107. loss = F.cross_entropy_with_softmax(pred, label)
  108. print(loss.numpy())
  109. Outputs:
  110. .. testoutput::
  111. [0.6931]
  112. """
  113. n0 = pred.ndim
  114. n1 = label.ndim
  115. assert n0 == n1 + 1, (
  116. "target ndim must be one less than input ndim; input_ndim={} "
  117. "target_ndim={}".format(n0, n1)
  118. )
  119. num_classes = pred.shape[axis]
  120. # Denominator of the softmax
  121. offset = pred.max(axis=axis, keepdims=True).detach()
  122. pred = pred - offset
  123. down = exp(pred).sum(axis=axis, keepdims=True)
  124. up = indexing_one_hot(pred, label, axis)
  125. if label_smooth != 0:
  126. factor = label_smooth / num_classes
  127. up = up * (1 - label_smooth) + pred.sum(axis=axis, keepdims=True) * factor
  128. return (log(down) - up).mean()
  129. def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor:
  130. r"""Function that measures the Binary Cross Entropy between the target and the prediction.
  131. :param pred: `(N, *)`, where `*` means any number of additional dimensions.
  132. :param label: `(N, *)`, same shape as the input.
  133. :return: loss value.
  134. Examples:
  135. .. testcode::
  136. import numpy as np
  137. from megengine import tensor
  138. import megengine.functional as F
  139. pred = tensor(np.array([0.5, 0.5], dtype=np.float32).reshape(1, 2))
  140. label = tensor(np.ones((1, 2), dtype=np.float32))
  141. loss = F.binary_cross_entropy(pred, label)
  142. print(loss.numpy())
  143. Outputs:
  144. .. testoutput::
  145. [0.6931]
  146. """
  147. return -1.0 * (label * log(pred) + (1.0 - label) * log(1 - pred)).mean()
  148. def hinge_loss(pred: Tensor, label: Tensor, norm: str = "L1") -> Tensor:
  149. r"""Caculates the hinge loss which is often used in SVM.
  150. The hinge loss can be described as:
  151. .. math:: loss(x, y) = \frac{1}{N}\sum_i\sum_j(max(0, 1 - x_{ij}*y_{ij}))
  152. :param pred: input tensor representing the predicted probability, shape is `(N, C)`.
  153. :param label: input tensor representing the binary classification label, shape is `(N, C)`.
  154. :param norm: specify the norm to caculate the loss, should be "L1" or "L2".
  155. :return: loss value.
  156. Examples:
  157. .. testcode::
  158. from megengine import tensor
  159. import megengine.functional as F
  160. pred = tensor([[0.5, -0.5, 0.1], [-0.6, 0.7, 0.8]], dtype="float32")
  161. label = tensor([[1, -1, -1], [-1, 1, 1]], dtype="float32")
  162. loss = F.hinge_loss(pred, label)
  163. print(loss.numpy())
  164. Outputs:
  165. .. testoutput::
  166. [1.5]
  167. """
  168. assert norm in ["L1", "L2"], "norm must be L1 or L2"
  169. # Converts binary labels to -1/1 labels.
  170. loss = relu(1.0 - pred * label)
  171. if norm == "L1":
  172. return loss.sum(axis=1).mean()
  173. else:
  174. return (loss ** 2).sum(axis=1).mean()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台