You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

adam.py 4.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import os
  10. from typing import Iterable, Tuple, Union
  11. from ..functional.inplace import _inplace_add_
  12. from ..tensor import Parameter, tensor
  13. from .optimizer import Optimizer
  14. class Adam(Optimizer):
  15. r"""
  16. Implements Adam algorithm proposed in `"Adam: A Method for Stochastic Optimization" <https://arxiv.org/abs/1412.6980>`_.
  17. :param params: iterable of parameters to optimize or dicts defining
  18. parameter groups.
  19. :param lr: learning rate.
  20. :param betas: coefficients used for computing running averages of gradient
  21. and its square. Default: (0.9, 0.999)
  22. :param eps: term added to the denominator to improve numerical stability
  23. Default: 1e-8
  24. :param weight_decay: weight decay (L2 penalty). Default: 0
  25. """
  26. def __init__(
  27. self,
  28. params: Union[Iterable[Parameter], dict],
  29. lr: float,
  30. betas: Tuple[float, float] = (0.9, 0.999),
  31. eps: float = 1e-8,
  32. weight_decay: float = 0.0,
  33. ):
  34. if lr < 0.0:
  35. raise ValueError("Invalid learning rate: {}".format(lr))
  36. if weight_decay < 0.0:
  37. raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
  38. if not 0.0 <= betas[0] < 1.0:
  39. raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
  40. if not 0.0 <= betas[1] < 1.0:
  41. raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
  42. defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps)
  43. super().__init__(params, defaults)
  44. self._disable_type_convert = True
  45. def _create_state(self, param_group):
  46. for param in param_group["params"]:
  47. self._add_state(param, "exp_avg")
  48. self._add_state(param, "exp_avg_sq")
  49. self._add_state(param, "step", initializer=0.0)
  50. def _updates(self, param_group):
  51. lr = param_group["lr"]
  52. weight_decay = param_group["weight_decay"]
  53. eps = param_group["eps"]
  54. beta0, beta1 = param_group["betas"]
  55. def make_scalar(val):
  56. return tensor(val)
  57. # since `conver_inputs` is disabled for param updates,
  58. # scalar should be explicitly tansforred to tensor
  59. _lr, _neg_lr = map(make_scalar, (lr, -lr))
  60. _weight_decay = make_scalar(weight_decay)
  61. _eps = make_scalar(eps)
  62. _beta0, _beta1 = map(make_scalar, (beta0, beta1))
  63. c1, c05 = map(make_scalar, (1.0, 0.5))
  64. inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0"))
  65. if inplace_mode:
  66. # reduce device sync
  67. c1_sub_beta0, c1_sub_beta1 = map(make_scalar, (1 - beta0, 1 - beta1))
  68. for param in param_group["params"]:
  69. if param.grad is None:
  70. continue
  71. grad = param.grad
  72. if weight_decay != 0.0:
  73. grad = grad + param * _weight_decay
  74. states = self._state[param]
  75. step, exp_avg, exp_avg_sq = (
  76. states["step"],
  77. states["exp_avg"],
  78. states["exp_avg_sq"],
  79. )
  80. if inplace_mode:
  81. _inplace_add_(step, c1, alpha=c1, beta=c1)
  82. _inplace_add_(exp_avg, grad, alpha=_beta0, beta=c1_sub_beta0)
  83. _inplace_add_(
  84. exp_avg_sq, grad * grad, alpha=_beta1, beta=c1_sub_beta1,
  85. )
  86. delta = (exp_avg / (c1 - _beta0 ** step)) / (
  87. (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps
  88. )
  89. _inplace_add_(param, delta, alpha=c1, beta=_neg_lr)
  90. continue
  91. # step = step + c1
  92. step += c1
  93. # exp_avg = _beta0 * exp_avg + grad * (c1 - _beta0)
  94. exp_avg *= _beta0
  95. exp_avg += grad * (c1 - _beta0)
  96. # exp_avg_sq = _beta1 * exp_avg_sq + (c1 - _beta1) * (grad * grad)
  97. exp_avg_sq *= _beta1
  98. exp_avg_sq += (c1 - _beta1) * (grad * grad)
  99. delta = (exp_avg / (c1 - _beta0 ** step)) / (
  100. (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps
  101. )
  102. param -= _lr * delta

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台