You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. /**
  2. * \file dnn/test/arm_common/pooling_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/arm_common/fixture.h"
  12. #include "test/common/pooling.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/benchmarker.h"
  15. #include "test/common/rng.h"
  16. namespace megdnn {
  17. namespace test {
  18. /*********************** mutli threads *********************************/
  19. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  20. using Param = param::Pooling;
  21. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  22. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  23. for (size_t p: {1, 2})
  24. {
  25. Param param;
  26. param.mode = Param::Mode::MAX;
  27. param.window_h = param.window_w = 3;
  28. param.stride_h = param.stride_w = 2;
  29. param.pad_h = param.pad_w = p;
  30. Checker<Pooling> checker(handle());
  31. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  32. param.mode = Param::Mode::AVERAGE;
  33. param.window_h = param.window_w = 3;
  34. param.stride_h = param.stride_w = 2;
  35. param.pad_h = param.pad_w = p;
  36. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  37. param.mode = Param::Mode::MAX;
  38. param.window_h = param.window_w = 4;
  39. param.stride_h = param.stride_w = 2;
  40. param.pad_h = param.pad_w = p;
  41. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  42. param.mode = Param::Mode::MAX;
  43. param.window_h = param.window_w = 5;
  44. param.stride_h = param.stride_w = 2;
  45. param.pad_h = param.pad_w = p;
  46. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  47. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  48. }
  49. }
  50. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W3x3_S2x2_NCHW44)
  51. {
  52. // clang-format off
  53. for (size_t ih: {3, 5, 10})
  54. for (size_t iw: {3, 5, 7, 9, 15, 20})
  55. for (size_t ph: {0})
  56. for (size_t pw: {0})
  57. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  58. {
  59. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  60. Checker<Pooling> checker(handle());
  61. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  62. checker.set_rng(0,&rng);
  63. param::Pooling param;
  64. param.mode = param::Pooling::Mode::MAX;
  65. param.format = param::Pooling::Format::NCHW44;
  66. param.pad_h = ph;
  67. param.pad_w = pw;
  68. param.stride_h = param.stride_w = 2;
  69. param.window_h = param.window_w = 3;
  70. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  71. }
  72. // clang-format on
  73. }
  74. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W3x3_S1x1_NCHW44)
  75. {
  76. // clang-format off
  77. for (size_t ih: {3, 5, 10})
  78. for (size_t iw: {3, 5, 7, 9, 15, 20})
  79. for (size_t ph: {0})
  80. for (size_t pw: {0})
  81. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  82. {
  83. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  84. Checker<Pooling> checker(handle());
  85. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  86. checker.set_rng(0,&rng);
  87. param::Pooling param;
  88. param.mode = param::Pooling::Mode::MAX;
  89. param.format = param::Pooling::Format::NCHW44;
  90. param.pad_h = ph;
  91. param.pad_w = pw;
  92. param.stride_h = param.stride_w = 1;
  93. param.window_h = param.window_w = 3;
  94. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  95. }
  96. // clang-format on
  97. }
  98. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W2x2_S1x1_NCHW44)
  99. {
  100. // clang-format off
  101. for (size_t ih: {2, 5, 10, 17})
  102. for (size_t iw: {2, 6, 8, 16, 26})
  103. for (size_t ph: {0})
  104. for (size_t pw: {0})
  105. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  106. {
  107. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  108. Checker<Pooling> checker(handle());
  109. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  110. checker.set_rng(0,&rng);
  111. param::Pooling param;
  112. param.mode = param::Pooling::Mode::MAX;
  113. param.format = param::Pooling::Format::NCHW44;
  114. param.pad_h = ph;
  115. param.pad_w = pw;
  116. param.stride_h = param.stride_w = 1;
  117. param.window_h = param.window_w = 2;
  118. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  119. }
  120. // clang-format on
  121. }
  122. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W2x2_S2x2_NCHW44)
  123. {
  124. // clang-format off
  125. for (size_t ih: {2, 5, 10, 17})
  126. for (size_t iw: {2, 6, 8, 16, 26})
  127. for (size_t ph: {0})
  128. for (size_t pw: {0})
  129. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  130. {
  131. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  132. Checker<Pooling> checker(handle());
  133. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  134. checker.set_rng(0,&rng);
  135. param::Pooling param;
  136. param.mode = param::Pooling::Mode::MAX;
  137. param.format = param::Pooling::Format::NCHW44;
  138. param.pad_h = ph;
  139. param.pad_w = pw;
  140. param.stride_h = param.stride_w = 2;
  141. param.window_h = param.window_w = 2;
  142. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  143. }
  144. // clang-format on
  145. }
  146. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W4x4_S1x1_NCHW44)
  147. {
  148. // clang-format off
  149. for (size_t ih: {4, 7, 10, 17, 20})
  150. for (size_t iw: {4, 8, 10, 21, 32})
  151. for (size_t ph: {0})
  152. for (size_t pw: {0})
  153. if (ih+2*ph >= 4 && iw+2*pw >= 4)
  154. {
  155. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  156. Checker<Pooling> checker(handle());
  157. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  158. checker.set_rng(0,&rng);
  159. param::Pooling param;
  160. param.mode = param::Pooling::Mode::MAX;
  161. param.format = param::Pooling::Format::NCHW44;
  162. param.pad_h = ph;
  163. param.pad_w = pw;
  164. param.stride_h = param.stride_w = 1;
  165. param.window_h = param.window_w = 4;
  166. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  167. }
  168. // clang-format on
  169. }
  170. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W4x4_S2x2_NCHW44)
  171. {
  172. // clang-format off
  173. for (size_t ih: {4, 10, 18, 25, 30})
  174. for (size_t iw: {4, 12, 17, 20, 25})
  175. for (size_t ph: {0})
  176. for (size_t pw: {0})
  177. if (ih+2*ph >= 4 && iw+2*pw >= 4)
  178. {
  179. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  180. Checker<Pooling> checker(handle());
  181. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  182. checker.set_rng(0,&rng);
  183. param::Pooling param;
  184. param.mode = param::Pooling::Mode::MAX;
  185. param.format = param::Pooling::Format::NCHW44;
  186. param.pad_h = ph;
  187. param.pad_w = pw;
  188. param.stride_h = param.stride_w = 2;
  189. param.window_h = param.window_w = 4;
  190. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  191. }
  192. // clang-format on
  193. }
  194. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W5x5_S1x1_NCHW44)
  195. {
  196. // clang-format off
  197. for (size_t ih: {5, 9, 19, 20, 39})
  198. for (size_t iw: {5, 12, 23, 27, 39})
  199. for (size_t ph: {0})
  200. for (size_t pw: {0})
  201. if (ih+2*ph >= 5 && iw+2*pw >= 5)
  202. {
  203. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  204. Checker<Pooling> checker(handle());
  205. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  206. checker.set_rng(0,&rng);
  207. param::Pooling param;
  208. param.mode = param::Pooling::Mode::MAX;
  209. param.format = param::Pooling::Format::NCHW44;
  210. param.pad_h = ph;
  211. param.pad_w = pw;
  212. param.stride_h = param.stride_w = 1;
  213. param.window_h = param.window_w = 5;
  214. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  215. }
  216. // clang-format on
  217. }
  218. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W5x5_S2x2_NCHW44)
  219. {
  220. // clang-format off
  221. for (size_t ih: {5, 9, 19, 20, 39})
  222. for (size_t iw: {5, 12, 23, 27, 39})
  223. for (size_t ph: {0})
  224. for (size_t pw: {0})
  225. if (ih+2*ph >= 5 && iw+2*pw >= 5)
  226. {
  227. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  228. Checker<Pooling> checker(handle());
  229. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  230. checker.set_rng(0,&rng);
  231. param::Pooling param;
  232. param.mode = param::Pooling::Mode::MAX;
  233. param.format = param::Pooling::Format::NCHW44;
  234. param.pad_h = ph;
  235. param.pad_w = pw;
  236. param.stride_h = param.stride_w = 2;
  237. param.window_h = param.window_w = 5;
  238. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  239. }
  240. // clang-format on
  241. }
  242. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
  243. {
  244. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  245. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  246. for (size_t ph: {0, 1, 2})
  247. for (size_t pw: {0, 1, 2})
  248. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  249. {
  250. Checker<Pooling> checker(handle());
  251. checker.set_dtype(0, dtype::Int8());
  252. param::Pooling param;
  253. param.mode = param::Pooling::Mode::MAX;
  254. param.pad_h = ph;
  255. param.pad_w = pw;
  256. param.stride_h = param.stride_w = 2;
  257. param.window_h = param.window_w = 3;
  258. checker.set_param(param).exec(TensorShapeArray{
  259. {2, 3, ih, iw}, {}});
  260. }
  261. }
  262. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
  263. {
  264. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  265. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  266. for (size_t ph: {0, 1})
  267. for (size_t pw: {0, 1})
  268. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  269. {
  270. Checker<Pooling> checker(handle());
  271. checker.set_dtype(0, dtype::Int8());
  272. param::Pooling param;
  273. param.mode = param::Pooling::Mode::MAX;
  274. param.pad_h = ph;
  275. param.pad_w = pw;
  276. param.stride_h = param.stride_w = 2;
  277. param.window_h = param.window_w = 2;
  278. checker.set_param(param).exec(TensorShapeArray{
  279. {2, 3, ih, iw}, {}});
  280. }
  281. }
  282. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  283. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  284. Checker<Pooling> checker(handle());
  285. checker.set_dtype(0, dtype::Float16{})
  286. .set_dtype(1, dtype::Float16{})
  287. .set_epsilon(3e-3);
  288. using Param = param::Pooling;
  289. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  290. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  291. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  292. for (size_t window : {2, 3}) {
  293. Param param;
  294. param.mode = mode;
  295. param.window_h = param.window_w = window;
  296. param.stride_h = param.stride_w = 1;
  297. param.pad_h = param.pad_w = window / 2;
  298. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  299. //! == 3)
  300. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  301. //! test for SH = SW = 2 && FH = FW = 2
  302. param.stride_h = param.stride_w = 2;
  303. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  304. }
  305. }
  306. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  307. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  308. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  309. for (size_t ph : {0, 1, 2})
  310. for (size_t pw : {0, 1, 2})
  311. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  312. param::Pooling param;
  313. param.mode = param::Pooling::Mode::MAX;
  314. param.pad_h = ph;
  315. param.pad_w = pw;
  316. param.stride_h = param.stride_w = 2;
  317. param.window_h = param.window_w = 3;
  318. checker.set_param(param).exec(
  319. TensorShapeArray{{2, 3, ih, iw}, {}});
  320. }
  321. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  322. for (size_t ih :
  323. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  324. for (size_t iw :
  325. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  326. for (size_t p : {1, 2}) {
  327. Param param;
  328. param.mode = Param::Mode::MAX;
  329. param.window_h = param.window_w = 4;
  330. param.stride_h = param.stride_w = 2;
  331. param.pad_h = param.pad_w = p;
  332. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  333. }
  334. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  335. for (size_t ih :
  336. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  337. for (size_t iw :
  338. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  339. for (size_t p : {1, 2}) {
  340. Param param;
  341. param.mode = Param::Mode::MAX;
  342. param.window_h = param.window_w = 5;
  343. param.stride_h = param.stride_w = 2;
  344. param.pad_h = param.pad_w = p;
  345. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  346. }
  347. }
  348. #endif
  349. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  350. Checker<Pooling> checker(handle());
  351. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  352. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  353. using Param = param::Pooling;
  354. for (auto type : std::vector<DType>{
  355. dtype::QuantizedS8(1.1f),
  356. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  357. if (type.enumv() == DTypeEnum::QuantizedS8) {
  358. checker.set_rng(0, &rng1);
  359. } else {
  360. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  361. checker.set_rng(0, &rng2);
  362. }
  363. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  364. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  365. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  366. for (size_t window : {2, 3}) {
  367. Param param;
  368. param.mode = mode;
  369. param.window_h = param.window_w = window;
  370. param.stride_h = param.stride_w = 1;
  371. param.pad_h = param.pad_w = window / 2;
  372. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  373. //! FH
  374. //! == 3)
  375. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  376. //! test for SH = SW = 2 && FH = FW = 2
  377. param.stride_h = param.stride_w = 2;
  378. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  379. }
  380. }
  381. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  382. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  383. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  384. for (size_t ph : {0, 1, 2})
  385. for (size_t pw : {0, 1, 2})
  386. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  387. param::Pooling param;
  388. param.mode = param::Pooling::Mode::MAX;
  389. param.pad_h = ph;
  390. param.pad_w = pw;
  391. param.window_h = param.window_w = 3;
  392. param.stride_h = param.stride_w = 2;
  393. checker.set_param(param).exec(
  394. TensorShapeArray{{2, 3, ih, iw}, {}});
  395. }
  396. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  397. for (size_t ih :
  398. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  399. for (size_t iw :
  400. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  401. for (size_t p : {1, 2}) {
  402. Param param;
  403. param.mode = Param::Mode::MAX;
  404. param.window_h = param.window_w = 4;
  405. param.stride_h = param.stride_w = 2;
  406. param.pad_h = param.pad_w = p;
  407. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  408. }
  409. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  410. for (size_t ih :
  411. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  412. for (size_t iw :
  413. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  414. for (size_t p : {1, 2}) {
  415. Param param;
  416. param.mode = Param::Mode::MAX;
  417. param.window_h = param.window_w = 5;
  418. param.stride_h = param.stride_w = 2;
  419. param.pad_h = param.pad_w = p;
  420. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  421. }
  422. }
  423. }
  424. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  425. using Param = param::Pooling;
  426. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  427. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  428. for (size_t p: {1, 2})
  429. {
  430. Param param;
  431. param.mode = Param::Mode::MAX;
  432. param.window_h = param.window_w = 3;
  433. param.stride_h = param.stride_w = 2;
  434. param.pad_h = param.pad_w = p;
  435. Checker<Pooling> checker(handle());
  436. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  437. }
  438. }
  439. #if MEGDNN_WITH_BENCHMARK
  440. namespace {
  441. template <typename Opr>
  442. void benchmark_impl(const typename Opr::Param& param,
  443. std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
  444. TaskExecutorConfig&& multi_thread_config,
  445. TaskExecutorConfig&& single_thread_config) {
  446. std::vector<float> multi_thread_times, single_thread_times;
  447. {
  448. auto multi_thread_hanle =
  449. create_cpu_handle(0, true, &multi_thread_config);
  450. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  451. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  452. for (auto shape : shapes) {
  453. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  454. }
  455. }
  456. {
  457. auto single_thread_handle =
  458. create_cpu_handle(0, true, &single_thread_config);
  459. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  460. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  461. for (auto shape : shapes) {
  462. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  463. }
  464. }
  465. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  466. printf("core_ids:");
  467. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  468. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  469. }
  470. printf(", Single thread core_id %zu\n",
  471. single_thread_config.affinity_core_set[0]);
  472. for (size_t i = 0; i < shapes.size(); i++) {
  473. auto shape = shapes[i];
  474. printf("Case: ");
  475. for (auto sh : shape)
  476. printf("%s ", sh.to_string().c_str());
  477. printf("%zu threads time: %f,\n single thread time: "
  478. "%f. spead up = %f, speedup/cores=%f\n",
  479. multi_thread_config.nr_thread, multi_thread_times[i],
  480. single_thread_times[i],
  481. single_thread_times[i] / multi_thread_times[i],
  482. single_thread_times[i] / multi_thread_times[i] /
  483. multi_thread_config.nr_thread);
  484. }
  485. }
  486. } // namespace
  487. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  488. constexpr size_t RUNS = 50;
  489. using Param = param::Pooling;
  490. Param param;
  491. param.window_h = param.window_w = 3;
  492. param.stride_h = param.stride_w = 2;
  493. param.pad_h = param.pad_w = 1;
  494. std::vector<SmallVector<TensorShape>> shapes;
  495. shapes.push_back({{32, 32, 215, 215}, {}});
  496. shapes.push_back({{32, 32, 128, 128}, {}});
  497. shapes.push_back({{8, 256, 100, 100}, {}});
  498. shapes.push_back({{1, 256, 100, 100}, {}});
  499. shapes.push_back({{1, 32, 100, 100}, {}});
  500. shapes.push_back({{1, 256, 80, 80}, {}});
  501. shapes.push_back({{1, 256, 60, 60}, {}});
  502. shapes.push_back({{1, 256, 30, 30}, {}});
  503. param.window_h = param.window_w = 3;
  504. param.stride_h = param.stride_w = 2;
  505. param.pad_h = param.pad_w = 1;
  506. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  507. param.stride_h, param.pad_h, static_cast<int>(param.mode));
  508. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}});
  509. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}});
  510. benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}});
  511. }
  512. #endif
  513. } // namespace test
  514. } // namespace megdnn
  515. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台