You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.h 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625
  1. /**
  2. * \file dnn/test/common/checker.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "megdnn/basic_types.h"
  14. #include "megdnn/tensor_iter.h"
  15. #include "test/common/opr_algo_proxy.h"
  16. #include "test/common/opr_proxy.h"
  17. #include "test/common/rng.h"
  18. #include <gtest/gtest.h>
  19. #include <memory>
  20. #include <regex>
  21. #include <unordered_map>
  22. // clang-format off
  23. #if defined(__has_feature)
  24. #if __has_feature(address_sanitizer)
  25. #define MEGDNN_TEST_ASAN 1
  26. #else
  27. #define MEGDNN_TEST_ASAN 0
  28. #endif
  29. #elif defined(__SANITIZE_ADDRESS__)
  30. #define MEGDNN_TEST_ASAN 1
  31. #else
  32. #define MEGDNN_TEST_ASAN 0
  33. #endif
  34. // clang-format on
  35. namespace megdnn {
  36. namespace test {
  37. class CheckerHelper {
  38. // TensorLayoutArray and TensorValueArray should be protected in theory;
  39. // but g++-4.9 bugs handle access privilege wrongfully, so we change it
  40. // to public.
  41. public:
  42. using TensorValueArray = TensorNDArray;
  43. using TensorsConstriant = std::function<void(TensorValueArray& tensors)>;
  44. using ExtraOprImpl = std::function<void(const TensorNDArray&)>;
  45. using OutputCanonizer = std::function<void(const TensorValueArray&)>;
  46. static std::shared_ptr<TensorValueArray> alloc_tensors(
  47. Handle* handle, const TensorLayoutArray& layouts, size_t offset);
  48. Handle* handle() const { return m_handle_cur; }
  49. protected:
  50. //! whether to use physically contiguous (i.e. default layout) for naive
  51. //! impl
  52. bool m_enable_contig_naive = false;
  53. bool m_prev_succ = true;
  54. const char* m_input_tensors_fpath = nullptr;
  55. thin_function<void()> m_expect_exec_fail;
  56. std::unique_ptr<Handle> m_handle_naive;
  57. Handle* m_handle_cur;
  58. std::unique_ptr<RNG> m_default_rng;
  59. std::unordered_map<size_t, RNG*> m_rng;
  60. std::unordered_map<size_t, DType> m_dtype;
  61. std::unordered_map<size_t, TensorFormat> m_fmt;
  62. std::set<size_t> m_bypass;
  63. float_t m_epsilon = 1e-3, m_max_avg_error = 1e-3, m_max_avg_biased_error = 1e-3;
  64. float_t m_perf_check_threshold = -1;
  65. bool m_perf_check = false;
  66. ExtraOprImpl m_extra_opr_impl;
  67. OutputCanonizer m_output_canonizer;
  68. TensorsConstriant m_tensor_constraint;
  69. bool m_no_naive_and_check = false;
  70. bool m_stable_check = false;
  71. bool m_force_deduce_dst = true;
  72. bool m_allow_invalid_check = false;
  73. /**
  74. * the offset from the start of malloc memory
  75. *
  76. * \note alloc \p m_offset more memory when alloc memory for a tensor,
  77. * the start of tensor just begin at \p m_offset.
  78. * \warning current only used for opencl
  79. */
  80. size_t m_offset = 0;
  81. CheckerHelper(Handle* handle, bool check_dispatch = true);
  82. ~CheckerHelper() noexcept;
  83. using OprExec = std::function<void(const TensorValueArray&)>;
  84. void do_exec_with_testcases(
  85. const TensorValueArray& testcase_in, const TensorValueArray& testcase_out,
  86. const OprExec& exec_opr);
  87. void do_exec(
  88. const TensorLayoutArray& user_layouts,
  89. const TensorLayoutArray& deduced_layouts, const OprExec& exec_naive,
  90. const OprExec& exec_opr);
  91. void enable_contig_naive() { m_enable_contig_naive = true; }
  92. void copy_tensors_to_device(
  93. const TensorValueArray& dest, const TensorValueArray& src);
  94. void copy_tensors_from_device(
  95. const TensorValueArray& dest, const TensorValueArray& src);
  96. private:
  97. std::shared_ptr<TensorValueArray> m_tensors_naive;
  98. void init_naive_values();
  99. void check_tensors(
  100. const TensorValueArray& expected, const TensorValueArray& computed);
  101. };
  102. template <typename Opr, typename Proxy = OprProxy<Opr>>
  103. class Checker : public CheckerHelper {
  104. public:
  105. using Param = typename Opr::Param;
  106. using BeforeExecCallback = std::function<void(Opr*, const TensorValueArray&)>;
  107. Checker(Handle* handle, bool check_dispatch = true)
  108. : CheckerHelper(handle, check_dispatch), m_param(Param()) {}
  109. TensorLayoutArray make_layouts(const TensorShapeArray& shapes) {
  110. TensorLayoutArray layouts(shapes.size());
  111. for (size_t i = 0; i < shapes.size(); ++i) {
  112. DType dt =
  113. (m_dtype.find(i) != m_dtype.end() ? m_dtype[i] : dtype::Float32());
  114. if (m_fmt.find(i) == m_fmt.end()) {
  115. layouts[i] = TensorLayout(shapes[i], dt);
  116. } else
  117. layouts[i] = TensorLayout(shapes[i], dt, m_fmt[i]);
  118. }
  119. return layouts;
  120. }
  121. /*!
  122. * \brief execute opr on current param/dtype/rng config
  123. * \param shapes input/output shapes, which would be passed as
  124. * arguments to Opr::deduce_layout
  125. *
  126. * Checker would construct TensorLayout vectors from shapes and dtypes,
  127. * and call exec(TensorLayoutArray &).
  128. */
  129. Checker& exec(const TensorShapeArray& shapes) {
  130. exec(make_layouts(shapes));
  131. return *this;
  132. }
  133. void exec(TensorLayoutArray layouts);
  134. //! explicitly require argument to be TensorShape
  135. Checker& execs(const TensorShapeArray& shapes) { return exec(shapes); }
  136. //! explicitly require argument to be TensorLayout
  137. Checker& execl(const TensorLayoutArray& layouts) {
  138. exec(layouts);
  139. return *this;
  140. }
  141. Checker& exect(
  142. const TensorValueArray& testcase_in, const TensorValueArray& testcase_out);
  143. Checker& set_param(Param param) {
  144. m_param = param;
  145. opr()->param() = param;
  146. return *this;
  147. }
  148. Checker& set_dtype(size_t idx, DType dtype) {
  149. m_dtype[idx] = dtype;
  150. return *this;
  151. }
  152. Checker& set_fmt(size_t idx, TensorFormat fmt) {
  153. m_fmt[idx] = fmt;
  154. return *this;
  155. }
  156. Checker& set_rng(size_t idx, RNG* rng) {
  157. m_rng[idx] = rng;
  158. return *this;
  159. }
  160. Checker& set_bypass(size_t idx) {
  161. m_bypass.insert(idx);
  162. return *this;
  163. }
  164. //! max error of a single element
  165. Checker& set_epsilon(dt_float32 epsilon) {
  166. m_epsilon = epsilon;
  167. m_max_avg_error = epsilon;
  168. m_max_avg_biased_error = epsilon;
  169. return *this;
  170. }
  171. //! max average error; defaults to epsilon
  172. Checker& set_max_avg_error(dt_float32 error) {
  173. m_max_avg_error = error;
  174. return *this;
  175. }
  176. //! max average biased error; defaults to epsilon
  177. Checker& set_max_avg_biased_error(dt_float32 error) {
  178. m_max_avg_biased_error = error;
  179. return *this;
  180. }
  181. Checker& set_offset(size_t offset) {
  182. m_offset = offset;
  183. return *this;
  184. }
  185. Checker& set_proxy(const Proxy& proxy) {
  186. m_naive_proxy = proxy;
  187. m_cur_proxy = proxy;
  188. return *this;
  189. }
  190. //! set_perf_check and set_perf_check_threshold control the
  191. //! performance checking behavior.
  192. //!
  193. //! If perf_check is on (default to off), the running time of the
  194. //! current operator and the naive operator would be measured and
  195. //! checked when calling exec.
  196. //! The accelerating ratio should be larger than perf_check_threshold,
  197. //! otherwise errors would be reported.
  198. //! perf_check_threshold must be set in advance since the default value
  199. //! (which is negative) is invalid.
  200. Checker& set_perf_check(bool perf_check) {
  201. m_perf_check = perf_check;
  202. return *this;
  203. }
  204. Checker& set_perf_check_threshold(float perf_check_threshold) {
  205. m_perf_check_threshold = perf_check_threshold;
  206. return *this;
  207. }
  208. //! stable check will run many iter and compare result with first iter
  209. Checker& set_stable_check(bool stable_check) {
  210. m_stable_check = stable_check;
  211. return *this;
  212. }
  213. //! froce deduce dst
  214. Checker& set_force_deduce_dst(bool force_deduce_dst) {
  215. m_force_deduce_dst = force_deduce_dst;
  216. return *this;
  217. }
  218. Checker& set_no_naive_check(bool no_naive_and_check) {
  219. m_no_naive_and_check = no_naive_and_check;
  220. return *this;
  221. }
  222. Checker& set_allow_invalid_check(bool allow_invalid_check) {
  223. m_allow_invalid_check = allow_invalid_check;
  224. return *this;
  225. }
  226. //! load input tensors from file for next run
  227. Checker& load_input_tensors(const char* fpath) {
  228. m_input_tensors_fpath = fpath;
  229. return *this;
  230. }
  231. //! add another checker to ensure naive implementation is correct
  232. Checker& set_extra_opr_impl(const ExtraOprImpl& chk) {
  233. m_extra_opr_impl = chk;
  234. return *this;
  235. }
  236. //! set a callback to be invoked before executing the operator
  237. Checker& set_before_exec_callback(const BeforeExecCallback& cb) {
  238. m_before_exec_callback = cb;
  239. return *this;
  240. }
  241. Checker& reset_before_exec_callback() {
  242. m_before_exec_callback = nullptr;
  243. return *this;
  244. }
  245. //! set a tensors constraints function, for the purpose of manipulating
  246. //! tensors when testing.
  247. Checker& set_tensors_constraint(const TensorsConstriant& tensor_constraint) {
  248. m_tensor_constraint = tensor_constraint;
  249. return *this;
  250. }
  251. /*!
  252. * \brief set that exec() on opr should fail, so naive is not called and
  253. * exec() returns directly after opr is called.
  254. *
  255. * This is only valid for next exec() call. It is usually used for
  256. * testing megcore::AsyncErrorInfo.
  257. *
  258. * \param cb callback to be invoked after opr exec (so error would not
  259. * be passed to destructor)
  260. */
  261. Checker& set_expect_exec_fail(const thin_function<void()>& cb) {
  262. m_expect_exec_fail = cb;
  263. return *this;
  264. }
  265. /*!
  266. * \brief set a function to canonize the outputs
  267. *
  268. * For some oprs maybe multiple outputs can be accepted; we can use a
  269. * function to transform them into a canonized form before comparing.
  270. *
  271. * The arguments are tensors on CPU and should be modified in-place.
  272. */
  273. Checker& set_output_canonizer(OutputCanonizer canonizer) {
  274. m_output_canonizer = std::move(canonizer);
  275. return *this;
  276. }
  277. //! get the opr impl so setting other than param() can be modified
  278. Opr* opr() {
  279. if (!m_opr_cur) {
  280. m_opr_cur = m_handle_cur->create_operator<Opr>();
  281. }
  282. return m_opr_cur.get();
  283. }
  284. //! whether previous exec succeeds
  285. bool prev_succ() const { return m_prev_succ; }
  286. private:
  287. BeforeExecCallback m_before_exec_callback;
  288. Param m_param;
  289. Proxy m_naive_proxy, m_cur_proxy;
  290. std::unique_ptr<Opr> m_opr_cur;
  291. };
  292. ::testing::AssertionResult __assert_tensor_eq(
  293. const char* expr0, const char* expr1, const char* expr_maxerr,
  294. const char* expr_maxerr_avg, const char* expr_maxerr_avg_biased,
  295. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  296. float maxerr_avg_biased, bool allow_invalid = false);
  297. ::testing::AssertionResult __assert_tensor_eq_allow_invalid(
  298. const char* expr0, const char* expr1, const char* expr_maxerr,
  299. const char* expr_maxerr_avg, const char* expr_maxerr_avg_biased,
  300. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  301. float maxerr_avg_biased);
  302. #define MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr_avg, maxerr_avg_biased) \
  303. ASSERT_PRED_FORMAT5( \
  304. ::megdnn::test::__assert_tensor_eq, v0, v1, maxerr, maxerr_avg, \
  305. maxerr_avg_biased)
  306. #define MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG_ALLOW_INVALID( \
  307. v0, v1, maxerr, maxerr_avg, maxerr_avg_biased) \
  308. ASSERT_PRED_FORMAT5( \
  309. ::megdnn::test::__assert_tensor_eq_allow_invalid, v0, v1, maxerr, \
  310. maxerr_avg, maxerr_avg_biased)
  311. #define MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, maxerr) \
  312. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr, maxerr)
  313. #define MEGDNN_ASSERT_TENSOR_EQ(v0, v1) MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, 1e-3)
  314. template <typename Opr, typename Proxy>
  315. void Checker<Opr, Proxy>::exec(TensorLayoutArray layouts) {
  316. auto opr_naive = m_handle_naive->create_operator<Opr>();
  317. auto opr_relayout = m_handle_naive->create_operator<RelayoutForward>();
  318. auto opr_cur = this->opr();
  319. opr_naive->param() = m_param;
  320. opr_cur->param() = m_param;
  321. bool deduce_layout = layouts.back().ndim == 0;
  322. if (deduce_layout || m_force_deduce_dst) {
  323. m_naive_proxy.deduce_layout(opr_naive.get(), layouts);
  324. }
  325. auto exec_naive = [this, &opr_naive, &layouts,
  326. &opr_relayout](const TensorValueArray& values) {
  327. TensorValueArray contig_values = values;
  328. TensorValueArray real_values = values;
  329. std::shared_ptr<TensorValueArray> tensors_naive_contig_storage;
  330. if (m_enable_contig_naive) {
  331. TensorLayoutArray contig_layouts;
  332. for (auto&& layout : layouts) {
  333. contig_layouts.emplace_back(TensorLayout{
  334. static_cast<const TensorShape&>(layout), layout.dtype});
  335. }
  336. m_naive_proxy.deduce_layout(opr_naive.get(), contig_layouts);
  337. tensors_naive_contig_storage =
  338. alloc_tensors(m_handle_naive.get(), contig_layouts, m_offset);
  339. contig_values = *tensors_naive_contig_storage;
  340. //! relayout value to the contig_values
  341. for (size_t i = 0; i < contig_values.size(); ++i) {
  342. if (real_values[i].layout.ndim == 0)
  343. continue;
  344. real_values[i].layout.format = {};
  345. opr_relayout->exec(
  346. real_values[i], contig_values[i], m_handle_naive.get());
  347. }
  348. }
  349. m_naive_proxy.exec(opr_naive.get(), contig_values);
  350. if (m_enable_contig_naive) {
  351. //! relayout to the values
  352. for (size_t i = 0; i < contig_values.size(); ++i) {
  353. if (real_values[i].layout.ndim == 0)
  354. continue;
  355. opr_relayout->exec(
  356. contig_values[i], real_values[i], m_handle_naive.get());
  357. }
  358. }
  359. };
  360. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  361. if (m_before_exec_callback) {
  362. m_before_exec_callback(opr_cur, values);
  363. }
  364. m_cur_proxy.exec(opr_cur, values);
  365. };
  366. auto user_layouts = layouts;
  367. do_exec(user_layouts, layouts, exec_naive, exec_opr);
  368. }
  369. template <typename Opr, typename Proxy>
  370. Checker<Opr, Proxy>& Checker<Opr, Proxy>::exect(
  371. const TensorValueArray& testcase_in, const TensorValueArray& testcase_out) {
  372. auto opr_cur = this->opr();
  373. opr_cur->param() = m_param;
  374. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  375. if (m_before_exec_callback) {
  376. m_before_exec_callback(opr_cur, values);
  377. }
  378. m_cur_proxy.exec(opr_cur, values);
  379. };
  380. do_exec_with_testcases(testcase_in, testcase_out, exec_opr);
  381. return *this;
  382. }
  383. template <typename T, typename U>
  384. TensorND TensorValue(
  385. const TensorShape& shape, T dtype, std::initializer_list<U> values) {
  386. TensorND tensor;
  387. tensor.layout = {shape, dtype};
  388. tensor.raw_ptr = static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  389. megdnn_assert(
  390. values.size() == tensor.layout.total_nr_elems(), "%zu == %zu",
  391. values.size(), tensor.layout.total_nr_elems());
  392. auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
  393. for (const auto& v : values) {
  394. *ptr++ = typename DTypeTrait<T>::ctype(v);
  395. }
  396. return tensor;
  397. }
  398. template <typename T, typename U>
  399. TensorND TensorValueLowbit4(const TensorShape& shape, T dtype, std::vector<U> values) {
  400. TensorND tensor;
  401. tensor.layout = {shape, dtype};
  402. tensor.raw_ptr = static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  403. megdnn_assert(values.size() == tensor.layout.total_nr_elems());
  404. auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
  405. auto layout = tensor.layout;
  406. auto dim_in = shape[layout.ndim - 1];
  407. auto elems = tensor.layout.total_nr_elems();
  408. auto dim_out = elems / dim_in;
  409. auto stride_out = div_ceil(dim_in, 2_z);
  410. size_t in_offset = 0;
  411. for (size_t i = 0; i < dim_out; ++i) {
  412. for (size_t j = 0; j < dim_in; j += 2) {
  413. U a = values[in_offset + j];
  414. U b = 0;
  415. if (j + 1 < dim_in)
  416. b = values[in_offset + j + 1];
  417. megdnn_assert(a >= DTypeTrait<T>::min());
  418. megdnn_assert(a <= DTypeTrait<T>::max());
  419. megdnn_assert(b >= DTypeTrait<T>::min());
  420. megdnn_assert(b <= DTypeTrait<T>::max());
  421. ptr[j / 2] = (a & 0xF) | (b << 4);
  422. }
  423. in_offset += dim_in;
  424. ptr += stride_out;
  425. }
  426. return tensor;
  427. }
  428. class Testcase : public SmallVector<TensorND> {
  429. public:
  430. using SmallVector<TensorND>::SmallVector;
  431. ~Testcase() {
  432. // Suicide
  433. for (const auto& tensor : *this) {
  434. if (tensor.raw_ptr) {
  435. free(tensor.raw_ptr);
  436. }
  437. }
  438. }
  439. Testcase(const Testcase&) = delete;
  440. Testcase operator=(const Testcase&) = delete;
  441. };
  442. struct ExecutionPolicyAlgoName {
  443. std::string name;
  444. std::vector<ExecutionPolicyAlgoName> sub_policy_names;
  445. ExecutionPolicyAlgoName(const char* name) : name{name} {}
  446. ExecutionPolicyAlgoName(
  447. const char* name, const std::vector<ExecutionPolicyAlgoName>& sub_policy)
  448. : name{name}, sub_policy_names{sub_policy} {}
  449. };
  450. /*!
  451. * \brief a callable to check that given algorithm is used for heuristic
  452. * \param require_algo if its value is true, then requires
  453. * get_algorithm_heuristic() to return the expected algo; otherwise the
  454. * expected algo must exist in get_all_algorithms_safe() and it would be set to
  455. * be used
  456. */
  457. template <class Opr, typename OprAlgoProxy = OprAlgoProxy<Opr>>
  458. class AlgoChecker {
  459. public:
  460. AlgoChecker(ExecutionPolicyAlgoName name, bool* require_algo = nullptr)
  461. : m_policy_name{name}, m_require_algo{require_algo} {}
  462. AlgoChecker(ExecutionPolicy policy, bool* require_algo = nullptr)
  463. : m_policy{policy}, m_require_algo{require_algo} {}
  464. static ExecutionPolicy construct_execution_policy_from_name(
  465. const ExecutionPolicyAlgoName& policy_name,
  466. const TensorLayoutArray& layouts, const std::string& param,
  467. Handle* handle) {
  468. ExecutionPolicy ret;
  469. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  470. auto opr = handle->create_operator<Opr>();
  471. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  472. for (auto algo_info :
  473. AlgoProxy<Opr, OprTrait<Opr>::arity>::get_all_algorithms_info_safe(
  474. opr.get(), layouts)) {
  475. if (std::regex_match(
  476. algo_info.desc.name,
  477. std::regex("(" + policy_name.name + ")(.*)"))) {
  478. ret.algo = algo_info.desc;
  479. } else {
  480. continue;
  481. }
  482. Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
  483. std::vector<Algorithm::SearchItem>&& sub_items =
  484. algo->get_subopr_list(layouts, opr.get());
  485. if (sub_items.size() != policy_name.sub_policy_names.size()) {
  486. printf("Invalid sub_policy_names in %s, expected %zu but got "
  487. "%zu\n",
  488. algo_info.desc.name.c_str(), sub_items.size(),
  489. policy_name.sub_policy_names.size());
  490. return {};
  491. }
  492. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  493. ExecutionPolicy policy =
  494. AlgoChecker<_Opr>::construct_execution_policy_from_name(
  495. policy_name.sub_policy_names[_item_idx], _item.layouts,
  496. _item.param, handle);
  497. ret.sub_policy.push_back(policy);
  498. });
  499. return ret;
  500. }
  501. return ret;
  502. }
  503. void operator()(Opr* opr, const CheckerHelper::TensorValueArray& arr) {
  504. TensorLayoutArray layouts;
  505. for (auto&& val : arr) {
  506. layouts.push_back(val.layout);
  507. }
  508. if (!m_policy_name.name.empty()) {
  509. std::string param_str;
  510. Algorithm::serialize_write_pod(opr->param(), param_str);
  511. m_policy = construct_execution_policy_from_name(
  512. m_policy_name, layouts, param_str, opr->handle());
  513. ASSERT_TRUE(m_policy.algo.valid())
  514. << "algorithm " << m_policy_name.name << " not found";
  515. }
  516. if (m_require_algo && *m_require_algo) {
  517. auto algo = OprAlgoProxy::get_algorithm_info_heuristic(opr, layouts);
  518. ASSERT_STREQ(
  519. opr->get_algorithm_from_desc(m_policy.algo)->name(),
  520. algo.desc.name.c_str());
  521. } else {
  522. opr->execution_policy() = m_policy;
  523. }
  524. }
  525. private:
  526. ExecutionPolicyAlgoName m_policy_name;
  527. ExecutionPolicy m_policy;
  528. bool* m_require_algo;
  529. };
  530. template <typename Opr>
  531. void construct_sub_execution_policy_heuristic(
  532. ExecutionPolicy& policy, const TensorLayoutArray& layouts,
  533. const std::string& param, Handle* handle) {
  534. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  535. auto opr = handle->create_operator<Opr>();
  536. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  537. if (!policy.algo.valid()) {
  538. policy.algo =
  539. AlgoProxy<Opr, OprTrait<Opr>::arity>::get_algorithm_info_heuristic(
  540. opr.get(), layouts)
  541. .desc;
  542. }
  543. Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
  544. std::vector<Algorithm::SearchItem>&& sub_items =
  545. algo->get_subopr_list(layouts, opr.get());
  546. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  547. policy.sub_policy.push_back(ExecutionPolicy{});
  548. construct_sub_execution_policy_heuristic<_Opr>(
  549. policy.sub_policy.back(), _item.layouts, _item.param, handle);
  550. });
  551. }
  552. } // namespace test
  553. } // namespace megdnn
  554. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台