|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- /**
- * \file dnn/test/common/resize.h
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #pragma once
- #include "megdnn/opr_param_defs.h"
- #include "megdnn/basic_types.h"
- #include <iostream>
-
- #include "./rng.h"
- namespace megdnn {
- namespace test {
- namespace resize {
-
- using IMode = param::Resize::InterpolationMode;
-
- struct TestArg {
- param::Resize param;
- TensorShape src;
- TensorShape dst;
- TestArg(param::Resize param_, TensorShape src_, TensorShape dst_)
- : param(param_), src(src_), dst(dst_) {}
- };
-
- // Get the args for linear test
- static void set_linear_args(std::vector<TestArg>& args) {
- // test src_rows == dst_rows * 2 && src_cols == dst_cols * 2
- param::Resize cur_param;
- cur_param.format = param::Resize::Format::NHWC;
- cur_param.imode = param::Resize::InterpolationMode::INTER_LINEAR;
-
- args.emplace_back(cur_param, TensorShape{1, 6, 6, 1},
- TensorShape{1, 3, 3, 1});
-
- // test resize_linear_Restric_kernel
- // CH == 3 && dst_rows < src_rows && dst_cols < src_cols
- args.emplace_back(cur_param, TensorShape{1, 4, 4, 3},
- TensorShape{1, 3, 3, 3});
-
- // test else
- args.emplace_back(cur_param, TensorShape{1, 4, 4, 1},
- TensorShape{1, 3, 3, 1});
-
- args.emplace_back(cur_param, TensorShape{1, 4, 6, 1},
- TensorShape{1, 10, 9, 1});
-
- args.emplace_back(cur_param, TensorShape{1, 4, 6, 3},
- TensorShape{1, 10, 9, 3});
- }
-
- static void set_nchw_args(std::vector<TestArg>& args) {
- param::Resize param;
- param.format = param::Resize::Format::NCHW;
- param.imode = param::Resize::InterpolationMode::LINEAR;
-
- args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 2, 6, 8});
- args.emplace_back(param, TensorShape{1, 2, 2, 2}, TensorShape{1, 2, 4, 3});
- args.emplace_back(param, TensorShape{1, 2, 6, 8}, TensorShape{1, 2, 3, 4});
- }
-
- static inline std::vector<TestArg> get_args(IMode imode = IMode::INTER_LINEAR) {
- std::vector<TestArg> args;
- set_nchw_args(args);
-
- if(imode == IMode::INTER_LINEAR) {
- //! test NHWC with ch != 1 or ch != 3
- param::Resize param;
- param.format = param::Resize::Format::NHWC;
- param.imode = imode;
- args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 4, 6, 4});
- args.emplace_back(param, TensorShape{2, 4, 6, 4}, TensorShape{2, 2, 3, 4});
- }
- return args;
- }
-
- static inline std::vector<TestArg> get_nhwcd4_args() {
- std::vector<TestArg> args;
-
- param::Resize param;
- param.format = param::Resize::Format::NHWCD4;
- param.imode = param::Resize::InterpolationMode::LINEAR;
- args.emplace_back(param, TensorShape{2, 2, 1, 3, 4},
- TensorShape{2, 4, 1, 6, 4});
- args.emplace_back(param, TensorShape{2, 4, 1, 6, 4},
- TensorShape{2, 2, 1, 3, 4});
-
- return args;
- }
-
- static inline std::vector<TestArg> get_nchw4_args() {
- std::vector<TestArg> args;
-
- param::Resize param;
- param.format = param::Resize::Format::NCHW4;
- param.imode = param::Resize::InterpolationMode::LINEAR;
- args.emplace_back(param, TensorShape{1, 1, 2, 3, 4},
- TensorShape{1, 1, 2, 6, 4});
- args.emplace_back(param, TensorShape{2, 2, 2, 2, 4},
- TensorShape{2, 2, 2, 4, 4});
- args.emplace_back(param, TensorShape{2, 4, 6, 8, 4},
- TensorShape{2, 4, 3, 4, 4});
- return args;
- }
-
- static inline std::vector<TestArg> get_cv_args() {
- std::vector<TestArg> args;
-
- set_linear_args(args);
-
- param::Resize cur_param;
- cur_param.format = param::Resize::Format::NHWC;
- for (size_t i = 8; i < 129; i *= 4) {
- cur_param.imode = param::Resize::InterpolationMode::INTER_NEAREST;
-
- args.emplace_back(cur_param, TensorShape{1, i, i, 3},
- TensorShape{1, i / 2, i / 2, 3});
-
- args.emplace_back(cur_param, TensorShape{1, i, i, 1},
- TensorShape{1, 8, 8, 1});
-
- cur_param.imode = param::Resize::InterpolationMode::INTER_AREA;
- args.emplace_back(cur_param, TensorShape{1, i, i, 3},
- TensorShape{1, 8, 8, 3});
- cur_param.imode = param::Resize::InterpolationMode::INTER_CUBIC;
- args.emplace_back(cur_param, TensorShape{1, i, i, 3},
- TensorShape{1, 8, 8, 3});
- cur_param.imode = param::Resize::InterpolationMode::INTER_LANCZOS4;
- args.emplace_back(cur_param, TensorShape{1, i, i, 3},
- TensorShape{1, 8, 8, 3});
- }
-
- //! cuda not use vector
- //! enlarge==true && dst_area_size > 500 * 500
- cur_param.imode = param::Resize::InterpolationMode::INTER_CUBIC;
- args.emplace_back(cur_param, TensorShape{1, 3, 3, 1},
- TensorShape{1, 500, 600, 1});
- cur_param.imode = param::Resize::InterpolationMode::INTER_LANCZOS4;
- args.emplace_back(cur_param, TensorShape{1, 3, 3, 1},
- TensorShape{1, 500, 600, 1});
- return args;
- }
-
- } // namespace resize
- } // namespace test
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|