You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 216 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319
  1. #include "megbrain/graph/cg.h"
  2. #include "megbrain/opr/dnn/local.h"
  3. #include "megbrain/test/helper.h"
  4. #include "megbrain/gopt/basic_arith.h"
  5. #include "megbrain/gopt/gtrans.h"
  6. #include "megbrain/gopt/inference.h"
  7. #include "megbrain/opr/basic_arith_wrapper.h"
  8. #include "megbrain/opr/blas.h"
  9. #include "megbrain/opr/dnn/adaptive_pooling.h"
  10. #include "megbrain/opr/dnn/batch_norm.h"
  11. #include "megbrain/opr/dnn/convolution.h"
  12. #include "megbrain/opr/dnn/pooling.h"
  13. #include "megbrain/opr/imgproc.h"
  14. #include "megbrain/opr/io.h"
  15. #include "megbrain/opr/nn_int.h"
  16. #include "megbrain/opr/tensor_gen.h"
  17. #include "megbrain/opr/tensor_manip.h"
  18. #include "megbrain/opr/utility.h"
  19. #include "./helper.h"
  20. #include "megbrain/comp_node_env.h"
  21. #include "megdnn/tensor_format.h"
  22. #include <random>
  23. #include <vector>
  24. #if MGB_CUDA
  25. #include <cudnn.h>
  26. #endif
  27. using namespace mgb;
  28. namespace {
  29. //! find first the operator of specific type; raise exception if not found
  30. template <typename T>
  31. T& find_opr(SymbolVar endpoint) {
  32. T* found = nullptr;
  33. auto cb = [&found](cg::OperatorNodeBase* opr) {
  34. if (!found && opr->same_type<T>()) {
  35. found = &opr->cast_final_safe<T>();
  36. }
  37. };
  38. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  39. mgb_assert(found, "not found opr from %s", endpoint.node()->name().c_str());
  40. return *found;
  41. }
  42. template <typename T>
  43. T& find_opr(SymbolVar endpoint, const std::string& node_name) {
  44. T* found = nullptr;
  45. auto cb = [&found, &node_name](cg::OperatorNodeBase* opr) {
  46. if (!found && opr->same_type<T>() && opr->name() == node_name) {
  47. found = &opr->cast_final_safe<T>();
  48. }
  49. };
  50. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  51. mgb_assert(
  52. found, "not found opr %s from %s", node_name.c_str(),
  53. endpoint.node()->name().c_str());
  54. return *found;
  55. }
  56. template <typename T>
  57. size_t find_opr_num(SymbolVar endpoint) {
  58. size_t opr_num = 0;
  59. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  60. if (opr->same_type<T>()) {
  61. opr_num++;
  62. }
  63. };
  64. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  65. return opr_num;
  66. }
  67. class NaiveMegDNNHandleScope {
  68. int m_orig_level;
  69. public:
  70. NaiveMegDNNHandleScope()
  71. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  72. CompNode::finalize();
  73. }
  74. ~NaiveMegDNNHandleScope() {
  75. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  76. mgb_assert(set == 2);
  77. CompNode::finalize();
  78. }
  79. };
  80. #if MGB_CUDA
  81. //! this function is only used in TestGoptInference.EnableCHWN4...
  82. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H, size_t INP_W) {
  83. static std::mt19937 rng(next_rand_seed());
  84. auto rand_real = [&](double lo, double hi) {
  85. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  86. };
  87. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  88. auto ptr = mat.ptr<float>();
  89. for (size_t i = 0; i < N; ++i) {
  90. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  91. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  92. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  93. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  94. ptr[0] = ptr[4] = cos(rot) * scale;
  95. ptr[1] = -(ptr[3] = sin(rot) * scale);
  96. ptr[3] *= sheer;
  97. ptr[4] *= sheer;
  98. ptr[2] = dx;
  99. ptr[5] = dy;
  100. ptr[6] = kx;
  101. ptr[7] = ky;
  102. ptr[8] = kb;
  103. ptr += 9;
  104. }
  105. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  106. }
  107. #endif
  108. } // namespace
  109. TEST(TestGoptInference, ParamFuseConstEndPoint) {
  110. constexpr size_t SIZE = 23;
  111. HostTensorGenerator<> gen;
  112. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  113. auto graph = ComputingGraph::make();
  114. graph->options().graph_opt_level = 0;
  115. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  116. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  117. p = opr::Host2DeviceCopy::make(*graph, host_p), q = p + x, a = y + 3,
  118. z0 = a + q, z1 = a + 4;
  119. HostTensorND host_z0, host_z1;
  120. SymbolVar z0_1, z1_1;
  121. unpack_vector(
  122. gopt::GraphOptimizer{}
  123. .add_pass<gopt::ParamFusePass>()
  124. .apply({{z1, z0}})
  125. .endpoint_vars(),
  126. z1_1, z0_1);
  127. auto func = graph->compile(
  128. {make_callback_copy(z0_1, host_z0), make_callback_copy(z1_1, host_z1)});
  129. func->to_json()->writeto_fpath(
  130. output_file("TestGoptInference.ParamFuseEndPoint.json"));
  131. func->execute();
  132. int nr_opr = 0;
  133. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  134. ++nr_opr;
  135. return true;
  136. });
  137. ASSERT_EQ(8, nr_opr);
  138. auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
  139. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
  140. pz1 = host_z1.ptr<float>()[0];
  141. for (size_t i = 0; i < SIZE; ++i) {
  142. MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
  143. }
  144. MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
  145. }
  146. TEST(TestGoptInference, ParamFuse) {
  147. constexpr size_t SIZE = 23;
  148. HostTensorGenerator<> gen;
  149. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  150. auto graph = ComputingGraph::make();
  151. graph->options().graph_opt_level = 0;
  152. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  153. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  154. p = opr::Host2DeviceCopy::make(*graph, host_p),
  155. z = x + y, // endpoint
  156. q = x * y + p; // middle point
  157. SymbolVar z1, q1;
  158. unpack_vector(
  159. gopt::GraphOptimizer{}
  160. .add_pass<gopt::ParamFusePass>()
  161. .apply({{z, q}})
  162. .endpoint_vars(),
  163. z1, q1);
  164. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  165. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  166. ASSERT_EQ(
  167. q1.node()->owner_opr()->dyn_typeinfo(),
  168. q.node()->owner_opr()->dyn_typeinfo());
  169. HostTensorND host_z, host_q;
  170. auto func = graph->compile(
  171. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  172. func->execute();
  173. int nr_opr = 0;
  174. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  175. ++nr_opr;
  176. return true;
  177. });
  178. ASSERT_EQ(6, nr_opr);
  179. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
  180. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  181. for (size_t i = 0; i < SIZE; ++i) {
  182. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  183. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  184. }
  185. }
  186. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  187. constexpr size_t SIZE = 23;
  188. HostTensorGenerator<> gen;
  189. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  190. auto graph = ComputingGraph::make();
  191. graph->options().graph_opt_level = 0;
  192. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  193. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  194. p = opr::Host2DeviceCopy::make(*graph, host_p),
  195. z = x + y, //! endpoint
  196. q = x * y + p; //! middle point
  197. SymbolVar z1, q1;
  198. unpack_vector(
  199. gopt::GraphOptimizer{}
  200. .add_pass<gopt::ParamMergePass>()
  201. .apply({{z}})
  202. .endpoint_vars(),
  203. z1);
  204. ASSERT_TRUE(z1.node()
  205. ->owner_opr()
  206. ->input(0)
  207. ->owner_opr()
  208. ->same_type<opr::MultipleDeviceTensorHolder>());
  209. unpack_vector(
  210. gopt::GraphOptimizer{}
  211. .add_pass<gopt::ParamMergePass>()
  212. .add_pass<gopt::ParamFusePass>()
  213. .apply({{z, q}})
  214. .endpoint_vars(),
  215. z1, q1);
  216. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  217. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  218. ASSERT_EQ(
  219. q1.node()->owner_opr()->dyn_typeinfo(),
  220. q.node()->owner_opr()->dyn_typeinfo());
  221. HostTensorND host_z, host_q;
  222. auto func = graph->compile(
  223. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  224. func->execute();
  225. int nr_opr = 0;
  226. func->iter_opr_seq([&](cg::OperatorNodeBase* op) {
  227. ++nr_opr;
  228. return true;
  229. });
  230. ASSERT_EQ(6, nr_opr);
  231. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(), pq = host_q.ptr<float>();
  232. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  233. for (size_t i = 0; i < SIZE; ++i) {
  234. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  235. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  236. }
  237. }
  238. TEST(TestGoptInference, ParamFuseMultiRead) {
  239. HostTensorGenerator<> gen;
  240. auto graph = ComputingGraph::make();
  241. graph->options().graph_opt_level = 0;
  242. auto mkvar = [&](const char* name, const TensorShape& shp) {
  243. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  244. };
  245. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  246. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  247. };
  248. auto x = mkvar("x", {23}), p0 = mkcvar("p0", {1}), p1 = mkcvar("p1", {1}),
  249. z0 = x * (p0 + p1) + x / (p0 + p1);
  250. SymbolVar z1;
  251. unpack_vector(
  252. gopt::GraphOptimizer{}
  253. .add_pass<gopt::ParamFusePass>()
  254. .apply({{z0}})
  255. .endpoint_vars(),
  256. z1);
  257. ASSERT_NE(z0.node(), z1.node());
  258. ASSERT_TRUE(z1.node()
  259. ->owner_opr()
  260. ->input(0)
  261. ->owner_opr()
  262. ->input(1)
  263. ->owner_opr()
  264. ->same_type<opr::SharedDeviceTensor>());
  265. ASSERT_TRUE(z1.node()
  266. ->owner_opr()
  267. ->input(1)
  268. ->owner_opr()
  269. ->input(1)
  270. ->owner_opr()
  271. ->same_type<opr::SharedDeviceTensor>());
  272. HostTensorND host_z0, host_z1;
  273. graph->compile({make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)})
  274. ->execute();
  275. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  276. }
  277. TEST(TestGoptInference, ParamFuseStaticInfer) {
  278. HostTensorGenerator<> gen;
  279. auto graph = ComputingGraph::make();
  280. auto mkvar = [&](const char* name, const TensorShape& shp) {
  281. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  282. };
  283. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  284. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  285. };
  286. auto a = mkvar("x", {4}),
  287. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  288. SymbolVar b1;
  289. unpack_vector(
  290. gopt::GraphOptimizer{}
  291. .add_pass<gopt::ParamFusePass>()
  292. .apply({{b}})
  293. .endpoint_vars(),
  294. b1);
  295. ASSERT_EQ(b1, a.reshape({2, 2}));
  296. }
  297. TEST(TestGoptInference, ParamRedistributeConvMul) {
  298. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  299. HostTensorGenerator<> gen;
  300. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  301. host_w = gen({OC, IC, KH, KW});
  302. auto graph = ComputingGraph::make();
  303. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  304. k = opr::Dimshuffle::make(
  305. opr::SharedDeviceTensor::make(*graph, *host_k), {-1, 0, -1, -1}),
  306. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  307. y0 = opr::Convolution::make(x * k, w);
  308. SymbolVar y1;
  309. unpack_vector(
  310. gopt::GraphOptimizer{}
  311. .add_pass<gopt::ParamRedistributePass>()
  312. .apply({{y0}})
  313. .endpoint_vars(),
  314. y1);
  315. ASSERT_NE(y0.node(), y1.node());
  316. HostTensorND host_y0, host_y1;
  317. auto func = graph->compile(
  318. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  319. func->execute();
  320. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  321. }
  322. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  323. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  324. HostTensorGenerator<> gen;
  325. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}), host_w = gen({C, C, KH, KW});
  326. auto graph = ComputingGraph::make();
  327. graph->options().graph_opt_level = 0;
  328. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  329. k = opr::Dimshuffle::make(
  330. opr::SharedDeviceTensor::make(*graph, *host_k) + 2, {-1, 0, -1, -1}),
  331. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  332. // y0 should be replaced
  333. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
  334. y0k = (y0 * k).rename("y0k"),
  335. // y0k is accessed twice, so it should not be replaced
  336. y1 = opr::Convolution::make(y0k, w).rename("y1"), z0 = y1 / y0k;
  337. SymbolVar z1;
  338. unpack_vector(
  339. gopt::GraphOptimizer{}
  340. .add_pass<gopt::ParamRedistributePass>()
  341. .apply({{z0}})
  342. .endpoint_vars(),
  343. z1);
  344. ASSERT_NE(z0.node(), z1.node());
  345. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  346. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  347. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  348. HostTensorND host_z0, host_z1;
  349. auto func = graph->compile(
  350. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  351. func->execute();
  352. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  353. }
  354. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  355. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  356. HostTensorGenerator<> gen;
  357. auto host_x = gen({N, IC, IH, IW}), host_k1 = gen({IC}),
  358. host_k2 = gen({1, OC, 1, 1}), host_w = gen({OC, IC, KH, KW});
  359. auto graph = ComputingGraph::make();
  360. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  361. k1 = opr::Dimshuffle::make(
  362. opr::SharedDeviceTensor::make(*graph, *host_k1), {-1, 0, -1, -1}),
  363. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  364. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  365. y0 = opr::Convolution::make(x * k1, w) * k2;
  366. SymbolVar y1;
  367. unpack_vector(
  368. gopt::GraphOptimizer{}
  369. .add_pass<gopt::ParamRedistributePass>()
  370. .add_pass<gopt::ParamFusePass>()
  371. .apply({{y0}})
  372. .endpoint_vars(),
  373. y1);
  374. auto y1opr = y1.node()->owner_opr();
  375. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  376. ASSERT_EQ(y1opr->input(0), x.node());
  377. HostTensorND host_y0, host_y1;
  378. auto func = graph->compile(
  379. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  380. func->execute();
  381. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  382. }
  383. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  384. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  385. HostTensorGenerator<> gen;
  386. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  387. host_w = gen({OC, IC, KH, KW});
  388. auto graph = ComputingGraph::make();
  389. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  390. b = opr::Dimshuffle::make(
  391. opr::SharedDeviceTensor::make(*graph, *host_b), {-1, 0, -1, -1}),
  392. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  393. y0 = opr::Convolution::make(x + b, w);
  394. SymbolVar y1;
  395. unpack_vector(
  396. gopt::GraphOptimizer{}
  397. .add_pass<gopt::ParamRedistributePass>()
  398. .add_pass<gopt::ParamFusePass>()
  399. .apply({{y0}})
  400. .endpoint_vars(),
  401. y1);
  402. ASSERT_NE(y0.node(), y1.node());
  403. HostTensorND host_y0, host_y1;
  404. auto func = graph->compile(
  405. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  406. func->execute();
  407. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  408. }
  409. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  410. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  411. HostTensorGenerator<> gen;
  412. auto graph = ComputingGraph::make();
  413. auto mkvar = [&](const char* name, const TensorShape& shp) {
  414. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  415. };
  416. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  417. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  418. };
  419. auto x0 = mkvar("x0", {N, IC0, IH, IW}), x1 = mkvar("x1", {N, IC1, IH, IW}),
  420. k0 = opr::Dimshuffle::make(mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
  421. w0 = mkcvar("w0", {OC, IC0, KH, KW}), k1 = mkcvar("k1", {1, IC1, 1, 1}),
  422. w1 = mkcvar("w1", {OC, IC1, KH, KW}), b0 = mkvar("b0", {1, OC, 1, 1}),
  423. b1 = mkcvar("b1", {1}), k2 = mkcvar("k2", {1}),
  424. y0 = (opr::Convolution::make(x0 * k0, w0) +
  425. opr::Convolution::make(x1 + k1, w1) + b0 + b1) *
  426. k2;
  427. SymbolVar y1;
  428. unpack_vector(
  429. gopt::GraphOptimizer{}
  430. .add_pass<gopt::ParamRedistributePass>()
  431. .add_pass<gopt::ReorderArithChainPass>(
  432. gopt::ConstVarType::IMMUTABLE_AND_PARAM)
  433. .add_pass<gopt::ParamFusePass>()
  434. .apply({{y0}})
  435. .endpoint_vars(),
  436. y1);
  437. ASSERT_NE(y0.node(), y1.node());
  438. HostTensorND host_y0, host_y1;
  439. auto func = graph->compile(
  440. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  441. func->execute();
  442. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  443. auto chain = gopt::extract_opr_leaves(y1.node(), [](cg::OperatorNodeBase* opr) {
  444. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  445. });
  446. size_t nr_conv = 0;
  447. for (auto i : chain) {
  448. auto opr = i->owner_opr();
  449. if (opr->same_type<opr::Convolution>()) {
  450. ++nr_conv;
  451. ASSERT_TRUE(opr->input(0)->owner_opr()->same_type<opr::Host2DeviceCopy>());
  452. ASSERT_TRUE(
  453. opr->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  454. }
  455. }
  456. ASSERT_EQ(2u, nr_conv);
  457. ASSERT_EQ(4u, chain.size());
  458. }
  459. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  460. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  461. HostTensorGenerator<> gen;
  462. auto graph = ComputingGraph::make();
  463. graph->options().graph_opt_level = 0;
  464. auto mkvar = [&](const char* name, const TensorShape& shp) {
  465. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  466. };
  467. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  468. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  469. };
  470. auto x = mkvar("x", {N, IC, IH, IW}), k0 = mkcvar("k0", {1, IC, 1, 1}),
  471. b0 = mkcvar("b0", {1, IC, 1, 1}), k1 = mkcvar("k0", {1}),
  472. b1 = mkcvar("b0", {1}), w = mkcvar("w", {OC, IC, KH, KW}),
  473. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  474. SymbolVar y1;
  475. unpack_vector(
  476. gopt::GraphOptimizer{}
  477. .add_pass<gopt::ParamRedistributePass>()
  478. .add_pass<gopt::ParamFusePass>()
  479. .apply({{y0}})
  480. .endpoint_vars(),
  481. y1);
  482. ASSERT_NE(y0.node(), y1.node());
  483. HostTensorND host_y0, host_y1;
  484. auto func = graph->compile(
  485. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  486. func->execute();
  487. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  488. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  489. ASSERT_TRUE(y1elem);
  490. auto yconv = y1elem->input(0)->owner_opr();
  491. if (!yconv->same_type<opr::Convolution>())
  492. yconv = y1elem->input(1)->owner_opr();
  493. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  494. ASSERT_EQ(x.node(), yconv->input(0));
  495. }
  496. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  497. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  498. HostTensorGenerator<> gen;
  499. auto graph = ComputingGraph::make();
  500. graph->options().graph_opt_level = 0;
  501. auto mkvar = [&](const char* name, const TensorShape& shp) {
  502. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  503. };
  504. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  505. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  506. };
  507. auto x = mkvar("x", {N, IC, IH, IW}), k = mkcvar("k", {1, OC, 1, 1}),
  508. w = mkcvar("w", {OC, IC, KH, KW});
  509. auto conv = opr::Convolution::make(x, w);
  510. auto t = conv * k;
  511. auto y0 = t * 4.2f + t * 2.4f;
  512. SymbolVar y1;
  513. unpack_vector(
  514. gopt::GraphOptimizer{}
  515. .add_pass<gopt::ParamRedistributePass>()
  516. .add_pass<gopt::ParamFusePass>()
  517. .apply({{y0}})
  518. .endpoint_vars(),
  519. y1);
  520. ASSERT_NE(y0.node(), y1.node());
  521. HostTensorND host_y0, host_y1;
  522. auto func = graph->compile(
  523. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  524. func->execute();
  525. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  526. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  527. ASSERT_TRUE(y1elem);
  528. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  529. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  530. ASSERT_TRUE(ymul0);
  531. ASSERT_TRUE(ymul1);
  532. auto yconv = ymul0->input(0)->owner_opr();
  533. if (!yconv->same_type<opr::Convolution>()) {
  534. yconv = ymul0->input(1)->owner_opr();
  535. }
  536. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  537. if (ymul1->input(0) != yconv->output(0)) {
  538. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  539. }
  540. ASSERT_EQ(x.node(), yconv->input(0));
  541. }
  542. TEST(TestGoptInference, ParamFuseBiasMerge) {
  543. HostTensorGenerator<> gen;
  544. auto graph = ComputingGraph::make();
  545. graph->options().graph_opt_level = 0;
  546. auto mkvar = [&](const char* name, const TensorShape& shp) {
  547. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  548. };
  549. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  550. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  551. };
  552. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  553. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  554. b2 = mkcvar("b2", {1, 4, 1, 1}), y1 = opr::Convolution::make(x, w1) + b1,
  555. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  556. SymbolVar y_opt;
  557. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  558. HostTensorND host_y, host_y_opt;
  559. auto func = graph->compile(
  560. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  561. func->execute();
  562. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  563. graph->compile({{y_opt, {}}})
  564. ->to_json()
  565. ->writeto_fpath(output_file("TestGoptInference.ParamFuseConvMerge.json"));
  566. auto chain = gopt::extract_opr_leaves(y_opt.node(), [](cg::OperatorNodeBase* opr) {
  567. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  568. });
  569. ASSERT_EQ(3u, chain.size());
  570. }
  571. TEST(TestGoptInference, Float16IOFloat32Compute) {
  572. constexpr size_t INP_H = 10, INP_W = 10;
  573. HostTensorGenerator<> gen;
  574. auto graph = ComputingGraph::make();
  575. auto mkvar = [&](const char* name, const TensorShape& shp) {
  576. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  577. };
  578. graph->options().graph_opt_level = 0;
  579. auto a = mkvar("a", {1, 4, INP_H, INP_W}), s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  580. s1 = mkvar("s1", {4, 3, 1, 1});
  581. auto b = opr::Convolution::make(s0, s1, {}, {});
  582. auto y = a + b;
  583. y = opr::Concat::make({y, -y}, 0);
  584. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  585. SymbolVar y_opt;
  586. auto options = gopt::OptimizeForInferenceOptions{};
  587. options.enable_f16_io_f32_comp();
  588. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  589. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  590. HostTensorND host_y, host_y_opt;
  591. auto func = graph->compile(
  592. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  593. func->execute();
  594. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  595. }
  596. TEST(TestGoptInference, Float16IOFloat32ComputeDeConv) {
  597. constexpr size_t INP_H = 10, INP_W = 10;
  598. HostTensorGenerator<> gen;
  599. auto graph = ComputingGraph::make();
  600. auto mkvar = [&](const char* name, const TensorShape& shp) {
  601. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  602. };
  603. graph->options().graph_opt_level = 0;
  604. auto s0 = mkvar("s0", {5, 5, 3, 3}), s1 = mkvar("s1", {1, 5, INP_H, INP_W});
  605. auto y = opr::ConvolutionBackwardData::make(s0, s1, {}, {});
  606. SymbolVar y_opt;
  607. auto options = gopt::OptimizeForInferenceOptions{};
  608. options.enable_f16_io_f32_comp();
  609. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  610. ASSERT_EQ(
  611. find_opr<opr::ConvolutionBackwardData>(y_opt).param().compute_mode,
  612. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  613. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  614. HostTensorND host_y, host_y_opt;
  615. auto func = graph->compile(
  616. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  617. func->execute();
  618. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  619. }
  620. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  621. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  622. HostTensorGenerator<> gen;
  623. auto graph = ComputingGraph::make();
  624. auto mkvar = [&](const char* name, const TensorShape& shp) {
  625. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  626. };
  627. graph->options().graph_opt_level = 0;
  628. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  629. float value1 = M_PI, value2 = 0.6;
  630. auto gen_mat = [&](HostTensorND& mat) {
  631. auto ptr = mat.ptr<float>();
  632. for (size_t i = 0; i < N; ++i) {
  633. auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
  634. ky = value2, kx = value2, kb = value2;
  635. ptr[0] = ptr[4] = cos(rot) * scale;
  636. ptr[1] = -(ptr[3] = sin(rot) * scale);
  637. ptr[3] *= sheer;
  638. ptr[4] *= sheer;
  639. ptr[2] = dx;
  640. ptr[5] = dy;
  641. ptr[6] = kx;
  642. ptr[7] = ky;
  643. ptr[8] = kb;
  644. ptr += 9;
  645. }
  646. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  647. };
  648. auto mat_host = std::make_shared<HostTensorND>(
  649. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  650. gen_mat(*mat_host);
  651. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  652. TensorShape out_shp{20, 20};
  653. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  654. SymbolVar y_opt;
  655. auto options = gopt::OptimizeForInferenceOptions{};
  656. options.enable_f16_io_f32_comp();
  657. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  658. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  659. HostTensorND host_y, host_y_opt;
  660. auto func = graph->compile(
  661. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  662. func->execute();
  663. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  664. }
  665. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  666. auto cn = CompNode::load("cpu1");
  667. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  668. HostTensorGenerator<> gen;
  669. auto graph = ComputingGraph::make();
  670. auto mkvar = [&](const char* name, const TensorShape& shp) {
  671. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  672. };
  673. graph->options().graph_opt_level = 0;
  674. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  675. auto gen_map = [&](HostTensorND& mat) {
  676. auto ptr = mat.ptr<float>();
  677. for (size_t n = 0; n < N; ++n) {
  678. for (int h = 0; h < 5; ++h) {
  679. for (int w = 0; w < 5; ++w) {
  680. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  681. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  682. }
  683. }
  684. }
  685. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  686. };
  687. auto map_host = std::make_shared<HostTensorND>(
  688. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  689. gen_map(*map_host);
  690. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  691. auto y = opr::Remap::make(a, map);
  692. SymbolVar y_opt;
  693. auto options = gopt::OptimizeForInferenceOptions{};
  694. options.enable_f16_io_f32_comp();
  695. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  696. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  697. HostTensorND host_y, host_y_opt;
  698. auto func = graph->compile(
  699. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  700. func->execute();
  701. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  702. }
  703. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  704. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  705. HostTensorGenerator<dtype::Uint8> gen_uint8;
  706. auto graph = ComputingGraph::make();
  707. auto mkvar = [&](const char* name, const TensorShape& shp) {
  708. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  709. };
  710. graph->options().graph_opt_level = 0;
  711. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  712. float value1 = M_PI, value2 = 0.6;
  713. auto gen_mat = [&](HostTensorND& mat) {
  714. auto ptr = mat.ptr<float>();
  715. for (size_t i = 0; i < N; ++i) {
  716. auto rot = value1, scale = value2, sheer = value1, dy = value2, dx = value2,
  717. ky = value2, kx = value2, kb = value2;
  718. ptr[0] = ptr[4] = cos(rot) * scale;
  719. ptr[1] = -(ptr[3] = sin(rot) * scale);
  720. ptr[3] *= sheer;
  721. ptr[4] *= sheer;
  722. ptr[2] = dx;
  723. ptr[5] = dy;
  724. ptr[6] = kx;
  725. ptr[7] = ky;
  726. ptr[8] = kb;
  727. ptr += 9;
  728. }
  729. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  730. };
  731. auto mat_host = std::make_shared<HostTensorND>(
  732. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  733. gen_mat(*mat_host);
  734. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  735. TensorShape out_shp{20, 20};
  736. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  737. SymbolVar y_opt;
  738. auto options = gopt::OptimizeForInferenceOptions{};
  739. options.enable_f16_io_comp();
  740. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  741. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  742. HostTensorND host_y, host_y_opt;
  743. auto func = graph->compile(
  744. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  745. func->execute();
  746. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  747. }
  748. TEST(TestGoptInference, Float32TOFloat16) {
  749. CompNode cn = CompNode::load("cpu0");
  750. HostTensorGenerator<> gen(0, 1, 0);
  751. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  752. host_x2 = gen({4, 3, 1, 1}, cn);
  753. auto graph = ComputingGraph::make();
  754. auto make_f32_to_f16_graph = [&]() {
  755. graph->options().graph_opt_level = 0;
  756. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  757. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  758. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  759. auto b = opr::Convolution::make(d1, d2, {}, {});
  760. auto y = d0 + b;
  761. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  762. SymbolVar y_opt;
  763. auto options = gopt::OptimizeForInferenceOptions{};
  764. options.enable_f16_io_comp();
  765. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  766. return y_opt;
  767. };
  768. auto make_f16_graph = [&]() {
  769. auto d0 = opr::TypeCvt::make(
  770. opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
  771. d1 = opr::TypeCvt::make(
  772. opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
  773. d2 = opr::TypeCvt::make(
  774. opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
  775. auto b = opr::Convolution::make(d1, d2, {}, {});
  776. SymbolVar y = d0 + b;
  777. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  778. y = opr::TypeCvt::make(y, dtype::Float32{});
  779. return y;
  780. };
  781. auto y_opt = make_f32_to_f16_graph();
  782. auto y = make_f16_graph();
  783. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  784. ASSERT_EQ(y.dtype(), dtype::Float32{});
  785. HostTensorND host_y_opt, host_y;
  786. auto func = graph->compile(
  787. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  788. func->execute();
  789. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  790. }
  791. TEST(TestGoptInference, Float32TOFloat16C32) {
  792. CompNode cn = CompNode::load("cpu0");
  793. HostTensorGenerator<> gen(0, 1, 0);
  794. auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  795. host_x2 = gen({4, 3, 1, 1}, cn);
  796. auto graph = ComputingGraph::make();
  797. auto make_f32_to_f16_graph = [&]() {
  798. graph->options().graph_opt_level = 0;
  799. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  800. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  801. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  802. auto y = opr::ConvBias::make(d1, d2, d0);
  803. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  804. SymbolVar y_opt;
  805. auto options = gopt::OptimizeForInferenceOptions{};
  806. options.enable_f16_io_f32_comp();
  807. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  808. return y_opt;
  809. };
  810. auto make_f16_graph = [&]() {
  811. auto d0 = opr::TypeCvt::make(
  812. opr::TypeCvt::make(
  813. opr::Host2DeviceCopy::make(*graph, host_x0),
  814. dtype::Float16{}),
  815. dtype::Float32{}),
  816. d1 = opr::TypeCvt::make(
  817. opr::TypeCvt::make(
  818. opr::Host2DeviceCopy::make(*graph, host_x1),
  819. dtype::Float16{}),
  820. dtype::Float32{}),
  821. d2 = opr::TypeCvt::make(
  822. opr::TypeCvt::make(
  823. opr::SharedDeviceTensor::make(*graph, *host_x2),
  824. dtype::Float16{}),
  825. dtype::Float32{});
  826. auto y = opr::ConvBias::make(d1, d2, d0);
  827. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  828. y = opr::TypeCvt::make(
  829. opr::TypeCvt::make(y, dtype::Float16{}), dtype::Float32{});
  830. return y;
  831. };
  832. auto y_opt = make_f32_to_f16_graph();
  833. auto y = make_f16_graph();
  834. ASSERT_EQ(
  835. find_opr<opr::ConvBias>(y_opt).param().compute_mode,
  836. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  837. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  838. ASSERT_EQ(y.dtype(), dtype::Float32{});
  839. HostTensorND host_y_opt, host_y;
  840. auto func = graph->compile(
  841. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  842. func->execute();
  843. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  844. }
  845. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  846. CompNode cn = CompNode::load("cpu0");
  847. HostTensorGenerator<> gen(0, 1, 0);
  848. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  849. host_x2 = gen({4, 3, 1, 1}, cn);
  850. auto graph = ComputingGraph::make();
  851. auto make_f32_to_f16_graph = [&]() {
  852. graph->options().graph_opt_level = 0;
  853. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  854. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  855. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  856. auto b = opr::Convolution::make(d1, d2, {}, {});
  857. auto y = d0 + b;
  858. SymbolVar y_opt;
  859. auto options = gopt::OptimizeForInferenceOptions{};
  860. options.enable_f16_io_comp();
  861. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  862. return y_opt;
  863. };
  864. auto make_f16_graph = [&]() {
  865. auto d0 = opr::TypeCvt::make(
  866. opr::Host2DeviceCopy::make(*graph, host_x0), dtype::Float16{}),
  867. d1 = opr::TypeCvt::make(
  868. opr::Host2DeviceCopy::make(*graph, host_x1), dtype::Float16{}),
  869. d2 = opr::TypeCvt::make(
  870. opr::SharedDeviceTensor::make(*graph, *host_x2), dtype::Float16{});
  871. auto b = opr::Convolution::make(d1, d2, {}, {});
  872. SymbolVar y = d0 + b;
  873. y = opr::TypeCvt::make(y, dtype::Float32{});
  874. return y;
  875. };
  876. auto y_opt = make_f32_to_f16_graph();
  877. auto y = make_f16_graph();
  878. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  879. ASSERT_EQ(y.dtype(), dtype::Float32{});
  880. HostTensorND host_y_opt, host_y;
  881. auto func = graph->compile(
  882. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  883. func->execute();
  884. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  885. }
  886. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  887. CompNode cn = CompNode::load("cpu0");
  888. HostTensorGenerator<> gen(0, 1, 0);
  889. auto host_x = gen({3, 1}, cn);
  890. auto graph = ComputingGraph::make();
  891. auto make_f32_to_f16_graph = [&]() {
  892. graph->options().graph_opt_level = 0;
  893. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  894. auto xshp = opr::GetVarShape::make(x);
  895. auto cv = [&x](int v) { return x.make_scalar(v); };
  896. auto sub = [&xshp, &cv](int idx) {
  897. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  898. };
  899. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  900. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  901. auto y = opr::Reshape::make(lin, shp);
  902. auto mm = opr::MatrixMul::make(x, y);
  903. SymbolVar mm_opt;
  904. auto options = gopt::OptimizeForInferenceOptions{};
  905. options.enable_f16_io_comp();
  906. unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
  907. return mm_opt;
  908. };
  909. auto make_f16_graph = [&]() {
  910. auto x = opr::TypeCvt::make(
  911. opr::Host2DeviceCopy::make(*graph, host_x), dtype::Float16());
  912. auto xshp = opr::GetVarShape::make(x);
  913. auto cv = [&x](int v) { return x.make_scalar(v); };
  914. auto sub = [&xshp, &cv](int idx) {
  915. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  916. };
  917. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  918. lin = opr::TypeCvt::make(lin, dtype::Float16());
  919. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  920. auto y = opr::Reshape::make(lin, shp);
  921. auto mm = opr::MatrixMul::make(x, y);
  922. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  923. return mm;
  924. };
  925. auto y_opt = make_f32_to_f16_graph();
  926. auto y = make_f16_graph();
  927. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  928. ASSERT_EQ(y.dtype(), dtype::Float32{});
  929. HostTensorND host_y_opt, host_y;
  930. auto func = graph->compile(
  931. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  932. func->execute();
  933. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  934. }
  935. TEST(TestGoptInference, Float32TOFloat16Endpoints) {
  936. HostTensorGenerator<> gen;
  937. auto graph = ComputingGraph::make();
  938. auto mkvar = [&](const char* name, const TensorShape& shp) {
  939. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  940. };
  941. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  942. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  943. };
  944. graph->options().graph_opt_level = 0;
  945. opr::Convolution::Param param;
  946. param.pad_h = param.pad_w = 0;
  947. auto x = mkvar("x", {8, 8, 8, 8}), y = mkvar("y", {8, 8, 8, 8}),
  948. w = mkcvar("w", {4, 8, 3, 3}), z = opr::Convolution::make(x + y, w, param);
  949. auto options = gopt::OptimizeForInferenceOptions{};
  950. options.enable_f16_io_f32_comp();
  951. SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);
  952. ASSERT_EQ(out[0].dtype(), dtype::Float32());
  953. ASSERT_EQ(out[1].dtype(), dtype::Float32());
  954. ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  955. ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  956. }
  957. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  958. // hwcd4 is only supported in naive handle
  959. NaiveMegDNNHandleScope naive_megdnn_handle;
  960. HostTensorGenerator<> gen;
  961. auto cn = CompNode::load("cpu0");
  962. auto graph = ComputingGraph::make();
  963. graph->options().graph_opt_level = 0;
  964. auto mkvar = [&](const char* name, const TensorShape& shp) {
  965. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  966. };
  967. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  968. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  969. };
  970. auto host_x = gen({8, 8, 8, 8}, cn);
  971. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  972. opr::Convolution::Param param;
  973. param.pad_h = param.pad_w = 0;
  974. auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
  975. auto shape_of = opr::GetVarShape::make(conv);
  976. auto subtensor = opr::Subtensor::make(
  977. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  978. 0, x.make_scalar(2), None, x.make_scalar(1))});
  979. opr::Resize::Param param_resize;
  980. param_resize.format = opr::Resize::Param::Format::NCHW;
  981. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  982. auto mat = mkcvar("mat", {8, 3, 3}),
  983. warp = opr::WarpPerspectiveForward::make(
  984. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  985. auto b = mkvar("b", {1, 4, 1, 1}),
  986. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  987. param.pad_h = param.pad_w = 1;
  988. auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
  989. z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
  990. SymbolVar y_opt, z_opt;
  991. auto options = gopt::OptimizeForInferenceOptions{};
  992. options.enable_nhwcd4();
  993. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  994. unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
  995. ASSERT_EQ(
  996. opr::Convolution::Param::Format::NHWCD4,
  997. find_opr<opr::Convolution>(y_opt).param().format);
  998. ASSERT_EQ(
  999. TensorFormat::Type::DEFAULT,
  1000. find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
  1001. ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
  1002. graph->compile({{y_opt, {}}})
  1003. ->to_json()
  1004. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  1005. HostTensorND host_y_opt, host_y;
  1006. auto func = graph->compile(
  1007. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1008. func->execute();
  1009. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1010. *host_x = *gen({8, 8, 16, 16}, cn);
  1011. func->execute();
  1012. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1013. }
  1014. #if MGB_OPENCL
  1015. #include "megcore_opencl.h"
  1016. #define REQUIRE_OPENCL() \
  1017. do { \
  1018. if (!CompNode::get_device_count(CompNode::DeviceType::OPENCL)) { \
  1019. return; \
  1020. } \
  1021. } while (0)
  1022. TEST(TestGoptInference, ConvertFormatNHWCD4OpenCL) {
  1023. REQUIRE_OPENCL();
  1024. HostTensorGenerator<> gen;
  1025. auto cn = CompNode::load("openclx");
  1026. auto graph = ComputingGraph::make();
  1027. graph->options().graph_opt_level = 0;
  1028. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1029. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1030. };
  1031. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1032. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1033. };
  1034. auto host_x = gen({8, 8, 8, 8}, cn);
  1035. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1036. opr::Convolution::Param param;
  1037. param.pad_h = param.pad_w = 0;
  1038. auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
  1039. auto shape_of = opr::GetVarShape::make(conv);
  1040. auto subtensor = opr::Subtensor::make(
  1041. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  1042. 0, x.make_scalar(2), None, x.make_scalar(1))});
  1043. opr::Resize::Param param_resize;
  1044. param_resize.format = opr::Resize::Param::Format::NCHW;
  1045. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  1046. auto mat = mkcvar("mat", {8, 3, 3}),
  1047. warp = opr::WarpPerspectiveForward::make(
  1048. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  1049. auto b = mkvar("b", {1, 4, 1, 1}),
  1050. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  1051. param.pad_h = param.pad_w = 1;
  1052. auto w2 = mkcvar("w2", {4, 4, 3, 3}), y = opr::Convolution::make(elem, w2, param),
  1053. z = opr::AxisAddRemove::make(y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
  1054. SymbolVar y_opt, z_opt;
  1055. auto options = gopt::OptimizeForInferenceOptions{};
  1056. options.enable_nhwcd4();
  1057. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1058. unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
  1059. ASSERT_EQ(
  1060. opr::Convolution::Param::Format::NHWCD4,
  1061. find_opr<opr::Convolution>(y_opt).param().format);
  1062. ASSERT_EQ(
  1063. TensorFormat::Type::DEFAULT,
  1064. find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
  1065. ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
  1066. HostTensorND host_y_opt, host_y;
  1067. auto func = graph->compile(
  1068. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1069. func->execute();
  1070. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1071. *host_x = *gen({8, 8, 16, 16}, cn);
  1072. func->execute();
  1073. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1074. }
  1075. #undef REQUIRE_OPENCL
  1076. #endif
  1077. //! this is to test elemwise to cd4 only
  1078. TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise0) {
  1079. // hwcd4 is only supported in naive handle
  1080. NaiveMegDNNHandleScope naive_megdnn_handle;
  1081. HostTensorGenerator<> gen;
  1082. auto cn = CompNode::load("cpu0");
  1083. auto graph = ComputingGraph::make();
  1084. graph->options().graph_opt_level = 0;
  1085. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1086. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1087. };
  1088. auto host_x = gen({8, 8, 8, 8}, cn);
  1089. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1090. auto a = mkvar("a", {1});
  1091. auto b = mkvar("b", {1});
  1092. auto y = x * a + b;
  1093. SymbolVar y_opt;
  1094. auto options = gopt::OptimizeForInferenceOptions{};
  1095. options.enable_nhwcd4();
  1096. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1097. ASSERT_EQ(
  1098. opr::Elemwise::Mode::FUSE_MUL_ADD3,
  1099. find_opr<opr::Elemwise>(y_opt).param().mode);
  1100. ASSERT_EQ(
  1101. TensorFormat::Type::IMAGE2D_PACK4,
  1102. find_opr<opr::Elemwise>(y_opt).input(1)->format().type());
  1103. graph->compile({{y_opt, {}}})
  1104. ->to_json()
  1105. ->writeto_fpath(
  1106. output_file("TestGoptInference.ConvertFormatNHWCD4Elemwise0.json"));
  1107. HostTensorND host_y_opt, host_y;
  1108. auto func = graph->compile(
  1109. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1110. func->execute();
  1111. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1112. *host_x = *gen({8, 8, 16, 16}, cn);
  1113. func->execute();
  1114. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1115. }
  1116. TEST(TestGoptInference, MergeDimShuffleAndRelayoutFormat) {
  1117. // hwcd4 is only supported in naive handle
  1118. NaiveMegDNNHandleScope naive_megdnn_handle;
  1119. HostTensorGenerator<> gen;
  1120. auto cn = CompNode::load("cpu0");
  1121. auto graph = ComputingGraph::make();
  1122. graph->options().graph_opt_level = 0;
  1123. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1124. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1125. };
  1126. auto host_x = gen({8, 8, 8, 8}, cn);
  1127. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1128. auto d0 = opr::Dimshuffle::make(x, {0, 3, 1, 2});
  1129. auto a = mkvar("a", {1});
  1130. auto b = mkvar("b", {1});
  1131. auto y = d0 * a + b;
  1132. SymbolVar y_opt;
  1133. auto options = gopt::OptimizeForInferenceOptions{};
  1134. options.enable_nhwcd4();
  1135. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1136. ASSERT_EQ(
  1137. megdnn::param::RelayoutFormat::Mode::NHWC_NHWCD4I,
  1138. find_opr<opr::RelayoutFormat>(y_opt).param().mode);
  1139. ASSERT_EQ(0, find_opr_num<opr::Dimshuffle>(y_opt));
  1140. graph->compile({{y_opt, {}}})
  1141. ->to_json()
  1142. ->writeto_fpath(output_file(
  1143. "TestGoptInference.MergeDimShuffleAndRelayoutFormat.json"));
  1144. HostTensorND host_y_opt, host_y;
  1145. auto func = graph->compile(
  1146. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1147. func->execute();
  1148. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1149. *host_x = *gen({8, 8, 16, 16}, cn);
  1150. func->execute();
  1151. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1152. }
  1153. TEST(TestGoptInference, MergeRelayoutFormatAndDimShuffle) {
  1154. // hwcd4 is only supported in naive handle
  1155. NaiveMegDNNHandleScope naive_megdnn_handle;
  1156. HostTensorGenerator<> gen;
  1157. auto cn = CompNode::load("cpu0");
  1158. auto graph = ComputingGraph::make();
  1159. graph->options().graph_opt_level = 0;
  1160. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1161. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1162. };
  1163. auto host_x = gen({2, 8, 16, 32}, cn);
  1164. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1165. auto a = mkvar("a", {1});
  1166. auto b = mkvar("b", {1});
  1167. auto z = x * a + b;
  1168. //! to NHWC
  1169. auto y = opr::Dimshuffle::make(z, {0, 2, 3, 1});
  1170. SymbolVar y_opt;
  1171. auto options = gopt::OptimizeForInferenceOptions{};
  1172. options.enable_nhwcd4();
  1173. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1174. ASSERT_EQ(0, find_opr_num<opr::Dimshuffle>(y_opt));
  1175. auto check = [](SymbolVar endpoint) -> bool {
  1176. bool valid = true;
  1177. auto cb = [&](cg::OperatorNodeBase* opr) {
  1178. if (opr->same_type<opr::RelayoutFormat>()) {
  1179. auto mode = opr->try_cast_final<opr::RelayoutFormat>()->param().mode;
  1180. //! The first relayout_format opr's mode is NCHW_NHWCD4I. The second is
  1181. //! NHWCD4I_NHWC
  1182. if (mode == megdnn::param::RelayoutFormat::Mode::NCHW_NHWCD4I ||
  1183. mode == megdnn::param::RelayoutFormat::Mode::NHWCD4I_NHWC) {
  1184. valid &= true;
  1185. } else {
  1186. valid &= false;
  1187. }
  1188. }
  1189. };
  1190. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  1191. return valid;
  1192. };
  1193. ASSERT_EQ(true, check(y_opt));
  1194. graph->compile({{y_opt, {}}})
  1195. ->to_json()
  1196. ->writeto_fpath(output_file(
  1197. "TestGoptInference.MergeRelayoutFormatAndDimShuffle.json"));
  1198. HostTensorND host_y;
  1199. HostTensorND host_y_opt;
  1200. auto func = graph->compile(
  1201. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1202. func->execute();
  1203. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1204. *host_x = *gen({8, 8, 16, 16}, cn);
  1205. func->execute();
  1206. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1207. }
  1208. TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) {
  1209. // hwcd4 is only supported in naive handle
  1210. NaiveMegDNNHandleScope naive_megdnn_handle;
  1211. HostTensorGenerator<> gen;
  1212. auto cn = CompNode::load("cpu0");
  1213. auto graph = ComputingGraph::make();
  1214. graph->options().graph_opt_level = 0;
  1215. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1216. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1217. };
  1218. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1219. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1220. };
  1221. auto host_x = gen({8, 8, 8, 8}, cn);
  1222. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1223. opr::Convolution::Param param;
  1224. param.pad_h = param.pad_w = 0;
  1225. auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv = opr::Convolution::make(x, w1, param);
  1226. auto b = mkvar("b", {1, 1, 1, 1}),
  1227. elem = opr::Elemwise::make({conv + b}, opr::Elemwise::Param::Mode::RELU);
  1228. param.pad_h = param.pad_w = 1;
  1229. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  1230. conv2 = opr::Convolution::make(elem, w2, param);
  1231. auto b_scaler = mkvar("b", {1}), elem2 = conv2 + b_scaler;
  1232. param.pad_h = param.pad_w = 1;
  1233. auto w3 = mkcvar("w2", {8, 8, 3, 3}), y = opr::Convolution::make(elem2, w3, param);
  1234. SymbolVar y_opt;
  1235. auto options = gopt::OptimizeForInferenceOptions{};
  1236. options.enable_nhwcd4();
  1237. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1238. ASSERT_EQ(
  1239. opr::Convolution::Param::Format::NHWCD4,
  1240. find_opr<opr::Convolution>(y_opt).param().format);
  1241. graph->compile({{y_opt, {}}})
  1242. ->to_json()
  1243. ->writeto_fpath(
  1244. output_file("TestGoptInference.ConvertFormatNHWCD4Elemwise.json"));
  1245. HostTensorND host_y_opt, host_y;
  1246. auto func = graph->compile(
  1247. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1248. func->execute();
  1249. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1250. *host_x = *gen({8, 8, 16, 16}, cn);
  1251. func->execute();
  1252. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1253. }
  1254. TEST(TestGoptInference, ConvertFormatNHWCD4TypeCvt) {
  1255. NaiveMegDNNHandleScope naive_megdnn_handle;
  1256. HostTensorGenerator<> gen;
  1257. auto cn = CompNode::load("cpu0");
  1258. auto graph = ComputingGraph::make();
  1259. graph->options().graph_opt_level = 0;
  1260. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1261. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1262. };
  1263. auto host_x = gen({8, 8, 8, 8}, cn);
  1264. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1265. opr::Convolution::Param param;
  1266. param.pad_h = param.pad_w = 0;
  1267. auto w1 = mkcvar("w1", {8, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param),
  1268. tcvt1 = opr::TypeCvt::make(conv1, dtype::Float16());
  1269. auto w2 = mkcvar("w2", {8, 8, 3, 3}), conv2 = opr::Convolution::make(x, w2, param),
  1270. tcvt2 = opr::TypeCvt::make(conv2, dtype::Float16());
  1271. auto y = opr::Elemwise::make({tcvt1, tcvt2}, opr::Elemwise::Param::Mode::ADD);
  1272. SymbolVar y_opt;
  1273. auto options = gopt::OptimizeForInferenceOptions{};
  1274. options.enable_nhwcd4();
  1275. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1276. ASSERT_EQ(
  1277. opr::Convolution::Param::Format::NHWCD4,
  1278. find_opr<opr::Convolution>(y_opt).param().format);
  1279. graph->compile({{y_opt, {}}})
  1280. ->to_json()
  1281. ->writeto_fpath(
  1282. output_file("TestGoptInference.ConvertFormatNHWCD4TypeCvt.json"));
  1283. HostTensorND host_y_opt, host_y;
  1284. auto func = graph->compile(
  1285. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1286. func->execute();
  1287. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1288. *host_x = *gen({8, 8, 16, 16}, cn);
  1289. func->execute();
  1290. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1291. }
  1292. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  1293. // hwcd4 is only supported in naive handle
  1294. NaiveMegDNNHandleScope naive_megdnn_handle;
  1295. HostTensorGenerator<> gen;
  1296. auto cn = CompNode::load("cpu0");
  1297. auto graph = ComputingGraph::make();
  1298. graph->options().graph_opt_level = 0;
  1299. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1300. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1301. };
  1302. auto host_x = gen({2, 8, 8, 16}, cn);
  1303. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1304. opr::Convolution::Param param;
  1305. param.pad_h = param.pad_w = 1;
  1306. auto w1 = mkcvar("w1", {4, 8, 3, 3}), conv1 = opr::Convolution::make(x, w1, param);
  1307. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  1308. local = opr::Local::make(conv1, w2, param);
  1309. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  1310. conv2 = opr::Convolution::make(local, w3, param);
  1311. opr::GroupLocal::Param param_group_local;
  1312. param_group_local.pad_h = param_group_local.pad_w = 1;
  1313. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  1314. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  1315. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  1316. y = opr::Convolution::make(group_local, w5, param);
  1317. SymbolVar y_opt;
  1318. auto options = gopt::OptimizeForInferenceOptions{};
  1319. options.enable_nhwcd4();
  1320. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1321. ASSERT_EQ(
  1322. opr::Convolution::Param::Format::NHWCD4,
  1323. find_opr<opr::Convolution>(y_opt).param().format);
  1324. ASSERT_EQ(
  1325. opr::Local::Param::Format::NCHW,
  1326. find_opr<opr::Local>(y_opt).param().format);
  1327. ASSERT_EQ(
  1328. opr::GroupLocal::Param::Format::NCHW,
  1329. find_opr<opr::GroupLocal>(y_opt).param().format);
  1330. graph->compile({{y_opt, {}}})
  1331. ->to_json()
  1332. ->writeto_fpath(
  1333. output_file("TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  1334. HostTensorND host_y_opt, host_y;
  1335. auto func = graph->compile(
  1336. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1337. func->execute();
  1338. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1339. }
  1340. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  1341. // hwcd4 is only supported in naive handle
  1342. NaiveMegDNNHandleScope naive_megdnn_handle;
  1343. HostTensorGenerator<> gen;
  1344. auto cn = CompNode::load("cpu0");
  1345. auto graph = ComputingGraph::make();
  1346. graph->options().graph_opt_level = 0;
  1347. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1348. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1349. };
  1350. auto host_x = gen({8, 8, 8, 8}, cn);
  1351. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1352. opr::Convolution::Param param;
  1353. param.pad_h = param.pad_w = 0;
  1354. auto w0 = mkcvar("w1", {4, 8, 2, 2}), conv = opr::Convolution::make(x, w0, param);
  1355. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  1356. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  1357. SymbolVar y_opt;
  1358. auto options = gopt::OptimizeForInferenceOptions{};
  1359. options.enable_nhwcd4();
  1360. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1361. ASSERT_EQ(
  1362. opr::Convolution::Param::Format::NCHW,
  1363. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  1364. ASSERT_EQ(
  1365. opr::Convolution::Param::Format::NHWCD4,
  1366. find_opr<opr::Convolution>(y_opt).param().format);
  1367. HostTensorND host_y_opt, host_y;
  1368. auto func = graph->compile(
  1369. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1370. func->execute();
  1371. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1372. }
  1373. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  1374. // hwcd4 is only supported in naive handle
  1375. NaiveMegDNNHandleScope naive_megdnn_handle;
  1376. HostTensorGenerator<> gen;
  1377. auto cn = CompNode::load("cpu0");
  1378. auto graph = ComputingGraph::make();
  1379. graph->options().graph_opt_level = 0;
  1380. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  1381. return opr::TypeCvt::make(
  1382. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  1383. dtype);
  1384. };
  1385. auto host_x = gen({8, 8, 8, 8}, cn);
  1386. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  1387. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  1388. opr::ConvBias::Param param;
  1389. param.pad_h = param.pad_w = 0;
  1390. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  1391. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  1392. y = opr::ConvBias::make(
  1393. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  1394. SymbolVar y_opt;
  1395. auto options = gopt::OptimizeForInferenceOptions{};
  1396. options.enable_nhwcd4();
  1397. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1398. ASSERT_EQ(
  1399. opr::ConvBias::Param::Format::NHWCD4,
  1400. find_opr<opr::ConvBias>(y_opt).param().format);
  1401. graph->compile({{y_opt, {}}})
  1402. ->to_json()
  1403. ->writeto_fpath(
  1404. output_file("TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  1405. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  1406. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  1407. HostTensorND host_y_opt, host_y;
  1408. auto func = graph->compile(
  1409. {make_callback_copy(float_y, host_y),
  1410. make_callback_copy(float_y_opt, host_y_opt)});
  1411. func->execute();
  1412. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1413. }
  1414. TEST(TestGoptInference, ConvertFormatPadIC) {
  1415. // hwcd4 is only supported in naive handle
  1416. NaiveMegDNNHandleScope naive_megdnn_handle;
  1417. HostTensorGenerator<> gen;
  1418. auto cn = CompNode::load("cpu0");
  1419. auto graph = ComputingGraph::make();
  1420. graph->options().graph_opt_level = 0;
  1421. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1422. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1423. };
  1424. auto host_inp1 = gen({1, 6, 128, 128}, cn), host_inp2 = gen({1, 6, 256, 256}, cn);
  1425. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1426. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1427. auto shape_tmp = mkcvar("tmp", {256, 256});
  1428. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1429. opr::Resize::Param param_resize;
  1430. param_resize.format = opr::Resize::Param::Format::NCHW;
  1431. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1432. auto concat = opr::Concat::make({inp2, resize}, 1);
  1433. opr::Convolution::Param param;
  1434. param.pad_h = param.pad_w = 1;
  1435. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1436. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1437. auto y = opr::Convolution::make(concat, w1, param);
  1438. SymbolVar y_opt;
  1439. auto options = gopt::OptimizeForInferenceOptions{};
  1440. options.enable_nhwcd4();
  1441. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1442. HostTensorND host_y_opt, host_y;
  1443. auto func = graph->compile(
  1444. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1445. func->execute();
  1446. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1447. }
  1448. TEST(TestGoptInference, concatbypass) {
  1449. // hwcd4 is only supported in naive handle
  1450. NaiveMegDNNHandleScope naive_megdnn_handle;
  1451. HostTensorGenerator<> gen;
  1452. auto cn = CompNode::load("cpu0");
  1453. auto graph = ComputingGraph::make();
  1454. graph->options().graph_opt_level = 0;
  1455. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1456. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1457. };
  1458. auto host_inp1 = gen({1, 6, 16, 16}, cn), host_inp2 = gen({1, 6, 32, 32}, cn);
  1459. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1460. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1461. auto shape_tmp = mkcvar("tmp", {32, 32});
  1462. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1463. opr::Resize::Param param_resize;
  1464. param_resize.format = opr::Resize::Param::Format::NCHW;
  1465. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1466. //! this concat should forward to chw
  1467. auto concat = opr::Concat::make({inp2, resize}, 1);
  1468. opr::Convolution::Param param;
  1469. param.pad_h = param.pad_w = 1;
  1470. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1471. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1472. auto w2 = mkcvar("w1", {12, 24, 3, 3});
  1473. auto y = opr::Convolution::make(concat, w1, param);
  1474. //! this concat should bypass CD4
  1475. y = opr::Concat::make({y, y}, 0);
  1476. y = opr::Convolution::make(y, w1, param);
  1477. //! this concat should bypass CD4
  1478. y = opr::Concat::make({y, y}, 1);
  1479. y = opr::Convolution::make(y, w2, param);
  1480. //! this concat should bypass CD4
  1481. y = opr::Concat::make({y, y}, 2);
  1482. y = opr::Convolution::make(y, w1, param);
  1483. SymbolVar y_opt;
  1484. auto options = gopt::OptimizeForInferenceOptions{};
  1485. options.enable_nhwcd4();
  1486. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1487. HostTensorND host_y_opt, host_y;
  1488. auto func = graph->compile(
  1489. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1490. size_t relayout_format_nr = 0;
  1491. auto cb = [&](cg::OperatorNodeBase* opr) {
  1492. if (opr->try_cast_final<opr::Convolution>()) {
  1493. auto conv_inputs = opr->input();
  1494. for (auto& input : conv_inputs) {
  1495. if (std::string::npos !=
  1496. std::string(input->cname()).find("relayout_format")) {
  1497. relayout_format_nr++;
  1498. }
  1499. }
  1500. }
  1501. return true;
  1502. };
  1503. func->iter_opr_seq(cb);
  1504. func->execute();
  1505. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1506. ASSERT_EQ(
  1507. opr::Convolution::Param::Format::NHWCD4,
  1508. find_opr<opr::Convolution>(y_opt).param().format);
  1509. ASSERT_EQ(1, relayout_format_nr);
  1510. }
  1511. TEST(TestGoptInference, ConvertBatchNormPass) {
  1512. auto cn = CompNode::load("cpu0");
  1513. std::vector<TensorShape> shps = {{1, 3, 1, 1}, {1, 1, 1, 3}},
  1514. xshps = {{2, 3, 16, 24}, {2, 16, 24, 3}};
  1515. for (int t = 0; t < 2; t++) {
  1516. HostTensorGenerator<> gen(0, 1, 0);
  1517. auto graph = ComputingGraph::make();
  1518. graph->options().graph_opt_level = 0;
  1519. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1520. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1521. };
  1522. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1523. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1524. };
  1525. using Param = opr::BatchNorm::Param;
  1526. Param::ParamDim param_dim =
  1527. t == 0 ? Param::ParamDim::DIM_1C11 : Param::ParamDim::DIM_111C;
  1528. Param param(param_dim, Param::FwdMode::INFERENCE);
  1529. TensorShape shp = shps[t], xshp = xshps[t];
  1530. auto x = mkvar("x", xshp), scale = mkcvar("scale", shp),
  1531. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1532. auto host_variance = gen(shp, cn);
  1533. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1534. host_variance->ptr<float>()[i] = std::abs(host_variance->ptr<float>()[i]);
  1535. }
  1536. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1537. .rename("variance");
  1538. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[5];
  1539. SymbolVar y_opt;
  1540. unpack_vector(
  1541. gopt::optimize_for_inference({y}, gopt::OptimizeForInferenceOptions{}),
  1542. y_opt);
  1543. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1544. graph->compile({{y_opt, {}}})
  1545. ->to_json()
  1546. ->writeto_fpath(
  1547. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1548. HostTensorND host_y, host_y_opt;
  1549. auto func = graph->compile(
  1550. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1551. func->execute();
  1552. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1553. }
  1554. }
  1555. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1556. // hwcd4 is only supported in naive handle
  1557. NaiveMegDNNHandleScope naive_megdnn_handle;
  1558. auto cn = CompNode::load("cpu0");
  1559. HostTensorGenerator<> gen;
  1560. auto graph = ComputingGraph::make();
  1561. graph->options().graph_opt_level = 0;
  1562. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1563. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1564. };
  1565. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1566. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1567. };
  1568. opr::Convolution::Param param;
  1569. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1570. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1571. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1572. y_cut = opr::Convolution::make(x, w1, param),
  1573. y1 = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::RELU);
  1574. param.pad_w = param.pad_h = 1;
  1575. auto y2 = opr::Elemwise::make(
  1576. {opr::Convolution::make(y1, w2, param) + b2},
  1577. opr::Elemwise::Param::Mode::SIGMOID);
  1578. param.pad_w = param.pad_h = 0;
  1579. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1580. y_expand = opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1581. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1582. SymbolVar y_opt;
  1583. auto options = gopt::OptimizeForInferenceOptions{};
  1584. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1585. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1586. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1587. graph->compile({{y_opt, {}}})
  1588. ->to_json()
  1589. ->writeto_fpath(
  1590. output_file("TestGoptInference.FuseConvBiasNonlinPass.json"));
  1591. HostTensorND host_y, host_y_opt;
  1592. auto func = graph->compile(
  1593. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1594. func->execute();
  1595. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1596. }
  1597. TEST(TestGoptInference, ConvBiasNonlinearityFusePass2) {
  1598. // hwcd4 is only supported in naive handle
  1599. NaiveMegDNNHandleScope naive_megdnn_handle;
  1600. auto cn = CompNode::load("cpu0");
  1601. HostTensorGenerator<> gen;
  1602. auto graph = ComputingGraph::make();
  1603. graph->options().graph_opt_level = 0;
  1604. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1605. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1606. };
  1607. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1608. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1609. };
  1610. opr::Convolution::Param param;
  1611. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1612. w2 = mkcvar("w2", {4, 8, 1, 1});
  1613. auto b1 = mkcvar("b1", {1, 4, 1, 1});
  1614. auto y_cut = opr::Convolution::make(x, w1, param);
  1615. auto y = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::SIGMOID);
  1616. y = opr::Elemwise::make({y}, opr::Elemwise::Param::Mode::RELU);
  1617. auto y_cut2 = opr::Convolution::make(x, w2, param);
  1618. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::SIGMOID);
  1619. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::RELU);
  1620. y = y + y_cut2;
  1621. SymbolVar y_opt;
  1622. auto options = gopt::OptimizeForInferenceOptions{};
  1623. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1624. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1625. ASSERT_EQ(
  1626. opr::ConvBias::Param::NonlineMode::SIGMOID,
  1627. find_opr<opr::ConvBias>(y_opt).param().nonlineMode);
  1628. graph->compile({{y_opt, {}}})
  1629. ->to_json()
  1630. ->writeto_fpath(
  1631. output_file("TestGoptInference.FuseConvBiasNonlinPass2.json"));
  1632. HostTensorND host_y, host_y_opt;
  1633. auto func = graph->compile(
  1634. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1635. func->execute();
  1636. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1637. }
  1638. TEST(TestGoptInference, ConvBiasNonlinearityFusePassHswish) {
  1639. // hwcd4 is only supported in naive handle
  1640. NaiveMegDNNHandleScope naive_megdnn_handle;
  1641. auto cn = CompNode::load("cpu0");
  1642. HostTensorGenerator<> gen;
  1643. auto graph = ComputingGraph::make();
  1644. graph->options().graph_opt_level = 0;
  1645. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1646. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1647. };
  1648. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1649. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1650. };
  1651. opr::Convolution::Param param;
  1652. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1653. w2 = mkcvar("w2", {4, 8, 1, 1});
  1654. auto b1 = mkcvar("b1", {1, 4, 1, 1});
  1655. auto y_cut = opr::Convolution::make(x, w1, param);
  1656. auto y = opr::Elemwise::make({y_cut + b1}, opr::Elemwise::Param::Mode::H_SWISH);
  1657. y = opr::Elemwise::make({y}, opr::Elemwise::Param::Mode::RELU);
  1658. auto y_cut2 = opr::Convolution::make(x, w2, param);
  1659. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::H_SWISH);
  1660. y_cut2 = opr::Elemwise::make({y_cut2}, opr::Elemwise::Param::Mode::RELU);
  1661. y = y + y_cut2;
  1662. SymbolVar y_opt;
  1663. auto options = gopt::OptimizeForInferenceOptions{};
  1664. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1665. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1666. ASSERT_EQ(
  1667. opr::ConvBias::Param::NonlineMode::H_SWISH,
  1668. find_opr<opr::ConvBias>(y_opt).param().nonlineMode);
  1669. graph->compile({{y_opt, {}}})
  1670. ->to_json()
  1671. ->writeto_fpath(
  1672. output_file("TestGoptInference.FuseConvBiasNonlinPassHswish.json"));
  1673. HostTensorND host_y, host_y_opt;
  1674. auto func = graph->compile(
  1675. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1676. func->execute();
  1677. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1678. }
  1679. TEST(TestGoptInference, ConvBiasNonlinearityFusePass_FullBias) {
  1680. NaiveMegDNNHandleScope naive_megdnn_handle;
  1681. for (int i = 0; i < 2; i++) {
  1682. auto graph = ComputingGraph::make();
  1683. auto cn = CompNode::load("cpu0");
  1684. HostTensorGenerator<> gen;
  1685. auto mkImvar = [&](const char* name, const TensorShape& shp) {
  1686. return opr::ImmutableTensor::make(*graph, *gen(shp, cn)).rename(name);
  1687. };
  1688. graph->options().graph_opt_level = 0;
  1689. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1690. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1691. };
  1692. opr::Convolution::Param param;
  1693. auto host_x = gen({1, 8, 16, 24}, cn);
  1694. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1695. w1 = mkcvar("w1", {4, 8, 1, 1}), w2 = mkcvar("w2", {4, 8, 3, 3}),
  1696. w3 = mkcvar("w3", {4, 4, 1, 1}),
  1697. b = i == 0 ? mkcvar("b", {1, 4, 16, 24}) : mkImvar("bias", {1, 4, 16, 24}),
  1698. y_cut0 = opr::Convolution::make(x, w1, param);
  1699. param.pad_w = param.pad_h = 1;
  1700. auto y_cut1 = opr::Convolution::make(x, w2, param);
  1701. auto y1 = opr::Elemwise::make(
  1702. {y_cut0 + y_cut1}, opr::Elemwise::Param::Mode::RELU);
  1703. param.pad_w = param.pad_h = 0;
  1704. auto y2 = opr::Convolution::make(y1, w3, param);
  1705. auto y = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU);
  1706. SymbolVar y_opt;
  1707. auto options = gopt::OptimizeForInferenceOptions{};
  1708. options.enable_fuse_conv_bias_nonlinearity();
  1709. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1710. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1711. graph->compile({{y_opt, {}}})
  1712. ->to_json()
  1713. ->writeto_fpath(output_file("TestGoptInference.FuseConvBiasNonlinPass_"
  1714. "FulBias.json"));
  1715. HostTensorND host_y, host_y_opt;
  1716. auto func = graph->compile(
  1717. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  1718. func->execute();
  1719. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1720. *host_x = *gen({4, 8, 16, 24}, cn);
  1721. func->execute();
  1722. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1723. }
  1724. }
  1725. #if (MEGDNN_AARCH64 || MEGDNN_ARMV7) && !MGB_OPENCL && !MGB_CUDA
  1726. TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase0) {
  1727. HostTensorGenerator<dtype::Int16, RandomDistribution::UNIFORM> gen(0, 255);
  1728. auto cn = CompNode::load("cpu0");
  1729. auto graph = ComputingGraph::make();
  1730. graph->options().graph_opt_level = 0;
  1731. size_t n = 1;
  1732. size_t c = 128;
  1733. size_t h = 16;
  1734. size_t w = 16;
  1735. auto host_x1 = gen({n, h, w, c}, cn);
  1736. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  1737. auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
  1738. auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  1739. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1740. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1741. };
  1742. auto s = mkcvar("s", {1, c, 1, 1});
  1743. auto b = mkcvar("b", {1, c, 1, 1});
  1744. auto result = opr::Elemwise::make(
  1745. {x_f32, s, b}, opr::Elemwise::Param::Mode::FUSE_MUL_ADD3);
  1746. auto y = result;
  1747. SymbolVar y_opt;
  1748. auto options = gopt::OptimizeForInferenceOptions{};
  1749. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1750. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
  1751. ASSERT_EQ(
  1752. opr::ElemwiseMultiType::Param::Mode::FUSE_MUL_ADD3_INT16xF32xF32xF32,
  1753. find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
  1754. HostTensorND host_y_opt, host_y;
  1755. auto func = graph->compile({make_callback_copy(y, host_y)});
  1756. func->execute();
  1757. graph->options().graph_opt_level = 2;
  1758. auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
  1759. func_opt->execute();
  1760. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1761. }
  1762. TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase1) {
  1763. HostTensorGenerator<dtype::Int16, RandomDistribution::UNIFORM> gen(0, 255);
  1764. auto cn = CompNode::load("cpu0");
  1765. auto graph = ComputingGraph::make();
  1766. graph->options().graph_opt_level = 0;
  1767. size_t n = 1;
  1768. size_t c = 128;
  1769. size_t h = 16;
  1770. size_t w = 16;
  1771. auto host_x1 = gen({n, h, w, c}, cn);
  1772. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  1773. auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
  1774. auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  1775. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1776. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1777. };
  1778. auto s = mkcvar("s", {1, c, 1, 1});
  1779. auto result = opr::Elemwise::make({x_f32, s}, opr::Elemwise::Param::Mode::MUL);
  1780. auto y = result;
  1781. SymbolVar y_opt;
  1782. auto options = gopt::OptimizeForInferenceOptions{};
  1783. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1784. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
  1785. ASSERT_EQ(
  1786. opr::ElemwiseMultiType::Param::Mode::MUL_INT16xF32xF32,
  1787. find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
  1788. HostTensorND host_y_opt, host_y;
  1789. auto func = graph->compile({make_callback_copy(y, host_y)});
  1790. func->execute();
  1791. graph->options().graph_opt_level = 2;
  1792. auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
  1793. func_opt->execute();
  1794. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1795. }
  1796. TEST(TestGoptInference, FuseTypeCvtAndElemwiseCase2) {
  1797. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  1798. auto cn = CompNode::load("cpu0");
  1799. auto graph = ComputingGraph::make();
  1800. graph->options().graph_opt_level = 0;
  1801. size_t n = 1;
  1802. size_t c = 128;
  1803. size_t h = 16;
  1804. size_t w = 16;
  1805. auto host_x1 = gen({n, h, w, c}, cn);
  1806. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  1807. auto x_nchw = opr::Dimshuffle::make(x, {0, 3, 1, 2}, 4, cn);
  1808. auto x_f32 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  1809. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1810. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  1811. };
  1812. auto s = mkcvar("s", {1, c, 1, 1});
  1813. auto b = mkcvar("b", {1, c, 1, 1});
  1814. auto result = opr::Elemwise::make(
  1815. {x_f32, s, b}, opr::Elemwise::Param::Mode::FUSE_MUL_ADD3);
  1816. auto y = result;
  1817. SymbolVar y_opt;
  1818. auto options = gopt::OptimizeForInferenceOptions{};
  1819. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1820. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::ElemwiseMultiType>());
  1821. ASSERT_EQ(
  1822. opr::ElemwiseMultiType::Param::Mode::FUSE_MUL_ADD3_UINT8xF32xF32xF32,
  1823. find_opr<opr::ElemwiseMultiType>(y_opt).param().mode);
  1824. HostTensorND host_y_opt, host_y;
  1825. auto func = graph->compile({make_callback_copy(y, host_y)});
  1826. func->execute();
  1827. graph->options().graph_opt_level = 2;
  1828. auto func_opt = graph->compile({make_callback_copy(y, host_y_opt)});
  1829. func_opt->execute();
  1830. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1831. }
  1832. #endif
  1833. TEST(TestGoptInference, ParamMerge) {
  1834. auto cns = load_multiple_xpus(2);
  1835. HostTensorGenerator<> gen;
  1836. auto graph = ComputingGraph::make();
  1837. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1838. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1839. y = var0 + opr::Copy::make(var1, {cns[0]});
  1840. HostTensorND y_expected_val;
  1841. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1842. SymbolVar y_opt;
  1843. unpack_vector(
  1844. gopt::GraphOptimizer{}
  1845. .add_pass<gopt::ParamMergePass>()
  1846. .apply({{y}})
  1847. .endpoint_vars(),
  1848. y_opt);
  1849. auto opr = y_opt.node()->owner_opr();
  1850. ASSERT_EQ(2u, opr->input().size());
  1851. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1852. HostTensorND y_got_val;
  1853. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1854. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1855. }
  1856. TEST(TestGoptInference, ParamMergeFormat) {
  1857. auto cns = load_multiple_xpus(2);
  1858. auto make_dv = [](const HostTensorND& hv) {
  1859. TensorLayout layout{
  1860. hv.layout(), hv.layout().dtype,
  1861. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1862. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1863. ret->copy_from_fixlayout(hv).sync();
  1864. return ret;
  1865. };
  1866. HostTensorGenerator<> gen;
  1867. auto graph = ComputingGraph::make();
  1868. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1869. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1870. var1 = opr::SharedDeviceTensorWithFormat::make(
  1871. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1872. y = var0 + opr::Copy::make(var1, {cns[0]});
  1873. HostTensorND y_expected_val;
  1874. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1875. SymbolVar y_opt;
  1876. unpack_vector(
  1877. gopt::GraphOptimizer{}
  1878. .add_pass<gopt::ParamMergePass>()
  1879. .apply({{y}})
  1880. .endpoint_vars(),
  1881. y_opt);
  1882. auto opr = y_opt.node()->owner_opr();
  1883. ASSERT_EQ(2u, opr->input().size());
  1884. ASSERT_EQ(
  1885. 2u,
  1886. find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt).output().size());
  1887. HostTensorND y_got_val;
  1888. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1889. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1890. }
  1891. #if MGB_ENABLE_FASTRUN
  1892. TEST(TestGoptInference, AlgoProfile) {
  1893. HostTensorGenerator<> gen;
  1894. auto graph = ComputingGraph::make();
  1895. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1896. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1897. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1898. z = opr::Convolution::make(x, y);
  1899. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1900. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1901. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1902. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1903. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1904. }
  1905. #endif
  1906. TEST(TestGoptInference, ProfileCache) {
  1907. HostTensorGenerator<> gen;
  1908. auto graph = ComputingGraph::make();
  1909. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1910. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1911. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1912. z = opr::Convolution::make(x, y);
  1913. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1914. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1915. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1916. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1917. ASSERT_EQ(S::PROFILE | S::HEURISTIC, conv.execution_policy().strategy);
  1918. }
  1919. TEST(TestGoptInference, FastProfileCache) {
  1920. HostTensorGenerator<> gen;
  1921. auto graph = ComputingGraph::make();
  1922. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1923. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1924. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1925. z = opr::Convolution::make(x, y);
  1926. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1927. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1928. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1929. gopt::modify_opr_algo_strategy_inplace({z + 2.3f}, S::PROFILE | S::OPTIMIZED);
  1930. ASSERT_EQ(S::PROFILE | S::OPTIMIZED, conv.execution_policy().strategy);
  1931. }
  1932. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1933. HostTensorGenerator<> gen;
  1934. auto graph = ComputingGraph::make();
  1935. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1936. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1937. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1938. z = opr::Convolution::make(x, y);
  1939. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1940. ASSERT_EQ(
  1941. std::numeric_limits<uint64_t>::max(),
  1942. conv.execution_policy_transient().workspace_limit);
  1943. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1944. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1945. }
  1946. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1947. auto cn = CompNode::load("xpux");
  1948. HostTensorGenerator<dtype::Int8> gen;
  1949. auto graph = ComputingGraph::make();
  1950. graph->options().graph_opt_level = 0;
  1951. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  1952. return opr::TypeCvt::make(
  1953. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  1954. };
  1955. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  1956. return opr::TypeCvt::make(
  1957. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  1958. dtype);
  1959. };
  1960. for (auto format :
  1961. {opr::Convolution::Param::Format::NCHW, opr::Convolution::Param::Format::NHWC,
  1962. opr::Convolution::Param::Format::NCHW4}) {
  1963. opr::Convolution::Param param;
  1964. param.format = format;
  1965. SymbolVar x, w, b;
  1966. if (format == opr::Convolution::Param::Format::NHWC) {
  1967. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1968. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1969. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1970. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1971. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1972. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1973. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1974. } else {
  1975. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1976. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1977. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1978. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1979. }
  1980. auto y = opr::Convolution::make(x, w, param);
  1981. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1982. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1983. opr::ConvBias::Param conv_bias_param;
  1984. conv_bias_param.format = format;
  1985. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1986. auto concret_y = opr::ConvBias::make(
  1987. x, w, b, conv_bias_param, {},
  1988. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1989. check(concret_y, y);
  1990. }
  1991. }
  1992. #if MGB_CUDA
  1993. TEST(TestEnableTensorCore, SmallInputShape) {
  1994. REQUIRE_GPU(1);
  1995. auto cn = CompNode::load("gpu0");
  1996. cn.activate();
  1997. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1998. auto sm_ver = prop.major * 10 + prop.minor;
  1999. if (sm_ver < 75) {
  2000. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2001. "expected: %d)\n",
  2002. sm_ver, 75);
  2003. return;
  2004. }
  2005. HostTensorGenerator<dtype::Int8> gen;
  2006. auto graph = ComputingGraph::make();
  2007. graph->options().graph_opt_level = 0;
  2008. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2009. return opr::TypeCvt::make(
  2010. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2011. };
  2012. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2013. return opr::TypeCvt::make(
  2014. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2015. dtype);
  2016. };
  2017. auto x0 = mkvar("x0", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  2018. w0 = mkcvar("w0", {2, 32, 8, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2019. b0 = mkcvar("b0", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2020. z0 = mkcvar("z0", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f));
  2021. opr::ConvBias::Param param0;
  2022. param0.format = opr::ConvBias::Param::Format::NCHW4;
  2023. param0.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2024. param0.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2025. param0.stride_h = param0.stride_w = 1;
  2026. param0.pad_h = param0.pad_w = 1;
  2027. auto w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2028. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2029. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  2030. opr::ConvBias::Param param;
  2031. param.format = opr::ConvBias::Param::Format::NCHW4;
  2032. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2033. param.stride_h = param.stride_w = 2;
  2034. param.pad_h = param.pad_w = 1;
  2035. auto y = opr::ConvBias::make(
  2036. x0, w0, b0, z0, param0, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2037. y = opr::ConvBias::make(
  2038. y, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2039. y = opr::ConvBias::make(
  2040. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2041. y = opr::TypeCvt::make(y, dtype::Float32());
  2042. SymbolVar y_opt;
  2043. SymbolVar y_no_tc;
  2044. {
  2045. auto options = gopt::OptimizeForInferenceOptions{};
  2046. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  2047. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2048. }
  2049. {
  2050. auto options = gopt::OptimizeForInferenceOptions{};
  2051. options.enable_fuse_conv_bias_nonlinearity();
  2052. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2053. }
  2054. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2055. ASSERT_EQ(2u, nr_dimshuffle);
  2056. HostTensorND host_y, host_y_opt;
  2057. auto func = graph->compile(
  2058. {make_callback_copy(y_no_tc, host_y),
  2059. make_callback_copy(y_opt, host_y_opt)});
  2060. func->execute();
  2061. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2062. }
  2063. TEST(TestEnableTensorCore, Nchw4Nchw) {
  2064. REQUIRE_GPU(1);
  2065. auto cn = CompNode::load("gpu0");
  2066. cn.activate();
  2067. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2068. auto sm_ver = prop.major * 10 + prop.minor;
  2069. if (sm_ver < 75) {
  2070. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2071. "expected: %d)\n",
  2072. sm_ver, 75);
  2073. return;
  2074. }
  2075. HostTensorGenerator<dtype::Int8> gen;
  2076. auto graph = ComputingGraph::make();
  2077. graph->options().graph_opt_level = 0;
  2078. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2079. return opr::TypeCvt::make(
  2080. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2081. };
  2082. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2083. return opr::TypeCvt::make(
  2084. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2085. dtype);
  2086. };
  2087. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
  2088. size_t W) -> TensorShape {
  2089. mgb_assert(C % 4 == 0);
  2090. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2091. return {N, C / 4, H, W, 4};
  2092. } else {
  2093. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2094. return {N, C, H, W};
  2095. }
  2096. };
  2097. auto mk_flt_shape = [](opr::ConvBias::Param::Format format, size_t OC, size_t IC,
  2098. size_t FH, size_t FW, size_t g = 1) -> TensorShape {
  2099. mgb_assert(OC % (g * 4) == 0 && IC % (g * 4) == 0);
  2100. if (g == 1) {
  2101. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2102. return {OC, IC / 4, FH, FW, 4};
  2103. } else {
  2104. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2105. return {OC, IC, FH, FW};
  2106. }
  2107. } else {
  2108. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2109. return {g, OC / g, IC / 4 / g, FH, FW, 4};
  2110. } else {
  2111. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2112. return {g, OC / g, IC / g, FH, FW};
  2113. }
  2114. }
  2115. };
  2116. for (auto format :
  2117. {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
  2118. auto x0 = mkvar(
  2119. "x0", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
  2120. w0 =
  2121. mkcvar("w0", mk_flt_shape(format, 64, 64, 3, 3, 2),
  2122. dtype::QuantizedS8(2.5f)),
  2123. b0 = mkcvar(
  2124. "b0", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
  2125. z0 = mkcvar(
  2126. "z0", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f));
  2127. opr::ConvBias::Param param0;
  2128. param0.format = format;
  2129. param0.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2130. param0.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2131. param0.stride_h = param0.stride_w = 1;
  2132. param0.pad_h = param0.pad_w = 1;
  2133. auto w =
  2134. mkcvar("w1", mk_flt_shape(format, 64, 64, 3, 3),
  2135. dtype::QuantizedS8(2.5f)),
  2136. b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
  2137. z = mkcvar("b1", mkshape(format, 32, 64, 8, 8), dtype::QuantizedS8(2.5f));
  2138. opr::ConvBias::Param param;
  2139. param.format = format;
  2140. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2141. param.stride_h = param.stride_w = 2;
  2142. param.pad_h = param.pad_w = 1;
  2143. auto y = opr::ConvBias::make(
  2144. x0, w0, b0, z0, param0, {},
  2145. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2146. y = opr::ConvBias::make(
  2147. y, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2148. y = opr::ConvBias::make(
  2149. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2150. y = opr::TypeCvt::make(y, dtype::Float32());
  2151. SymbolVar y_opt;
  2152. SymbolVar y_no_tc;
  2153. {
  2154. auto options = gopt::OptimizeForInferenceOptions{};
  2155. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  2156. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2157. }
  2158. {
  2159. auto options = gopt::OptimizeForInferenceOptions{};
  2160. options.enable_fuse_conv_bias_nonlinearity();
  2161. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2162. }
  2163. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2164. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2165. #if CUDA_VERSION >= 10020
  2166. //! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020
  2167. ASSERT_EQ(1u, nr_dimshuffle);
  2168. #else
  2169. ASSERT_EQ(2u, nr_dimshuffle);
  2170. #endif
  2171. } else {
  2172. ASSERT_EQ(3u, nr_dimshuffle);
  2173. }
  2174. std::string json_name;
  2175. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2176. json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
  2177. } else {
  2178. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2179. json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
  2180. }
  2181. graph->compile({{y_opt, {}}})
  2182. ->to_json()
  2183. ->writeto_fpath(output_file(json_name.c_str()));
  2184. HostTensorND host_y, host_y_opt;
  2185. auto func = graph->compile(
  2186. {make_callback_copy(y_no_tc, host_y),
  2187. make_callback_copy(y_opt, host_y_opt)});
  2188. func->execute();
  2189. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2190. }
  2191. }
  2192. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  2193. REQUIRE_GPU(1);
  2194. auto cn = CompNode::load("gpu0");
  2195. cn.activate();
  2196. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2197. auto sm_ver = prop.major * 10 + prop.minor;
  2198. if (sm_ver < 75) {
  2199. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2200. "expected: %d)\n",
  2201. sm_ver, 75);
  2202. return;
  2203. }
  2204. HostTensorGenerator<dtype::Int8> gen;
  2205. auto graph = ComputingGraph::make();
  2206. graph->options().graph_opt_level = 0;
  2207. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2208. return opr::TypeCvt::make(
  2209. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2210. };
  2211. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2212. return opr::TypeCvt::make(
  2213. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2214. dtype);
  2215. };
  2216. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2217. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2218. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2219. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2220. opr::ConvBias::Param param;
  2221. param.format = opr::ConvBias::Param::Format::NCHW4;
  2222. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2223. param.stride_h = param.stride_w = 1;
  2224. param.pad_h = param.pad_w = 1;
  2225. auto y = opr::ConvBias::make(
  2226. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2227. y = opr::TypeCvt::make(y, dtype::Float32());
  2228. SymbolVar y_opt;
  2229. SymbolVar y_no_tc;
  2230. {
  2231. auto options = gopt::OptimizeForInferenceOptions{};
  2232. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2233. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2234. }
  2235. {
  2236. auto options = gopt::OptimizeForInferenceOptions{};
  2237. options.enable_fuse_conv_bias_nonlinearity();
  2238. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2239. }
  2240. HostTensorND host_y, host_y_opt;
  2241. auto func = graph->compile(
  2242. {make_callback_copy(y_no_tc, host_y),
  2243. make_callback_copy(y_opt, host_y_opt)});
  2244. func->execute();
  2245. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2246. }
  2247. TEST(TestEnableTensorCore, Pooling) {
  2248. REQUIRE_GPU(1);
  2249. auto cn = CompNode::load("gpu0");
  2250. cn.activate();
  2251. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2252. auto sm_ver = prop.major * 10 + prop.minor;
  2253. if (sm_ver < 75) {
  2254. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2255. "expected: %d)\n",
  2256. sm_ver, 75);
  2257. return;
  2258. }
  2259. HostTensorGenerator<dtype::Int8> gen;
  2260. auto graph = ComputingGraph::make();
  2261. graph->options().graph_opt_level = 0;
  2262. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2263. return opr::TypeCvt::make(
  2264. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2265. };
  2266. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2267. return opr::TypeCvt::make(
  2268. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2269. dtype);
  2270. };
  2271. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2272. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2273. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2274. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2275. opr::ConvBias::Param param;
  2276. param.format = opr::ConvBias::Param::Format::NCHW4;
  2277. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2278. param.stride_h = param.stride_w = 1;
  2279. param.pad_h = param.pad_w = 1;
  2280. auto y = opr::ConvBias::make(
  2281. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2282. opr::Pooling::Param pool_param;
  2283. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  2284. y = opr::Pooling::make(y, pool_param);
  2285. y = opr::TypeCvt::make(y, dtype::Float32());
  2286. SymbolVar y_opt;
  2287. SymbolVar y_no_tc;
  2288. {
  2289. auto options = gopt::OptimizeForInferenceOptions{};
  2290. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2291. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2292. }
  2293. ASSERT_EQ(
  2294. opr::Pooling::Param::Format::NCHW32,
  2295. find_opr<opr::Pooling>(y_opt).param().format);
  2296. {
  2297. auto options = gopt::OptimizeForInferenceOptions{};
  2298. options.enable_fuse_conv_bias_nonlinearity();
  2299. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2300. }
  2301. HostTensorND host_y, host_y_opt;
  2302. auto func = graph->compile(
  2303. {make_callback_copy(y_no_tc, host_y),
  2304. make_callback_copy(y_opt, host_y_opt)});
  2305. func->execute();
  2306. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2307. }
  2308. TEST(TestEnableTensorCore, BatchConvBias) {
  2309. REQUIRE_GPU(1);
  2310. auto cn = CompNode::load("gpu0");
  2311. cn.activate();
  2312. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2313. auto sm_ver = prop.major * 10 + prop.minor;
  2314. if (sm_ver < 75) {
  2315. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2316. "expected: %d)\n",
  2317. sm_ver, 75);
  2318. return;
  2319. }
  2320. HostTensorGenerator<dtype::Int8> gen;
  2321. auto graph = ComputingGraph::make();
  2322. graph->options().graph_opt_level = 0;
  2323. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2324. return opr::TypeCvt::make(
  2325. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2326. };
  2327. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2328. return opr::TypeCvt::make(
  2329. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2330. dtype);
  2331. };
  2332. auto inp = mkvar("inp", {32, 24, 24, 24, 4}, dtype::QuantizedS8(1.1f)),
  2333. flt = mkcvar("flt", {32, 96, 24, 1, 1, 4}, dtype::QuantizedS8(1.2f)),
  2334. bias = mkcvar("bias", {1, 24, 1, 1, 4}, dtype::QuantizedS32{1.1f * 1.2f});
  2335. opr::BatchConvBias::Param param;
  2336. param.format = opr::BatchConvBias::Param::Format::NCHW4;
  2337. param.stride_h = param.stride_w = 1;
  2338. param.pad_h = param.pad_w = 0;
  2339. auto y = opr::BatchConvBias::make(
  2340. inp, flt, bias, param, {}, OperatorNodeConfig{dtype::QuantizedS8{1.3f}});
  2341. y = opr::TypeCvt::make(y, dtype::Float32());
  2342. SymbolVar y_opt;
  2343. SymbolVar y_no_tc;
  2344. {
  2345. auto options = gopt::OptimizeForInferenceOptions{};
  2346. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2347. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2348. }
  2349. ASSERT_EQ(
  2350. opr::BatchConvBias::Param::Format::NCHW4,
  2351. find_opr<opr::BatchConvBias>(y_opt).param().format);
  2352. {
  2353. auto options = gopt::OptimizeForInferenceOptions{};
  2354. options.enable_fuse_conv_bias_nonlinearity();
  2355. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2356. }
  2357. HostTensorND host_y, host_y_opt;
  2358. auto func = graph->compile(
  2359. {make_callback_copy(y_no_tc, host_y),
  2360. make_callback_copy(y_opt, host_y_opt)});
  2361. func->execute();
  2362. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2363. }
  2364. TEST(TestGoptInference, EnableTensorCore) {
  2365. REQUIRE_GPU(1);
  2366. auto cn = CompNode::load("gpu0");
  2367. cn.activate();
  2368. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2369. auto sm_ver = prop.major * 10 + prop.minor;
  2370. if (sm_ver < 75) {
  2371. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2372. "expected: %d)\n",
  2373. sm_ver, 75);
  2374. return;
  2375. }
  2376. HostTensorGenerator<dtype::Int8> gen;
  2377. auto graph = ComputingGraph::make();
  2378. graph->options().graph_opt_level = 0;
  2379. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2380. return opr::TypeCvt::make(
  2381. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2382. };
  2383. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2384. return opr::TypeCvt::make(
  2385. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2386. dtype);
  2387. };
  2388. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2389. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2390. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2391. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2392. opr::Convolution::Param param;
  2393. param.format = opr::Convolution::Param::Format::NCHW4;
  2394. param.stride_h = param.stride_w = 1;
  2395. param.pad_h = param.pad_w = 1;
  2396. auto y = opr::Convolution::make(x, w, param);
  2397. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  2398. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  2399. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  2400. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  2401. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  2402. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  2403. auto y4 = y1 + y2 + y3;
  2404. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2405. SymbolVar y_opt;
  2406. SymbolVar y_no_tc;
  2407. {
  2408. auto options = gopt::OptimizeForInferenceOptions{};
  2409. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2410. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  2411. }
  2412. {
  2413. auto options = gopt::OptimizeForInferenceOptions{};
  2414. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2415. unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
  2416. }
  2417. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2418. ASSERT_EQ(3u, nr_dimshuffle);
  2419. graph->compile({{y_opt, {}}})
  2420. ->to_json()
  2421. ->writeto_fpath(output_file("TestGoptInference.EnableTensorCorePass.json"));
  2422. HostTensorND host_y, host_y_opt;
  2423. auto func = graph->compile(
  2424. {make_callback_copy(y_no_tc, host_y),
  2425. make_callback_copy(y_opt, host_y_opt)});
  2426. func->execute();
  2427. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2428. }
  2429. TEST(FuseConvBiasZPass, BlockFuse) {
  2430. REQUIRE_GPU(1);
  2431. auto cn = CompNode::load("gpu0");
  2432. cn.activate();
  2433. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2434. auto sm_ver = prop.major * 10 + prop.minor;
  2435. if (sm_ver < 61) {
  2436. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2437. "expected: %d)\n",
  2438. sm_ver, 61);
  2439. return;
  2440. }
  2441. HostTensorGenerator<dtype::Int8> gen;
  2442. auto graph = ComputingGraph::make();
  2443. graph->options().graph_opt_level = 0;
  2444. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2445. return opr::TypeCvt::make(
  2446. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2447. };
  2448. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2449. return opr::TypeCvt::make(
  2450. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2451. dtype);
  2452. };
  2453. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  2454. using NonlineMode = opr::ConvBias::Param::NonlineMode;
  2455. for (auto mode :
  2456. {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
  2457. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2458. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2459. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2460. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2461. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2462. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2463. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  2464. NonlineMode nonline_mode = NonlineMode::RELU;
  2465. if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
  2466. nonline_mode = NonlineMode::H_SWISH;
  2467. }
  2468. opr::ConvBias::Param param;
  2469. param.format = opr::Convolution::Param::Format::NCHW4;
  2470. param.nonlineMode = nonline_mode;
  2471. param.stride_h = param.stride_w = 1;
  2472. param.pad_h = param.pad_w = 1;
  2473. auto y1 = opr::ConvBias::make(
  2474. x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2475. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  2476. auto y2 = opr::ConvBias::make(
  2477. y1, w2, b2, param, {},
  2478. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2479. y3 = opr::ElemwiseMultiType::make(
  2480. {y1, y2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  2481. param.nonlineMode = nonline_mode;
  2482. auto y4 = opr::ConvBias::make(
  2483. y3, w3, b3, param, {},
  2484. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2485. z = opr::ElemwiseMultiType::make(
  2486. {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  2487. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2488. z = opr::TypeCvt::make(z, dtype::Float32());
  2489. SymbolVar z_fuse;
  2490. {
  2491. auto options = gopt::OptimizeForInferenceOptions{};
  2492. options.enable_fuse_conv_bias_nonlinearity().enable_fuse_conv_bias_with_z();
  2493. unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
  2494. }
  2495. graph->compile({{z_fuse, {}}})
  2496. ->to_json()
  2497. ->writeto_fpath(output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  2498. auto nr_elem_multi_type = find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  2499. MGB_MARK_USED_VAR(nr_elem_multi_type);
  2500. #if MGB_CUDA && (CUDNN_MAJOR == 8)
  2501. ASSERT_EQ(2u, nr_elem_multi_type);
  2502. #else
  2503. ASSERT_EQ(1u, nr_elem_multi_type);
  2504. //! fuse z mannually
  2505. auto z0 = opr::ConvBias::make(
  2506. x, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2507. auto z1 = opr::ConvBias::make(
  2508. z0, w2, b2, z0, param, {},
  2509. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  2510. z2 = opr::ConvBias::make(
  2511. z1, w3, b3, param, {},
  2512. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2513. z4 = opr::ElemwiseMultiType::make(
  2514. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  2515. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2516. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  2517. SymbolVar z_nonfuse;
  2518. {
  2519. auto options = gopt::OptimizeForInferenceOptions{};
  2520. options.enable_fuse_conv_bias_nonlinearity();
  2521. unpack_vector(gopt::optimize_for_inference({z4}, options), z_nonfuse);
  2522. }
  2523. graph->compile({{z_nonfuse, {}}})
  2524. ->to_json()
  2525. ->writeto_fpath(
  2526. output_file("FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  2527. HostTensorND host_z_fuse, host_z_nonfuse;
  2528. auto func = graph->compile(
  2529. {make_callback_copy(z_nonfuse, host_z_nonfuse),
  2530. make_callback_copy(z_fuse, host_z_fuse)});
  2531. func->execute();
  2532. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  2533. #endif
  2534. }
  2535. }
  2536. TEST(TestEnableTensorCore, ShuffleMerge) {
  2537. REQUIRE_GPU(1);
  2538. auto cn = CompNode::load("gpu0");
  2539. cn.activate();
  2540. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2541. auto sm_ver = prop.major * 10 + prop.minor;
  2542. if (sm_ver < 75) {
  2543. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2544. "expected: %d)\n",
  2545. sm_ver, 75);
  2546. return;
  2547. }
  2548. HostTensorGenerator<dtype::Int8> gen;
  2549. auto graph = ComputingGraph::make();
  2550. graph->options().graph_opt_level = 0;
  2551. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2552. return opr::TypeCvt::make(
  2553. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2554. };
  2555. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2556. return opr::TypeCvt::make(
  2557. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2558. dtype);
  2559. };
  2560. auto nchw2nchw4 = [](SymbolVar x) {
  2561. auto xshp = opr::GetVarShape::make(x);
  2562. auto cv = [&x](int v) { return x.make_scalar(v); };
  2563. auto sub = [&xshp, &cv](int idx) {
  2564. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2565. };
  2566. auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2567. auto y0 = opr::Reshape::make(x, tshp);
  2568. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2569. return y1;
  2570. };
  2571. auto nchw42nchw = [](SymbolVar x) {
  2572. auto xshp = opr::GetVarShape::make(x);
  2573. auto cv = [&x](int v) { return x.make_scalar(v); };
  2574. auto sub = [&xshp, &cv](int idx) {
  2575. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2576. };
  2577. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2578. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2579. auto y1 = opr::Reshape::make(y0, tshp);
  2580. return y1;
  2581. };
  2582. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2583. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  2584. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  2585. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  2586. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z = nchw2nchw4(z);
  2587. opr::ConvBias::Param param;
  2588. param.format = opr::ConvBias::Param::Format::NCHW4;
  2589. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2590. param.stride_h = param.stride_w = 1;
  2591. param.pad_h = param.pad_w = 1;
  2592. auto y = opr::ConvBias::make(
  2593. x, w, b, z, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2594. y = nchw42nchw(y);
  2595. y = opr::TypeCvt::make(y, dtype::Float32());
  2596. SymbolVar y_opt;
  2597. SymbolVar y_no_tc;
  2598. {
  2599. auto options = gopt::OptimizeForInferenceOptions{};
  2600. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2601. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2602. }
  2603. {
  2604. auto options = gopt::OptimizeForInferenceOptions{};
  2605. options.enable_fuse_conv_bias_nonlinearity();
  2606. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2607. }
  2608. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2609. ASSERT_EQ(3u, nr_dimshuffle);
  2610. HostTensorND host_y, host_y_opt;
  2611. auto func = graph->compile(
  2612. {make_callback_copy(y_no_tc, host_y),
  2613. make_callback_copy(y_opt, host_y_opt)});
  2614. func->execute();
  2615. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2616. }
  2617. #endif
  2618. TEST(FuseConvBiasZPass, Basic) {
  2619. REQUIRE_GPU(1);
  2620. auto cn = CompNode::load("gpu0");
  2621. HostTensorGenerator<dtype::Int8> gen;
  2622. auto graph = ComputingGraph::make();
  2623. graph->options().graph_opt_level = 0;
  2624. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2625. return opr::TypeCvt::make(
  2626. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2627. };
  2628. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2629. return opr::TypeCvt::make(
  2630. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2631. dtype);
  2632. };
  2633. auto format = opr::Convolution::Param::Format::NCHW4;
  2634. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2635. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2636. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2637. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2638. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2639. opr::ConvBias::Param conv_bias_param;
  2640. conv_bias_param.format = format;
  2641. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  2642. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  2643. auto y = opr::ConvBias::make(
  2644. x, w, b, conv_bias_param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2645. SymbolVar y_opt;
  2646. // check fuse mode
  2647. for (auto mode :
  2648. {opr::ElemwiseMultiType::Param::Mode::QADD,
  2649. opr::ElemwiseMultiType::Param::Mode::QMUL,
  2650. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  2651. auto y1 = opr::ElemwiseMultiType::make(
  2652. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2653. {
  2654. auto options = gopt::OptimizeForInferenceOptions{};
  2655. options.enable_fuse_conv_bias_nonlinearity()
  2656. .enable_fuse_conv_bias_with_z()
  2657. .enable_nchw32();
  2658. unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
  2659. }
  2660. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2661. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  2662. ASSERT_NE(0u, nr_elemwisemultitype);
  2663. } else
  2664. ASSERT_EQ(0u, nr_elemwisemultitype);
  2665. // fuse convbiasz and z
  2666. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  2667. auto y2 = opr::ElemwiseMultiType::make(
  2668. {y1, b2}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2669. {
  2670. auto options = gopt::OptimizeForInferenceOptions{};
  2671. options.enable_fuse_conv_bias_nonlinearity()
  2672. .enable_fuse_conv_bias_with_z()
  2673. .enable_nchw32();
  2674. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  2675. }
  2676. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2677. ASSERT_NE(0u, nr_elemwisemultitype);
  2678. }
  2679. }
  2680. }
  2681. #if MGB_CUDA
  2682. //! close for cu111 ci, reopen it when bug fixed
  2683. #if CUDA_VERSION < 11000
  2684. TEST(TestGoptInference, EnableCHWN4) {
  2685. REQUIRE_GPU(1);
  2686. auto cn = CompNode::load("gpu0");
  2687. cn.activate();
  2688. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2689. auto sm_ver = prop.major * 10 + prop.minor;
  2690. if (sm_ver < 61) {
  2691. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2692. "expected: %d)\n",
  2693. sm_ver, 61);
  2694. return;
  2695. }
  2696. HostTensorGenerator<dtype::Int8> gen;
  2697. auto graph = ComputingGraph::make();
  2698. graph->options().graph_opt_level = 0;
  2699. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2700. return opr::TypeCvt::make(
  2701. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2702. };
  2703. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2704. return opr::TypeCvt::make(
  2705. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2706. dtype);
  2707. };
  2708. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C, size_t H,
  2709. size_t W) -> TensorShape {
  2710. mgb_assert(C % 4 == 0);
  2711. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2712. return {N, C / 4, H, W, 4};
  2713. } else {
  2714. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2715. return {N, C, H, W};
  2716. }
  2717. };
  2718. for (auto format :
  2719. {opr::ConvBias::Param::Format::NCHW, opr::ConvBias::Param::Format::NCHW4}) {
  2720. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f)),
  2721. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3), dtype::QuantizedS8(2.5f)),
  2722. b = mkcvar("b", mkshape(format, 1, 64, 1, 1), dtype::QuantizedS32(6.25f)),
  2723. b1 = mkvar(
  2724. "b1", mkshape(format, 32, 64, 16, 16), dtype::QuantizedS8(2.5f));
  2725. opr::ConvBias::Param param;
  2726. param.format = format;
  2727. param.stride_h = param.stride_w = 1;
  2728. param.pad_h = param.pad_w = 1;
  2729. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2730. auto y = opr::ConvBiasForward::make(
  2731. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2732. auto y1 = opr::ElemwiseMultiType::make(
  2733. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2734. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2735. auto y2 = opr::ConvBiasForward::make(
  2736. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2737. auto y3 = opr::ElemwiseMultiType::make(
  2738. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2739. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2740. auto y4 = opr::ElemwiseMultiType::make(
  2741. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2742. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2743. y4 = opr::ElemwiseMultiType::make(
  2744. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2745. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2746. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2747. SymbolVar y_opt;
  2748. SymbolVar y_cudnn;
  2749. {
  2750. auto options = gopt::OptimizeForInferenceOptions{};
  2751. options.enable_chwn4();
  2752. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  2753. }
  2754. unpack_vector(
  2755. gopt::GraphOptimizer{}
  2756. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2757. .add_pass<gopt::FuseConvBiasZPass>()
  2758. .apply({{y4}})
  2759. .endpoint_vars(),
  2760. y_cudnn);
  2761. ASSERT_EQ(
  2762. opr::ConvBias::Param::Format::CHWN4,
  2763. find_opr<opr::ConvBias>(y_opt).param().format);
  2764. HostTensorND host_y, host_y_opt;
  2765. auto func = graph->compile(
  2766. {make_callback_copy(y_cudnn, host_y),
  2767. make_callback_copy(y_opt, host_y_opt)});
  2768. func->execute();
  2769. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2770. }
  2771. }
  2772. #endif
  2773. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  2774. REQUIRE_GPU(1);
  2775. auto cn = CompNode::load("gpu0");
  2776. cn.activate();
  2777. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2778. auto sm_ver = prop.major * 10 + prop.minor;
  2779. if (sm_ver < 61) {
  2780. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2781. "expected: %d)\n",
  2782. sm_ver, 61);
  2783. return;
  2784. }
  2785. HostTensorGenerator<dtype::Int8> gen;
  2786. auto graph = ComputingGraph::make();
  2787. graph->options().graph_opt_level = 0;
  2788. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2789. return opr::TypeCvt::make(
  2790. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2791. };
  2792. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2793. return opr::TypeCvt::make(
  2794. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2795. dtype);
  2796. };
  2797. std::shared_ptr<HostTensorND> mat =
  2798. std::make_shared<HostTensorND>(cn, TensorShape{32, 3, 3}, dtype::Float32());
  2799. warp_perspective_mat_gen(*mat, 32, 16, 16);
  2800. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  2801. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2802. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2803. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2804. opr::ConvBias::Param param;
  2805. param.format = opr::ConvBias::Param::Format::NCHW4;
  2806. param.stride_h = param.stride_w = 1;
  2807. param.pad_h = param.pad_w = 1;
  2808. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2809. auto y = opr::ConvBiasForward::make(
  2810. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2811. opr::WarpPerspective::Param warp_param;
  2812. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  2813. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
  2814. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  2815. auto nchw42nchw = [](SymbolVar x) {
  2816. auto xshp = opr::GetVarShape::make(x);
  2817. auto cv = [&x](int v) { return x.make_scalar(v); };
  2818. auto sub = [&xshp, &cv](int idx) {
  2819. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2820. };
  2821. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2822. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2823. auto y1 = opr::Reshape::make(y0, tshp);
  2824. return y1;
  2825. };
  2826. y1 = nchw42nchw(y1);
  2827. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  2828. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
  2829. SymbolVar y_opt;
  2830. SymbolVar y_cudnn;
  2831. {
  2832. auto options = gopt::OptimizeForInferenceOptions{};
  2833. options.enable_chwn4();
  2834. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  2835. }
  2836. unpack_vector(
  2837. gopt::GraphOptimizer{}
  2838. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2839. .add_pass<gopt::FuseConvBiasZPass>()
  2840. .apply({{y2}})
  2841. .endpoint_vars(),
  2842. y_cudnn);
  2843. HostTensorND host_y, host_y_opt;
  2844. auto func = graph->compile(
  2845. {make_callback_copy(y_cudnn, host_y),
  2846. make_callback_copy(y_opt, host_y_opt)});
  2847. func->execute();
  2848. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2849. }
  2850. TEST(TestGoptInference, EnableCHWN4Pooling) {
  2851. REQUIRE_GPU(1);
  2852. auto cn = CompNode::load("gpu0");
  2853. cn.activate();
  2854. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2855. auto sm_ver = prop.major * 10 + prop.minor;
  2856. if (sm_ver < 61) {
  2857. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2858. "expected: %d)\n",
  2859. sm_ver, 61);
  2860. return;
  2861. }
  2862. HostTensorGenerator<dtype::Int8> gen;
  2863. auto graph = ComputingGraph::make();
  2864. graph->options().graph_opt_level = 0;
  2865. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2866. return opr::TypeCvt::make(
  2867. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2868. };
  2869. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2870. return opr::TypeCvt::make(
  2871. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2872. dtype);
  2873. };
  2874. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2875. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2876. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2877. opr::ConvBias::Param param;
  2878. param.format = opr::ConvBias::Param::Format::NCHW4;
  2879. param.stride_h = param.stride_w = 1;
  2880. param.pad_h = param.pad_w = 1;
  2881. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2882. auto y = opr::ConvBiasForward::make(
  2883. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2884. opr::Pooling::Param pool_param;
  2885. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  2886. y = opr::Pooling::make(y, pool_param);
  2887. y = opr::TypeCvt::make(y, dtype::Float32());
  2888. auto nchw42nchw = [](SymbolVar x) {
  2889. auto xshp = opr::GetVarShape::make(x);
  2890. auto cv = [&x](int v) { return x.make_scalar(v); };
  2891. auto sub = [&xshp, &cv](int idx) {
  2892. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2893. };
  2894. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2895. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2896. auto y1 = opr::Reshape::make(y0, tshp);
  2897. return y1;
  2898. };
  2899. y = nchw42nchw(y);
  2900. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2901. auto y1 = opr::Pooling::make(y, pool_param);
  2902. SymbolVar y_opt;
  2903. SymbolVar y_cudnn;
  2904. unpack_vector(
  2905. gopt::GraphOptimizer{}
  2906. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2907. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2908. .add_pass<gopt::FuseConvBiasZPass>()
  2909. .apply({{y1}})
  2910. .endpoint_vars(),
  2911. y_opt);
  2912. unpack_vector(
  2913. gopt::GraphOptimizer{}
  2914. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2915. .add_pass<gopt::FuseConvBiasZPass>()
  2916. .apply({{y1}})
  2917. .endpoint_vars(),
  2918. y_cudnn);
  2919. HostTensorND host_y, host_y_opt;
  2920. auto func = graph->compile(
  2921. {make_callback_copy(y_cudnn, host_y),
  2922. make_callback_copy(y_opt, host_y_opt)});
  2923. func->execute();
  2924. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2925. }
  2926. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  2927. REQUIRE_GPU(1);
  2928. auto cn = CompNode::load("gpu0");
  2929. cn.activate();
  2930. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2931. auto sm_ver = prop.major * 10 + prop.minor;
  2932. if (sm_ver < 61) {
  2933. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2934. "expected: %d)\n",
  2935. sm_ver, 61);
  2936. return;
  2937. }
  2938. HostTensorGenerator<dtype::Int8> gen;
  2939. auto graph = ComputingGraph::make();
  2940. graph->options().graph_opt_level = 0;
  2941. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2942. return opr::TypeCvt::make(
  2943. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  2944. };
  2945. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  2946. return opr::TypeCvt::make(
  2947. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  2948. dtype);
  2949. };
  2950. auto nchw2nchw4 = [](SymbolVar x) {
  2951. auto xshp = opr::GetVarShape::make(x);
  2952. auto cv = [&x](int v) { return x.make_scalar(v); };
  2953. auto sub = [&xshp, &cv](int idx) {
  2954. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2955. };
  2956. auto tshp = opr::Concat::make({sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2957. auto y0 = opr::Reshape::make(x, tshp);
  2958. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2959. return y1;
  2960. };
  2961. auto nchw42nchw = [](SymbolVar x) {
  2962. auto xshp = opr::GetVarShape::make(x);
  2963. auto cv = [&x](int v) { return x.make_scalar(v); };
  2964. auto sub = [&xshp, &cv](int idx) {
  2965. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2966. };
  2967. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2968. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2969. auto y1 = opr::Reshape::make(y0, tshp);
  2970. return y1;
  2971. };
  2972. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2973. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2974. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2975. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2976. x = nchw2nchw4(x);
  2977. opr::ConvBias::Param param;
  2978. param.format = opr::ConvBias::Param::Format::NCHW4;
  2979. param.stride_h = param.stride_w = 1;
  2980. param.pad_h = param.pad_w = 1;
  2981. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2982. auto y = opr::ConvBiasForward::make(
  2983. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2984. auto y1 = opr::ElemwiseMultiType::make(
  2985. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2986. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2987. auto y2 = opr::ConvBiasForward::make(
  2988. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2989. auto y3 = opr::ElemwiseMultiType::make(
  2990. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2991. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2992. auto y4 = opr::ElemwiseMultiType::make(
  2993. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2994. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2995. y4 = opr::ElemwiseMultiType::make(
  2996. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2997. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2998. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2999. y4 = nchw42nchw(y4);
  3000. SymbolVar y_opt;
  3001. SymbolVar y_cudnn;
  3002. unpack_vector(
  3003. gopt::GraphOptimizer{}
  3004. .add_pass<gopt::ParamRedistributePass>()
  3005. .add_pass<gopt::ParamFusePass>()
  3006. .add_pass<gopt::FuseConvBiasNonlinPass>()
  3007. .add_pass<gopt::FuseConvBiasZPass>()
  3008. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  3009. .add_pass<gopt::ShuffleShuffleRemovePass>()
  3010. .add_pass<gopt::ParamFusePass>()
  3011. .apply({{y4}})
  3012. .endpoint_vars(),
  3013. y_opt);
  3014. graph->compile({{y_opt, {}}})
  3015. ->to_json()
  3016. ->writeto_fpath(
  3017. output_file("TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  3018. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  3019. ASSERT_EQ(2u, nr_dimshuffle);
  3020. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  3021. ASSERT_EQ(0u, nr_reformat);
  3022. unpack_vector(
  3023. gopt::GraphOptimizer{}
  3024. .add_pass<gopt::FuseConvBiasNonlinPass>()
  3025. .add_pass<gopt::FuseConvBiasZPass>()
  3026. .apply({{y4}})
  3027. .endpoint_vars(),
  3028. y_cudnn);
  3029. HostTensorND host_y, host_y_opt;
  3030. auto func = graph->compile(
  3031. {make_callback_copy(y_cudnn, host_y),
  3032. make_callback_copy(y_opt, host_y_opt)});
  3033. func->execute();
  3034. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  3035. }
  3036. TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
  3037. REQUIRE_GPU(1);
  3038. auto cn = CompNode::load("gpu0");
  3039. cn.activate();
  3040. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3041. auto sm_ver = prop.major * 10 + prop.minor;
  3042. if (sm_ver < 61) {
  3043. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3044. "expected: %d)\n",
  3045. sm_ver, 61);
  3046. return;
  3047. }
  3048. HostTensorGenerator<dtype::Int8> gen;
  3049. auto graph = ComputingGraph::make();
  3050. graph->options().graph_opt_level = 0;
  3051. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3052. return opr::TypeCvt::make(
  3053. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  3054. };
  3055. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3056. return opr::TypeCvt::make(
  3057. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3058. dtype);
  3059. };
  3060. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  3061. opr::ConvBias::Param param_conv_bias;
  3062. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  3063. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  3064. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3065. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3066. // dense
  3067. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3068. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3069. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3070. auto conv1 = opr::ConvBiasForward::make(
  3071. x, w1, b1, param_conv_bias, {},
  3072. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3073. // group
  3074. // icpg != 1 && ocpg != 1
  3075. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3076. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3077. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3078. auto conv2 = opr::ConvBiasForward::make(
  3079. conv1, w2, b2, param_conv_bias, {},
  3080. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3081. opr::Convolution::Param param_deconv;
  3082. param_deconv.format = opr::Convolution::Param::Format::NCHW;
  3083. param_deconv.stride_h = param_deconv.stride_w = 2;
  3084. param_deconv.pad_h = param_deconv.pad_w = 2;
  3085. // dense
  3086. param_deconv.sparse = opr::Convolution::Param::Sparse::DENSE;
  3087. auto w3 = mkcvar("w3", {8, 8, 4, 4}, dtype::QuantizedS8(2.5f));
  3088. auto deconv1 = opr::ConvolutionBackwardData::make_deconv(
  3089. conv2, w3, param_deconv, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3090. auto deconv1_fp32 = opr::TypeCvt::make(deconv1, dtype::Float32());
  3091. auto y = deconv1_fp32 + opr::TypeCvt::make(b2, dtype::Float32());
  3092. SymbolVar y_opt;
  3093. {
  3094. auto options = gopt::OptimizeForInferenceOptions{};
  3095. options.enable_nchw4();
  3096. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3097. }
  3098. ASSERT_EQ(
  3099. opr::ConvBias::Param::Format::NCHW4,
  3100. find_opr<opr::ConvBias>(y_opt).param().format);
  3101. ASSERT_EQ(
  3102. opr::ConvolutionBackwardData::Param::Format::NCHW4,
  3103. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  3104. auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
  3105. ASSERT_EQ(2u, nr_reshape);
  3106. graph->compile({{y_opt, {}}})
  3107. ->to_json()
  3108. ->writeto_fpath(
  3109. output_file("TestGoptInference.ConvertFormatNCHW4GPU.json"));
  3110. HostTensorND host_y, host_y_opt;
  3111. auto func = graph->compile(
  3112. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3113. func->execute();
  3114. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  3115. }
  3116. TEST(TestGoptInference, ConvertFormatNCHW4FloatGPU) {
  3117. REQUIRE_GPU(1);
  3118. auto cn = CompNode::load("gpu0");
  3119. cn.activate();
  3120. REQUIRE_CUDA_COMPUTE_CAPABILITY_EQ(6, 1);
  3121. HostTensorGenerator<> gen;
  3122. auto graph = ComputingGraph::make();
  3123. graph->options().graph_opt_level = 0;
  3124. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3125. return opr::TypeCvt::make(
  3126. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  3127. };
  3128. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3129. return opr::TypeCvt::make(
  3130. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3131. dtype);
  3132. };
  3133. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(1.2f));
  3134. opr::ConvBias::Param param_conv_bias;
  3135. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3136. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3137. // conv1, with bias
  3138. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  3139. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::Float32());
  3140. auto conv1 = opr::ConvBias::make(
  3141. x, w1, b1, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
  3142. // conv2, with bias and z
  3143. auto w2 = mkcvar("w2", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  3144. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::Float32()),
  3145. z2 = mkcvar("z2", {2, 8, 16, 16}, dtype::Float32());
  3146. auto conv2 = opr::ConvBias::make(
  3147. x, w2, b2, z2, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
  3148. // conv3, relu
  3149. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3150. auto w3 = mkcvar("w3", {8, 4, 3, 3}, dtype::QuantizedS8(1.3f)),
  3151. b3 = mkcvar("b3", {1, 8, 1, 1}, dtype::Float32()),
  3152. z3 = mkcvar("z3", {2, 8, 16, 16}, dtype::Float32());
  3153. auto conv3 = opr::ConvBias::make(
  3154. x, w3, b3, z3, param_conv_bias, {}, OperatorNodeConfig{dtype::Float32()});
  3155. auto y = conv1 + conv2 + conv3;
  3156. SymbolVar y_opt;
  3157. {
  3158. auto options = gopt::OptimizeForInferenceOptions{};
  3159. options.enable_nchw4();
  3160. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3161. }
  3162. bool succ = true;
  3163. auto cb = [&succ](cg::OperatorNodeBase* opr) {
  3164. if (opr->same_type<opr::ConvBias>()) {
  3165. auto& conv_bias = opr->cast_final_safe<opr::ConvBias>();
  3166. if (conv_bias.param().format != opr::ConvBias::Param::Format::NCHW4_NCHW) {
  3167. succ = false;
  3168. }
  3169. }
  3170. };
  3171. cg::DepOprIter{cb}.add(y_opt);
  3172. ASSERT_TRUE(succ);
  3173. HostTensorND host_y, host_y_opt;
  3174. auto func = graph->compile(
  3175. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3176. func->execute();
  3177. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3178. }
  3179. #endif
  3180. TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
  3181. auto cn = CompNode::load("xpu0");
  3182. HostTensorGenerator<dtype::Int8> gen;
  3183. auto graph = ComputingGraph::make();
  3184. graph->options().graph_opt_level = 0;
  3185. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3186. return opr::TypeCvt::make(
  3187. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  3188. };
  3189. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3190. return opr::TypeCvt::make(
  3191. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3192. dtype);
  3193. };
  3194. auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
  3195. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3196. };
  3197. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  3198. opr::ConvBias::Param param_conv_bias;
  3199. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  3200. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  3201. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3202. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3203. // dense
  3204. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3205. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3206. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3207. auto conv1 = opr::ConvBiasForward::make(
  3208. x, w1, b1, param_conv_bias, {},
  3209. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3210. // test Resize
  3211. auto shape_of = opr::GetVarShape::make(x);
  3212. auto subtensor = opr::Subtensor::make(
  3213. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3214. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3215. opr::Resize::Param param_resize;
  3216. param_resize.format = opr::Resize::Param::Format::NCHW;
  3217. auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
  3218. // test WarpPerspective
  3219. auto mat = mkcvarf32("mat", {2, 3, 3}),
  3220. warp = opr::WarpPerspectiveForward::make(
  3221. resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
  3222. opr::Pooling::Param pool_param;
  3223. pool_param.format = opr::Pooling::Param::Format::NCHW;
  3224. // test Pooling
  3225. auto pool = opr::Pooling::make(warp, pool_param);
  3226. // group
  3227. // icpg != 1 && ocpg != 1
  3228. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3229. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3230. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3231. auto conv2 = opr::ConvBiasForward::make(
  3232. pool, w2, b2, param_conv_bias, {},
  3233. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3234. auto add = opr::ElemwiseMultiType::make(
  3235. {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  3236. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  3237. auto y = opr::TypeCvt::make(add, dtype::Float32());
  3238. SymbolVar y_opt;
  3239. {
  3240. auto options = gopt::OptimizeForInferenceOptions{};
  3241. options.enable_nchw4();
  3242. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3243. }
  3244. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  3245. ASSERT_EQ(2u, nr_dimshuffle);
  3246. ASSERT_EQ(
  3247. opr::ConvBias::Param::Format::NCHW4,
  3248. find_opr<opr::ConvBias>(y_opt).param().format);
  3249. ASSERT_EQ(
  3250. opr::ResizeForward::Param::Format::NCHW4,
  3251. find_opr<opr::ResizeForward>(y_opt).param().format);
  3252. ASSERT_EQ(
  3253. opr::WarpPerspectiveForward::Param::Format::NCHW4,
  3254. find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
  3255. ASSERT_EQ(
  3256. opr::PoolingForward::Param::Format::NCHW4,
  3257. find_opr<opr::PoolingForward>(y_opt).param().format);
  3258. }
  3259. TEST(TestGoptInference, ConvertFormatNCHW4) {
  3260. HostTensorGenerator<> gen;
  3261. auto cn = CompNode::load("cpu0");
  3262. auto graph = ComputingGraph::make();
  3263. graph->options().graph_opt_level = 0;
  3264. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3265. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3266. };
  3267. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3268. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3269. };
  3270. auto x = mkvar("x", {2, 4, 16, 16});
  3271. // ConvBias test dense
  3272. opr::ConvBias::Param param_conv_bias;
  3273. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3274. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3275. auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
  3276. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  3277. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3278. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
  3279. auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  3280. // Convolution
  3281. opr::Convolution::Param param_conv;
  3282. param_conv.pad_h = param_conv.pad_w = 1;
  3283. param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
  3284. auto w3 = mkcvar("w3", {8, 8, 3, 3});
  3285. auto y = opr::Convolution::make(conv2, w3, param_conv);
  3286. SymbolVar y_opt;
  3287. {
  3288. auto options = gopt::OptimizeForInferenceOptions{};
  3289. options.enable_nchw4();
  3290. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3291. }
  3292. ASSERT_EQ(
  3293. opr::ConvBias::Param::Format::NCHW,
  3294. find_opr<opr::ConvBias>(y_opt).param().format);
  3295. graph->compile({{y_opt, {}}})
  3296. ->to_json()
  3297. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW4.json"));
  3298. HostTensorND host_y_opt, host_y;
  3299. auto func = graph->compile(
  3300. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3301. func->execute();
  3302. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3303. }
  3304. TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
  3305. REQUIRE_GPU(1);
  3306. auto cn = CompNode::load("gpu0");
  3307. cn.activate();
  3308. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  3309. HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
  3310. 1.2f, 127 * 127};
  3311. auto graph = ComputingGraph::make();
  3312. graph->options().graph_opt_level = 0;
  3313. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3314. return opr::TypeCvt::make(
  3315. opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name), dtype);
  3316. };
  3317. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  3318. return opr::TypeCvt::make(
  3319. opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name), dtype);
  3320. };
  3321. auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
  3322. // ConvBias test dense
  3323. opr::ConvBias::Param param_conv_bias;
  3324. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3325. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3326. auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3327. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3328. auto conv1 = opr::ConvBias::make(
  3329. x, w1, b1, param_conv_bias, {},
  3330. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3331. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3332. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3333. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3334. auto conv2 = opr::ConvBias::make(
  3335. conv1, w2, b2, param_conv_bias, {},
  3336. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  3337. auto y = opr::TypeCvt::make(conv2, dtype::Float32());
  3338. SymbolVar y_opt;
  3339. {
  3340. auto options = gopt::OptimizeForInferenceOptions{};
  3341. options.enable_nchw4();
  3342. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3343. }
  3344. ASSERT_EQ(
  3345. opr::ConvBias::Param::Format::NCHW4,
  3346. find_opr<opr::ConvBias>(y_opt).param().format);
  3347. graph->compile({{y_opt, {}}})
  3348. ->to_json()
  3349. ->writeto_fpath(
  3350. output_file("TestGoptInference.ConvertFormatNCHW4Ic3.json"));
  3351. HostTensorND host_y_opt, host_y;
  3352. auto func = graph->compile(
  3353. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3354. func->execute();
  3355. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3356. }
  3357. TEST(TestGoptInference, ConvertFormatNCHW88) {
  3358. HostTensorGenerator<> gen;
  3359. auto cn = CompNode::load("cpu0");
  3360. auto graph = ComputingGraph::make();
  3361. graph->options().graph_opt_level = 0;
  3362. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3363. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3364. };
  3365. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3366. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3367. };
  3368. auto host_x = gen({2, 3, 16, 16}, cn);
  3369. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3370. //! Hybrid nchw88 mode
  3371. opr::Convolution::Param param_conv;
  3372. param_conv.pad_h = param_conv.pad_w = 1;
  3373. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3374. conv1 = opr::Convolution::make(
  3375. x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3376. //! channel wise
  3377. opr::ConvBias::Param param_conv_bias;
  3378. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3379. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3380. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3381. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  3382. //! group
  3383. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3384. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3385. //! reduce
  3386. opr::Reduce::Param param_reduce1;
  3387. param_reduce1.axis = 2;
  3388. param_reduce1.mode = opr::Reduce::Mode::SUM;
  3389. opr::Reduce::Param param_reduce2;
  3390. param_reduce2.axis = 0;
  3391. param_reduce2.mode = opr::Reduce::Mode::MAX;
  3392. auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
  3393. opr::Reduce::make(conv3, param_reduce2);
  3394. auto shape_of = opr::GetVarShape::make(reduce1);
  3395. auto subtensor = opr::Subtensor::make(
  3396. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3397. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3398. opr::Resize::Param param_resize;
  3399. param_resize.format = opr::Resize::Param::Format::NCHW;
  3400. auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
  3401. auto mat = mkcvar("mat", {2, 3, 3}),
  3402. warp = opr::WarpPerspectiveForward::make(
  3403. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3404. auto b = mkvar("b", {1, 8, 1, 1}),
  3405. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  3406. //! Dense
  3407. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3408. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  3409. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  3410. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3411. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  3412. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  3413. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  3414. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  3415. SymbolVar y_opt;
  3416. {
  3417. auto options = gopt::OptimizeForInferenceOptions{};
  3418. options.enable_nchw88();
  3419. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3420. }
  3421. ASSERT_EQ(
  3422. opr::ConvBias::Param::Format::NCHW88,
  3423. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3424. ASSERT_EQ(
  3425. opr::ConvBias::Param::Format::NCHW88,
  3426. find_opr<opr::ConvBias>(y_opt).param().format);
  3427. graph->compile({{y_opt, {}}})
  3428. ->to_json()
  3429. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  3430. HostTensorND host_y_opt, host_y;
  3431. auto func = graph->compile(
  3432. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3433. func->execute();
  3434. //! meybe go to winograd in x86-32, so set error 1e-1
  3435. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3436. *host_x = *gen({2, 3, 32, 32}, cn);
  3437. func->execute();
  3438. //! meybe go to winograd in x86-32, so set error 1e-1
  3439. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3440. }
  3441. TEST(TestGoptInference, ConvertFormatNCHW44) {
  3442. HostTensorGenerator<> gen;
  3443. auto cn = CompNode::load("cpu0");
  3444. auto graph = ComputingGraph::make();
  3445. graph->options().graph_opt_level = 0;
  3446. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3447. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3448. };
  3449. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3450. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3451. };
  3452. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  3453. const DType& dtype) {
  3454. return opr::TypeCvt::make(
  3455. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3456. dtype);
  3457. };
  3458. auto host_x = gen({2, 3, 16, 16}, cn);
  3459. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3460. //! Hybrid nchw44 mode
  3461. opr::Convolution::Param param_conv;
  3462. param_conv.pad_h = param_conv.pad_w = 1;
  3463. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3464. conv1 = opr::Convolution::make(
  3465. x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3466. //! no supported hybrid nchw44
  3467. opr::ConvBias::Param param_conv_bias_pad0;
  3468. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  3469. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  3470. auto conv1_f1 = opr::ConvBias::make(
  3471. x, w1_f1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
  3472. auto conv1_add = conv1_f1 * conv1;
  3473. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  3474. //! s8 dense conv
  3475. opr::ConvBias::Param param_conv_bias;
  3476. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3477. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  3478. auto b1_2 = mkcvar_dtype("b1_2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  3479. auto conv_1_2 = opr::ConvBias::make(
  3480. conv_1_q8, w1_2, b1_2, param_conv_bias, {},
  3481. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  3482. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  3483. //! channel wise
  3484. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3485. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3486. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  3487. //! group
  3488. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3489. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3490. //! reduce
  3491. opr::Reduce::Param param_reduce1;
  3492. param_reduce1.axis = 1;
  3493. param_reduce1.mode = opr::Reduce::Mode::MIN;
  3494. opr::Reduce::Param param_reduce2;
  3495. param_reduce2.axis = 3;
  3496. param_reduce2.mode = opr::Reduce::Mode::SUM_SQR;
  3497. auto reduce1 = conv3 + opr::Reduce::make(conv3, param_reduce1) +
  3498. opr::Reduce::make(conv3, param_reduce2);
  3499. auto shape_of = opr::GetVarShape::make(reduce1);
  3500. auto subtensor = opr::Subtensor::make(
  3501. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3502. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3503. opr::Resize::Param param_resize;
  3504. param_resize.format = opr::Resize::Param::Format::NCHW;
  3505. auto resize = opr::ResizeForward::make(reduce1, subtensor * 2, param_resize);
  3506. auto mat = mkcvar("mat", {2, 3, 3}),
  3507. warp = opr::WarpPerspectiveForward::make(
  3508. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3509. auto b = mkvar("b", {1, 8, 1, 1}),
  3510. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  3511. //! Dense
  3512. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3513. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3514. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  3515. conv3_2 = opr::ConvBias::make(
  3516. elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
  3517. //! s8 group conv
  3518. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3519. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  3520. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3521. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  3522. conv3_3_q = opr::ConvBias::make(
  3523. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  3524. OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
  3525. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  3526. //! Dense
  3527. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3528. auto w4 = mkcvar("w4", {16, 32, 3, 3}), b4 = mkcvar("b4", {1, 16, 1, 1}),
  3529. conv4 = opr::ConvBias::make(
  3530. conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
  3531. auto w4_1 = mkcvar("w4_1", {16, 32, 1, 1}), b4_1 = mkcvar("b4_1", {2, 16, 4, 4}),
  3532. conv4_1 = opr::ConvBias::make(
  3533. conv3_3, w4_1, b4_1, param_conv_bias_pad0, {},
  3534. OperatorNodeConfig("conv4_1"));
  3535. auto conv4_add = conv4 + conv4_1;
  3536. auto w5 = mkcvar("w5", {6, 16, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3537. conv5 = opr::ConvBias::make(
  3538. conv4_add, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
  3539. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3540. y = opr::ConvBias::make(
  3541. conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
  3542. SymbolVar y_opt;
  3543. auto options = gopt::OptimizeForInferenceOptions{};
  3544. options.enable_fuse_conv_bias_nonlinearity();
  3545. options.enable_nchw44();
  3546. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3547. ASSERT_EQ(
  3548. opr::Convolution::Param::Format::NCHW44,
  3549. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3550. ASSERT_EQ(
  3551. opr::Convolution::Param::Format::NCHW,
  3552. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3553. ASSERT_EQ(
  3554. opr::Convolution::Param::Format::NCHW44,
  3555. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3556. ASSERT_EQ(
  3557. opr::Convolution::Param::Format::NCHW44,
  3558. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3559. ASSERT_EQ(
  3560. opr::Convolution::Param::Format::NCHW44,
  3561. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3562. ASSERT_EQ(
  3563. opr::Convolution::Param::Format::NCHW44,
  3564. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3565. //! nchw44 add the PaddingChannel pass, it will padding conv5 output
  3566. //! channel, so it will convert to nchw44 format
  3567. ASSERT_EQ(
  3568. opr::Convolution::Param::Format::NCHW44,
  3569. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3570. graph->compile({{y_opt, {}}})
  3571. ->to_json()
  3572. ->writeto_fpath(output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  3573. HostTensorND host_y_opt, host_y;
  3574. auto func = graph->compile(
  3575. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3576. func->execute();
  3577. //! meybe go to winograd in x86-32, so set error 1e-1
  3578. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3579. *host_x = *gen({2, 3, 32, 32}, cn);
  3580. func->execute();
  3581. //! meybe go to winograd in x86-32, so set error 1e-1
  3582. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3583. }
  3584. TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
  3585. HostTensorGenerator<> gen;
  3586. auto cn = CompNode::load("cpu0");
  3587. auto graph = ComputingGraph::make();
  3588. graph->options().graph_opt_level = 0;
  3589. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3590. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3591. };
  3592. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3593. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3594. };
  3595. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3596. auto host_x2 = gen({1, 1, 16, 16}, cn);
  3597. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3598. opr::Convolution::Param param_conv;
  3599. param_conv.pad_h = param_conv.pad_w = 1;
  3600. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3601. conv1 = opr::Convolution::make(x, w1, param_conv);
  3602. auto b = mkvar("b", {1, 1, 16, 16}),
  3603. elem0 = opr::Elemwise::make({conv1 + b + b}, opr::Elemwise::Param::Mode::RELU);
  3604. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  3605. conv2 = opr::Convolution::make(elem0, w2, param_conv);
  3606. auto b1 = mkvar("b1", {1}),
  3607. y = opr::Elemwise::make({conv2 + b1 + b}, opr::Elemwise::Param::Mode::RELU);
  3608. SymbolVar y_opt;
  3609. auto options = gopt::OptimizeForInferenceOptions{};
  3610. options.enable_nchw44();
  3611. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3612. ASSERT_EQ(
  3613. opr::Convolution::Param::Format::NCHW44,
  3614. find_opr<opr::Convolution>(y_opt).param().format);
  3615. graph->compile({{y_opt, {}}})
  3616. ->to_json()
  3617. ->writeto_fpath(output_file(
  3618. "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));
  3619. HostTensorND host_y_opt, host_y;
  3620. auto func = graph->compile(
  3621. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3622. func->execute();
  3623. //! meybe go to winograd in x86-32, so set error 1e-1
  3624. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3625. }
  3626. TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
  3627. HostTensorGenerator<> gen;
  3628. auto cn = CompNode::load("cpu0");
  3629. auto graph = ComputingGraph::make();
  3630. graph->options().graph_opt_level = 0;
  3631. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3632. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3633. };
  3634. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3635. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3636. opr::Convolution::Param param_conv;
  3637. param_conv.pad_h = param_conv.pad_w = 1;
  3638. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3639. conv1 = opr::Convolution::make(x, w1, param_conv);
  3640. auto y = opr::Reshape::make(conv1, {8, 16 * 16});
  3641. SymbolVar y_opt;
  3642. auto options = gopt::OptimizeForInferenceOptions{};
  3643. options.enable_nchw44();
  3644. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3645. ASSERT_EQ(
  3646. opr::Convolution::Param::Format::NCHW44,
  3647. find_opr<opr::Convolution>(y_opt).param().format);
  3648. graph->compile({{y_opt, {}}})
  3649. ->to_json()
  3650. ->writeto_fpath(
  3651. output_file("TestGoptInference.ConvertFormatNCHW44Reshape.json"));
  3652. HostTensorND host_y_opt, host_y;
  3653. auto func = graph->compile(
  3654. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3655. func->execute();
  3656. //! meybe go to winograd in x86-32, so set error 1e-1
  3657. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3658. }
  3659. TEST(TestGoptInference, ConvertFormatNCHW44GlobalPooling) {
  3660. HostTensorGenerator<> gen;
  3661. auto cn = CompNode::load("cpu0");
  3662. auto graph = ComputingGraph::make();
  3663. graph->options().graph_opt_level = 0;
  3664. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3665. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3666. };
  3667. auto host_x1 = gen({1, 4, 16, 16}, cn);
  3668. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3669. opr::Convolution::Param param_conv;
  3670. param_conv.stride_h = param_conv.stride_w = 1;
  3671. param_conv.pad_h = param_conv.pad_w = 1;
  3672. auto w1 = mkcvar("w1", {8, 4, 3, 3});
  3673. auto conv1 =
  3674. opr::Convolution::make(x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3675. auto conv_n = opr::GetVarShape::make(conv1, 0);
  3676. auto conv_c = opr::GetVarShape::make(conv1, 1);
  3677. auto conv_h = opr::GetVarShape::make(conv1, 2);
  3678. auto conv_w = opr::GetVarShape::make(conv1, 3);
  3679. auto hxw = conv_h * conv_w;
  3680. auto reshape_shape = opr::Concat::make({conv_n, conv_c, hxw}, 0);
  3681. auto reshape1 = opr::Reshape::make(conv1, reshape_shape);
  3682. opr::Reduce::Param param_reduce;
  3683. param_reduce.axis = 2;
  3684. param_reduce.mode = opr::Reduce::Mode::SUM;
  3685. auto reduce = opr::Reduce::make(reshape1, param_reduce);
  3686. auto reduce_remove_axis = opr::AxisAddRemove::make(
  3687. reduce, {opr::AxisAddRemove::AxisDesc::make_remove(2)});
  3688. auto hw_count = opr::GetVarShape::make(reshape1, 2);
  3689. auto fp32_hw_count = opr::TypeCvt::make(hw_count, dtype::Float32());
  3690. auto reduce_mean = reduce_remove_axis / fp32_hw_count;
  3691. auto global_pool = opr::AxisAddRemove::make(
  3692. reduce_mean, {opr::AxisAddRemove::AxisDesc::make_add(2),
  3693. opr::AxisAddRemove::AxisDesc::make_add(3)});
  3694. opr::Elemwise::Param elem_param;
  3695. elem_param.mode = opr::Elemwise::Param::Mode::RELU;
  3696. auto y = opr::Elemwise::make({global_pool}, elem_param);
  3697. SymbolVar y_opt;
  3698. auto options = gopt::OptimizeForInferenceOptions{};
  3699. options.enable_fuse_grain();
  3700. options.enable_nchw44();
  3701. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3702. ASSERT_EQ(
  3703. opr::AdaptivePooling::Param::Format::NCHW44,
  3704. find_opr<opr::AdaptivePooling>(y_opt).param().format);
  3705. graph->compile({{y_opt, {}}})
  3706. ->to_json()
  3707. ->writeto_fpath(output_file(
  3708. "TestGoptInference.ConvertFormatNCHW44GlobalPooling.json"));
  3709. HostTensorND host_y_opt, host_y;
  3710. auto func = graph->compile(
  3711. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3712. func->execute();
  3713. //! meybe go to winograd in x86-32, so set error 1e-1
  3714. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3715. }
  3716. TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
  3717. HostTensorGenerator<> gen;
  3718. auto cn = CompNode::load("cpu0");
  3719. auto graph = ComputingGraph::make();
  3720. graph->options().graph_opt_level = 0;
  3721. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3722. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3723. };
  3724. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3725. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3726. };
  3727. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  3728. const DType& dtype) {
  3729. return opr::TypeCvt::make(
  3730. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  3731. dtype);
  3732. };
  3733. auto host_x = gen({2, 3, 16, 16}, cn);
  3734. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3735. //! Hybrid nchw44 mode
  3736. opr::Convolution::Param param_conv;
  3737. param_conv.pad_h = param_conv.pad_w = 1;
  3738. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3739. conv1 = opr::Convolution::make(
  3740. x, w1, param_conv, {}, OperatorNodeConfig("conv1"));
  3741. param_conv.pad_h = param_conv.pad_w = 1;
  3742. //! no supported hybrid nchw44
  3743. opr::ConvBias::Param param_conv_bias_pad0;
  3744. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  3745. auto b1 = mkcvar("b1", {1, 8, 1, 1});
  3746. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  3747. auto conv1_f1 = opr::ConvBias::make(
  3748. x, w1_f1, b1, param_conv_bias_pad0, {}, OperatorNodeConfig("conv1_f1"));
  3749. //! hybrid dot
  3750. auto x_s = opr::TypeCvt::make(x, dtype::QuantizedS8(2.5f));
  3751. auto w1_3 = mkcvar_dtype("w1_3", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f));
  3752. auto conv1_3_q = opr::Convolution::make(
  3753. x_s, w1_3, param_conv, {},
  3754. OperatorNodeConfig{"conv1_3_q", cn, dtype::QuantizedS8{6.25f}});
  3755. auto conv1_3 = opr::TypeCvt::make(conv1_3_q, dtype::Float32());
  3756. auto conv1_add = conv1_f1 * conv1 * conv1_3;
  3757. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  3758. //! s8 dense conv
  3759. opr::ConvBias::Param param_conv_bias;
  3760. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3761. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  3762. auto conv_1_2 = opr::ConvBias::make(
  3763. conv_1_q8, w1_2, param_conv_bias, {},
  3764. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  3765. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  3766. //! channel wise
  3767. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3768. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3769. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  3770. //! group
  3771. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3772. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3773. auto shape_of = opr::GetVarShape::make(conv3);
  3774. auto subtensor = opr::Subtensor::make(
  3775. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3776. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3777. opr::Resize::Param param_resize;
  3778. param_resize.format = opr::Resize::Param::Format::NCHW;
  3779. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  3780. auto mat = mkcvar("mat", {2, 3, 3}),
  3781. warp = opr::WarpPerspectiveForward::make(
  3782. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3783. auto b = mkvar("b", {1, 8, 1, 1}),
  3784. elem = opr::Elemwise::make({warp + b}, opr::Elemwise::Param::Mode::RELU);
  3785. //! Dense
  3786. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3787. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3788. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}), b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  3789. conv3_2 = opr::ConvBias::make(
  3790. elem, w3_2, b3_2, param_conv_bias, {}, OperatorNodeConfig("conv3_2"));
  3791. //! s8 group conv
  3792. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3793. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  3794. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3795. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  3796. conv3_3_q = opr::ConvBias::make(
  3797. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  3798. OperatorNodeConfig{"conv_3_3_q", cn, dtype::QuantizedS8{6.25f}});
  3799. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  3800. //! Dense
  3801. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3802. auto w4 = mkcvar("w4", {4, 32, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  3803. conv4 = opr::ConvBias::make(
  3804. conv3_3, w4, b4, param_conv_bias, {}, OperatorNodeConfig("conv4"));
  3805. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3806. conv5 = opr::ConvBias::make(
  3807. conv4, w5, b5, param_conv_bias, {}, OperatorNodeConfig("conv5"));
  3808. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3809. y = opr::ConvBias::make(
  3810. conv5, w6, b6, param_conv_bias, {}, OperatorNodeConfig("conv6"));
  3811. SymbolVar y_opt;
  3812. auto options = gopt::OptimizeForInferenceOptions{};
  3813. options.enable_fuse_conv_bias_nonlinearity();
  3814. options.enable_nchw44_dot();
  3815. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3816. ASSERT_EQ(
  3817. opr::Convolution::Param::Format::NCHW44,
  3818. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3819. ASSERT_EQ(
  3820. opr::Convolution::Param::Format::NCHW44_DOT,
  3821. find_opr<opr::Convolution>(y_opt, "conv1_3_q").param().format);
  3822. ASSERT_EQ(
  3823. opr::Convolution::Param::Format::NCHW,
  3824. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3825. ASSERT_EQ(
  3826. opr::Convolution::Param::Format::NCHW44_DOT,
  3827. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3828. ASSERT_EQ(
  3829. opr::Convolution::Param::Format::NCHW44,
  3830. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3831. ASSERT_EQ(
  3832. opr::Convolution::Param::Format::NCHW44_DOT,
  3833. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3834. ASSERT_EQ(
  3835. opr::Convolution::Param::Format::NCHW44,
  3836. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3837. //! nchw44-dot default add PaddingChannel pass, so it output channel will be
  3838. //! padding to times of 4, so it can't be used as nchw44 format.
  3839. ASSERT_EQ(
  3840. opr::Convolution::Param::Format::NCHW44,
  3841. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3842. graph->compile({{y_opt, {}}})
  3843. ->to_json()
  3844. ->writeto_fpath(
  3845. output_file("TestGoptInference.ConvertFormatNCHW44_DOT.json"));
  3846. HostTensorND host_y_opt, host_y;
  3847. auto func = graph->compile(
  3848. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3849. func->execute();
  3850. //! meybe go to winograd in x86-32, so set error 1e-1
  3851. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3852. *host_x = *gen({2, 3, 32, 32}, cn);
  3853. func->execute();
  3854. //! meybe go to winograd in x86-32, so set error 1e-1
  3855. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3856. }
  3857. TEST(TestGoptInference, ConvertFormatCD4GroupOneConv) {
  3858. // hwcd4 is only supported in naive handle
  3859. NaiveMegDNNHandleScope naive_megdnn_handle;
  3860. HostTensorGenerator<> gen;
  3861. auto cn = CompNode::load("cpu0");
  3862. auto graph = ComputingGraph::make();
  3863. graph->options().graph_opt_level = 0;
  3864. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3865. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3866. };
  3867. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3868. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name);
  3869. };
  3870. auto x = mkvar("x", {1, 3, 128, 128});
  3871. // ConvBias
  3872. opr::ConvBias::Param param_conv_bias;
  3873. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3874. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3875. auto w1 = mkcvar("w1", {1, 16, 3, 3, 3}), b1 = mkcvar("b1", {1, 16, 1, 1});
  3876. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  3877. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3878. // Convolution
  3879. opr::Convolution::Param param_conv;
  3880. param_conv.pad_h = param_conv.pad_w = 1;
  3881. param_conv.sparse = opr::Convolution::Param::Sparse::GROUP;
  3882. auto w3 = mkcvar("w3", {1, 16, 16, 3, 3});
  3883. auto y = opr::Convolution::make(conv1, w3, param_conv);
  3884. SymbolVar y_opt;
  3885. {
  3886. auto options = gopt::OptimizeForInferenceOptions{};
  3887. options.enable_nhwcd4();
  3888. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3889. }
  3890. HostTensorND host_y_opt, host_y;
  3891. auto func = graph->compile(
  3892. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3893. func->execute();
  3894. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3895. }
  3896. #if MGB_CUDA
  3897. TEST(TestGoptInference, PreProcessCase0) {
  3898. REQUIRE_GPU(1);
  3899. HostTensorGenerator<dtype::Quantized8Asymm, RandomDistribution::UNIFORM> gen(
  3900. dt_quint8(0), dt_quint8(50), 1, 128, 1234);
  3901. auto cn = CompNode::load("gpu0");
  3902. auto graph = ComputingGraph::make();
  3903. graph->options().graph_opt_level = 0;
  3904. size_t n = 1;
  3905. size_t c = 3;
  3906. size_t h = 16;
  3907. size_t w = 16;
  3908. auto host_x1 = gen({n, c, h, w}, cn);
  3909. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3910. auto x_q8 = opr::TypeCvt::make(x, dtype::QuantizedS8(1.f), cn);
  3911. auto zero = DTypeScalar(dtype::QuantizedS8(1.f));
  3912. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3913. auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3914. auto paded_x = opr::Concat::make({x_q8, pad_channel_tensor}, 1, cn)
  3915. .reshape({n, 1, 4, h, w});
  3916. auto result = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3917. auto y = result;
  3918. SymbolVar y_opt;
  3919. auto options = gopt::OptimizeForInferenceOptions{};
  3920. options.enable_fuse_preprocess();
  3921. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3922. graph->compile({{y_opt, {}}})
  3923. ->to_json()
  3924. ->writeto_fpath(output_file("TestGoptInference.PreProcessCase0.json"));
  3925. HostTensorND host_y_opt, host_y;
  3926. auto func = graph->compile(
  3927. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3928. func->execute();
  3929. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3930. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3931. }
  3932. TEST(TestGoptInference, PreProcessCase1) {
  3933. REQUIRE_GPU(1);
  3934. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3935. auto cn = CompNode::load("gpu0");
  3936. auto graph = ComputingGraph::make();
  3937. graph->options().graph_opt_level = 0;
  3938. size_t n = 1;
  3939. size_t c = 3;
  3940. size_t h = 16;
  3941. size_t w = 16;
  3942. auto host_x1 = gen({n, c, h, w}, cn);
  3943. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3944. auto x_u8 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  3945. auto x_s8 = x_u8 - 128;
  3946. auto zero = DTypeScalar(dtype::Float32());
  3947. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3948. auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3949. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3950. .reshape({n, 1, 4, h, w});
  3951. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3952. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3953. auto y = result;
  3954. SymbolVar y_opt;
  3955. auto options = gopt::OptimizeForInferenceOptions{};
  3956. options.enable_fuse_preprocess();
  3957. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3958. graph->compile({{y_opt, {}}})
  3959. ->to_json()
  3960. ->writeto_fpath(output_file("TestGoptInference.PreProcessCase1.json"));
  3961. HostTensorND host_y_opt, host_y;
  3962. auto func = graph->compile(
  3963. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  3964. func->execute();
  3965. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3966. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3967. }
  3968. TEST(TestGoptInference, WarpAndPreProcessCase0) {
  3969. REQUIRE_GPU(1);
  3970. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3971. auto cn = CompNode::load("gpu0");
  3972. auto graph = ComputingGraph::make();
  3973. graph->options().graph_opt_level = 0;
  3974. size_t n = 1;
  3975. size_t c = 3;
  3976. size_t h = 16;
  3977. size_t w = 16;
  3978. auto host_x1 = gen({n, h, w, c}, cn);
  3979. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3980. auto mat_host =
  3981. std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
  3982. warp_perspective_mat_gen(*mat_host, n, h, w);
  3983. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  3984. opr::WarpPerspective::Param warp_param;
  3985. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  3986. auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  3987. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  3988. auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  3989. auto x_s8 = x_u8 - 128;
  3990. auto zero = DTypeScalar(dtype::Float32());
  3991. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3992. auto pad_channel_tensor = opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3993. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3994. .reshape({n, 1, 4, h, w});
  3995. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3996. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3997. auto y = result;
  3998. SymbolVar y_opt;
  3999. auto options = gopt::OptimizeForInferenceOptions{};
  4000. options.enable_fuse_preprocess();
  4001. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  4002. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  4003. ASSERT_EQ(
  4004. opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
  4005. find_opr<opr::WarpPerspective>(y_opt).param().format);
  4006. graph->compile({{y_opt, {}}})
  4007. ->to_json()
  4008. ->writeto_fpath(
  4009. output_file("TestGoptInference.WarpAndPreProcessCase0.json"));
  4010. HostTensorND host_y_opt, host_y;
  4011. auto func = graph->compile(
  4012. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  4013. func->execute();
  4014. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  4015. }
  4016. TEST(TestGoptInference, PreProcessCaseAutopadNCHW64) {
  4017. REQUIRE_GPU(1);
  4018. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  4019. auto cn = CompNode::load("gpu0");
  4020. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  4021. auto sm_ver = prop.major * 10 + prop.minor;
  4022. if (sm_ver < 75) {
  4023. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  4024. "expected: %d)\n",
  4025. sm_ver, 75);
  4026. return;
  4027. }
  4028. auto graph = ComputingGraph::make();
  4029. graph->options().graph_opt_level = 0;
  4030. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4031. return opr::TypeCvt::make(
  4032. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4033. dtype);
  4034. };
  4035. size_t n = 2;
  4036. size_t c = 3;
  4037. size_t h = 32;
  4038. size_t w = 32;
  4039. auto host_x1 = gen({n, c, h, w}, cn);
  4040. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  4041. auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  4042. auto x_s8_fp32 = x_u8_fp32 - 128;
  4043. auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
  4044. auto weight = mkcvar("weight", {16, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4045. bias = mkcvar("bias", {1, 16, 1, 1}, dtype::QuantizedS32(6.25f));
  4046. opr::ConvBias::Param param;
  4047. param.format = opr::ConvBias::Param::Format::NCHW;
  4048. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4049. param.stride_h = param.stride_w = 2;
  4050. param.pad_h = param.pad_w = 1;
  4051. auto result = opr::ConvBias::make(
  4052. x_s8, weight, bias, param, {},
  4053. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4054. auto y = result;
  4055. SymbolVar y_opt;
  4056. auto options = gopt::OptimizeForInferenceOptions{};
  4057. options.enable_nchw64();
  4058. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  4059. graph->compile({{y_opt, {}}})
  4060. ->to_json()
  4061. ->writeto_fpath(
  4062. output_file("TestGoptInference.PreProcessCaseAutopadNCHW64.json"));
  4063. HostTensorND host_y_opt, host_y;
  4064. auto func = graph->compile(
  4065. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  4066. func->execute();
  4067. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  4068. ASSERT_TRUE(
  4069. find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
  4070. opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
  4071. }
  4072. TEST(TestGoptInference, PreProcessCaseAutopadNHWC) {
  4073. REQUIRE_GPU(1);
  4074. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  4075. auto cn = CompNode::load("gpu0");
  4076. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  4077. auto sm_ver = prop.major * 10 + prop.minor;
  4078. if (sm_ver < 75) {
  4079. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  4080. "expected: %d)\n",
  4081. sm_ver, 75);
  4082. return;
  4083. }
  4084. auto graph = ComputingGraph::make();
  4085. graph->options().graph_opt_level = 0;
  4086. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4087. return opr::TypeCvt::make(
  4088. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4089. dtype);
  4090. };
  4091. size_t n = 2;
  4092. size_t c = 3;
  4093. size_t h = 32;
  4094. size_t w = 32;
  4095. auto host_x1 = gen({n, c, h, w}, cn);
  4096. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  4097. auto x_u8_fp32 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  4098. auto x_s8_fp32 = x_u8_fp32 - 128;
  4099. auto x_s8 = opr::TypeCvt::make(x_s8_fp32, dtype::QuantizedS8(2.5f), cn);
  4100. auto host_val = std::make_shared<HostTensorND>(cn, dtype::QuantizedS8(2.5f));
  4101. TensorShape scalar{1, 1, 1, 1};
  4102. host_val->resize(scalar);
  4103. auto ptr = host_val->raw_ptr();
  4104. size_t size_bytes =
  4105. TensorLayout{scalar, dtype::QuantizedS8(2.5f)}.span().dist_byte();
  4106. std::memset(ptr, 0, size_bytes);
  4107. auto padding = opr::ImmutableTensor::make(*graph, *host_val);
  4108. padding = opr::Broadcast::make(padding, {n, 1, h, w});
  4109. auto padded_x = opr::Concat::make({x_s8, padding}, 1);
  4110. auto nhwc_x = opr::Dimshuffle::make(padded_x, {0, 2, 3, 1});
  4111. auto weight = mkcvar("weight", {16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4112. bias = mkcvar("bias", {1, 1, 1, 16}, dtype::QuantizedS32(6.25f));
  4113. opr::ConvBias::Param param;
  4114. param.format = opr::ConvBias::Param::Format::NHWC;
  4115. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4116. param.stride_h = param.stride_w = 2;
  4117. param.pad_h = param.pad_w = 1;
  4118. auto result = opr::ConvBias::make(
  4119. nhwc_x, weight, bias, param, {},
  4120. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4121. auto y = opr::TypeCvt::make(result, dtype::Float32());
  4122. SymbolVar y_opt;
  4123. auto options = gopt::OptimizeForInferenceOptions{};
  4124. options.enable_fuse_preprocess();
  4125. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  4126. graph->compile({{y_opt, {}}})
  4127. ->to_json()
  4128. ->writeto_fpath(
  4129. output_file("TestGoptInference.PreProcessCaseAutopadNHWC.json"));
  4130. HostTensorND host_y_opt, host_y;
  4131. auto func = graph->compile(
  4132. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  4133. func->execute();
  4134. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  4135. ASSERT_TRUE(
  4136. find_opr<opr::RelayoutFormat>(y_opt).param().mode ==
  4137. opr::RelayoutFormat::Param::Mode::NCHW_NCHW4);
  4138. }
  4139. TEST(TestGoptInference, WarpAndPreProcessCase1) {
  4140. REQUIRE_GPU(1);
  4141. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  4142. auto cn = CompNode::load("gpu0");
  4143. auto graph = ComputingGraph::make();
  4144. graph->options().graph_opt_level = 0;
  4145. size_t n = 1;
  4146. size_t c = 3;
  4147. size_t h = 16;
  4148. size_t w = 16;
  4149. auto host_x1 = gen({n, h, w, c}, cn);
  4150. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  4151. auto mat_host =
  4152. std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3}, dtype::Float32());
  4153. warp_perspective_mat_gen(*mat_host, n, h, w);
  4154. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  4155. opr::WarpPerspective::Param warp_param;
  4156. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  4157. auto x_warp = opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  4158. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  4159. auto result = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  4160. auto y = result;
  4161. SymbolVar y_opt;
  4162. auto options = gopt::OptimizeForInferenceOptions{};
  4163. options.enable_fuse_preprocess();
  4164. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  4165. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  4166. ASSERT_EQ(
  4167. opr::WarpPerspective::Param::Format::NHWC_NCHW,
  4168. find_opr<opr::WarpPerspective>(y_opt).param().format);
  4169. graph->compile({{y_opt, {}}})
  4170. ->to_json()
  4171. ->writeto_fpath(
  4172. output_file("TestGoptInference.WarpAndPreProcessCase1.json"));
  4173. HostTensorND host_y_opt, host_y;
  4174. auto func = graph->compile(
  4175. {make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)});
  4176. func->execute();
  4177. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  4178. }
  4179. #if CUDA_VERSION >= 10020
  4180. TEST(TestGoptInference, FoldingConvDimshuffle) {
  4181. REQUIRE_GPU(1);
  4182. auto cn = CompNode::load("gpu0");
  4183. cn.activate();
  4184. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4185. HostTensorGenerator<dtype::Int8> gen;
  4186. auto graph = ComputingGraph::make();
  4187. graph->options().graph_opt_level = 0;
  4188. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4189. return opr::TypeCvt::make(
  4190. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4191. };
  4192. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4193. return opr::TypeCvt::make(
  4194. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4195. dtype);
  4196. };
  4197. auto nchw42nchw = [](SymbolVar x) {
  4198. auto xshp = opr::GetVarShape::make(x);
  4199. auto cv = [&x](int v) { return x.make_scalar(v); };
  4200. auto sub = [&xshp, &cv](int idx) {
  4201. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  4202. };
  4203. auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  4204. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  4205. auto y1 = opr::Reshape::make(y0, tshp0);
  4206. return y1;
  4207. };
  4208. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  4209. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4210. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  4211. opr::ConvBias::Param param;
  4212. param.format = opr::ConvBias::Param::Format::NCHW4;
  4213. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4214. param.stride_h = param.stride_w = 2;
  4215. param.pad_h = param.pad_w = 1;
  4216. auto y = opr::ConvBias::make(
  4217. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4218. y = opr::TypeCvt::make(y, dtype::Float32());
  4219. y = nchw42nchw(y);
  4220. SymbolVar y_fuse, y_non_fuse;
  4221. unpack_vector(
  4222. gopt::GraphOptimizer{}
  4223. .add_pass<gopt::ShuffleShuffleRemovePass>()
  4224. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  4225. .add_pass<gopt::ParamFusePass>()
  4226. .apply({{y}})
  4227. .endpoint_vars(),
  4228. y_fuse);
  4229. gopt::modify_opr_algo_strategy_inplace(
  4230. {y_fuse},
  4231. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  4232. graph->compile({{y_fuse, {}}})
  4233. ->to_json()
  4234. ->writeto_fpath(
  4235. output_file("TestGoptInference.FoldingConvDimshuffle.json"));
  4236. ASSERT_EQ(
  4237. opr::ConvBias::Param::Format::NCHW4_NCHW,
  4238. find_opr<opr::ConvBias>(y_fuse).param().format);
  4239. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  4240. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4241. HostTensorND host_y_fuse, host_y_non_fuse;
  4242. auto func = graph->compile(
  4243. {make_callback_copy(y_fuse, host_y_fuse),
  4244. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4245. func->execute();
  4246. }
  4247. TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NCHW32) {
  4248. REQUIRE_GPU(1);
  4249. auto cn = CompNode::load("gpu0");
  4250. cn.activate();
  4251. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4252. HostTensorGenerator<dtype::Int8> gen;
  4253. auto graph = ComputingGraph::make();
  4254. graph->options().graph_opt_level = 0;
  4255. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4256. return opr::TypeCvt::make(
  4257. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4258. };
  4259. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4260. return opr::TypeCvt::make(
  4261. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4262. dtype);
  4263. };
  4264. auto nchw42nchw32 = [](SymbolVar x) {
  4265. auto xshp = opr::GetVarShape::make(x);
  4266. auto cv = [&x](int v) { return x.make_scalar(v); };
  4267. auto sub = [&xshp, &cv](int idx) {
  4268. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  4269. };
  4270. auto tshp0 = opr::Concat::make(
  4271. {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0),
  4272. tshp1 = opr::Concat::make(
  4273. {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0);
  4274. auto y0 = opr::Reshape::make(x, tshp0);
  4275. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5});
  4276. auto y2 = opr::Reshape::make(y1, tshp1);
  4277. return y2;
  4278. };
  4279. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  4280. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4281. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  4282. opr::ConvBias::Param param;
  4283. param.format = opr::ConvBias::Param::Format::NCHW4;
  4284. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4285. param.stride_h = param.stride_w = 2;
  4286. param.pad_h = param.pad_w = 1;
  4287. auto y = opr::ConvBias::make(
  4288. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4289. y = nchw42nchw32(y);
  4290. y = opr::TypeCvt::make(y, dtype::Float32());
  4291. SymbolVar y_fuse, y_non_fuse;
  4292. unpack_vector(
  4293. gopt::GraphOptimizer{}
  4294. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  4295. .add_pass<gopt::ParamFusePass>()
  4296. .apply({{y}})
  4297. .endpoint_vars(),
  4298. y_fuse);
  4299. gopt::modify_opr_algo_strategy_inplace(
  4300. {y_fuse},
  4301. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  4302. graph->compile({{y_fuse, {}}})
  4303. ->to_json()
  4304. ->writeto_fpath(output_file(
  4305. "TestGoptInference.FoldingConvDimshuffleNCHW4NCHW32.json"));
  4306. ASSERT_EQ(
  4307. opr::ConvBias::Param::Format::NCHW4_NCHW32,
  4308. find_opr<opr::ConvBias>(y_fuse).param().format);
  4309. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  4310. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4311. HostTensorND host_y_fuse, host_y_non_fuse;
  4312. auto func = graph->compile(
  4313. {make_callback_copy(y_fuse, host_y_fuse),
  4314. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4315. func->execute();
  4316. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  4317. }
  4318. TEST(TestGoptInference, FoldingConvDimshuffleNCHW32NCHW4) {
  4319. REQUIRE_GPU(1);
  4320. auto cn = CompNode::load("gpu0");
  4321. cn.activate();
  4322. REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
  4323. HostTensorGenerator<dtype::Int8> gen;
  4324. auto graph = ComputingGraph::make();
  4325. graph->options().graph_opt_level = 0;
  4326. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4327. return opr::TypeCvt::make(
  4328. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4329. };
  4330. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4331. return opr::TypeCvt::make(
  4332. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4333. dtype);
  4334. };
  4335. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  4336. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4337. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  4338. w1 = mkcvar("w1", {16, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  4339. b1 = mkcvar("b1", {1, 4, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  4340. opr::ConvBias::Param param;
  4341. param.format = opr::ConvBias::Param::Format::NCHW4;
  4342. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4343. param.stride_h = param.stride_w = 2;
  4344. param.pad_h = param.pad_w = 1;
  4345. auto y = opr::ConvBias::make(
  4346. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4347. param.stride_h = param.stride_w = 1;
  4348. y = opr::ConvBias::make(
  4349. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4350. y = opr::TypeCvt::make(y, dtype::Float32());
  4351. SymbolVar y_fuse, y_non_fuse;
  4352. {
  4353. auto options = gopt::OptimizeForInferenceOptions{};
  4354. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  4355. unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
  4356. }
  4357. graph->compile({{y_fuse, {}}})
  4358. ->to_json()
  4359. ->writeto_fpath(output_file(
  4360. "TestGoptInference.FoldingConvDimshuffleNCHW32NCHW4.json"));
  4361. ASSERT_EQ(1u, find_opr_num<opr::Dimshuffle>(y_fuse));
  4362. bool found = false;
  4363. cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
  4364. if (!found && opr->same_type<opr::ConvBias>()) {
  4365. opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
  4366. if (cb->param().format == opr::ConvBias::Param::Format::NCHW32_NCHW4)
  4367. found = true;
  4368. }
  4369. }}.add(y_fuse.node()->owner_opr());
  4370. EXPECT_TRUE(found);
  4371. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4372. HostTensorND host_y_fuse, host_y_non_fuse;
  4373. auto func = graph->compile(
  4374. {make_callback_copy(y_fuse, host_y_fuse),
  4375. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4376. func->execute();
  4377. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  4378. }
  4379. TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NHWC) {
  4380. REQUIRE_GPU(1);
  4381. auto cn = CompNode::load("gpu0");
  4382. cn.activate();
  4383. REQUIRE_CUDA_COMPUTE_CAPABILITY(7, 5);
  4384. HostTensorGenerator<dtype::Int8> gen;
  4385. auto graph = ComputingGraph::make();
  4386. graph->options().graph_opt_level = 0;
  4387. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4388. return opr::TypeCvt::make(
  4389. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4390. };
  4391. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4392. return opr::TypeCvt::make(
  4393. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4394. dtype);
  4395. };
  4396. auto x = mkvar("x", {32, 4, 23, 40}, dtype::QuantizedS8(2.5f)),
  4397. w = mkcvar("w", {32, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  4398. b = mkcvar("b", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  4399. w1 = mkcvar("w1", {32, 32, 3, 3}, dtype::QuantizedS4(1.234f)),
  4400. b1 = mkcvar("b1", {1, 32, 1, 1}, dtype::QuantizedS32(12.34567f * 1.234f));
  4401. opr::ConvBias::Param param;
  4402. param.format = opr::ConvBias::Param::Format::NCHW;
  4403. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4404. param.stride_h = param.stride_w = 1;
  4405. param.pad_h = param.pad_w = 1;
  4406. auto y = opr::ConvBias::make(
  4407. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(12.34567f)});
  4408. y = opr::TypeCvt::make(y, dtype::QuantizedS4(12.34567f));
  4409. y = opr::ConvBias::make(
  4410. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS4(56.71234f)});
  4411. y = opr::TypeCvt::make(y, dtype::Float32());
  4412. SymbolVar y_fuse, y_non_fuse;
  4413. {
  4414. auto options = gopt::OptimizeForInferenceOptions{};
  4415. options.enable_nchw64();
  4416. unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
  4417. }
  4418. using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
  4419. S strategy = S::PROFILE;
  4420. gopt::modify_opr_algo_strategy_inplace({y_fuse}, strategy);
  4421. HostTensorND host_y_fuse;
  4422. auto func1 = graph->compile({make_callback_copy(y_fuse, host_y_fuse)});
  4423. func1->execute();
  4424. graph->compile({{y_fuse, {}}})
  4425. ->to_json()
  4426. ->writeto_fpath(output_file(
  4427. "TestGoptInference.FoldingConvDimshuffleNCHW4NHWC.json"));
  4428. size_t nr_dimshuffle = find_opr_num<opr::TypeCvt>(y_fuse);
  4429. ASSERT_EQ(2u, nr_dimshuffle);
  4430. bool found = false;
  4431. cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
  4432. if (!found && opr->same_type<opr::ConvBias>()) {
  4433. opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
  4434. if (cb->param().format == opr::ConvBias::Param::Format::NCHW4_NHWC)
  4435. found = true;
  4436. }
  4437. }}.add(y_fuse.node()->owner_opr());
  4438. EXPECT_TRUE(found);
  4439. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(), y_non_fuse);
  4440. gopt::modify_opr_algo_strategy_inplace({y_non_fuse}, strategy);
  4441. HostTensorND host_y_non_fuse;
  4442. auto func2 = graph->compile({make_callback_copy(y_non_fuse, host_y_non_fuse)});
  4443. func2->execute();
  4444. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  4445. }
  4446. #endif
  4447. TEST(TestGoptInference, PaddingChannels) {
  4448. REQUIRE_GPU(1);
  4449. auto cn = CompNode::load("gpu0");
  4450. cn.activate();
  4451. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4452. HostTensorGenerator<dtype::Int8> gen;
  4453. auto graph = ComputingGraph::make();
  4454. graph->options().graph_opt_level = 0;
  4455. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4456. return opr::TypeCvt::make(
  4457. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4458. };
  4459. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4460. return opr::TypeCvt::make(
  4461. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4462. dtype);
  4463. };
  4464. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4465. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4466. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4467. opr::ConvBias::Param param;
  4468. param.format = opr::ConvBias::Param::Format::NCHW;
  4469. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4470. param.stride_h = param.stride_w = 1;
  4471. param.pad_h = param.pad_w = 1;
  4472. auto y = opr::ConvBias::make(
  4473. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4474. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4475. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4476. auto y1 = opr::ConvBias::make(
  4477. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4478. auto w2 = mkcvar("w2", {20, 24, 3, 3}, dtype::QuantizedS8(2.5f)),
  4479. b2 = mkcvar("b2", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4480. auto y2 = opr::ConvBias::make(
  4481. y1, w2, b2, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4482. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  4483. auto y3 = opr::ElemwiseMultiType::make(
  4484. {y, y2}, {ElemMultiMode::QFUSE_ADD_RELU},
  4485. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  4486. y3 = opr::TypeCvt::make(y3, dtype::Float32());
  4487. SymbolVar y3_pad;
  4488. unpack_vector(
  4489. gopt::GraphOptimizer{}
  4490. .add_pass(gopt::PaddingChannelPass::make(
  4491. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4492. .apply({{y3}})
  4493. .endpoint_vars(),
  4494. y3_pad);
  4495. ASSERT_EQ(y3_pad.node()->shape()[1], y3.node()->shape()[1]);
  4496. SmallVector<cg::OperatorNodeBase*> oprs;
  4497. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4498. if (opr->same_type<opr::ConvBias>()) {
  4499. oprs.push_back(opr);
  4500. }
  4501. };
  4502. cg::DepOprIter{cb}.add(y3_pad.node()->owner_opr());
  4503. ASSERT_EQ(oprs.size(), 3);
  4504. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4505. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  4506. ASSERT_EQ(oprs[2]->output(0)->shape()[1], 32);
  4507. HostTensorND t1, t2;
  4508. auto func1 = graph->compile({make_callback_copy(y3, t1)});
  4509. func1->execute();
  4510. auto func2 = graph->compile({make_callback_copy(y3_pad, t2)});
  4511. func2->execute();
  4512. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4513. }
  4514. TEST(TestGoptInference, ConcatAfterPaddingChannels) {
  4515. REQUIRE_GPU(1);
  4516. auto cn = CompNode::load("gpu0");
  4517. cn.activate();
  4518. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4519. HostTensorGenerator<dtype::Int8> gen;
  4520. auto graph = ComputingGraph::make();
  4521. graph->options().graph_opt_level = 0;
  4522. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4523. return opr::TypeCvt::make(
  4524. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4525. };
  4526. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4527. return opr::TypeCvt::make(
  4528. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4529. dtype);
  4530. };
  4531. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4532. w = mkcvar("w", {18, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4533. b = mkcvar("b", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  4534. opr::ConvBias::Param param;
  4535. param.format = opr::ConvBias::Param::Format::NCHW;
  4536. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4537. param.stride_h = param.stride_w = 1;
  4538. param.pad_h = param.pad_w = 1;
  4539. auto y = opr::ConvBias::make(
  4540. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4541. auto w1 = mkcvar("w1", {18, 18, 3, 3}, dtype::QuantizedS8(2.5f)),
  4542. b1 = mkcvar("b1", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  4543. auto y1 = opr::ConvBias::make(
  4544. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4545. // concat at batch dim
  4546. auto y2 = opr::Concat::make({y, y1}, 0);
  4547. y2 = opr::TypeCvt::make(y2, dtype::Float32());
  4548. SymbolVar y2_pad;
  4549. unpack_vector(
  4550. gopt::GraphOptimizer{}
  4551. .add_pass(gopt::PaddingChannelPass::make(
  4552. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4553. .apply({{y2}})
  4554. .endpoint_vars(),
  4555. y2_pad);
  4556. ASSERT_EQ(y2_pad.node()->shape()[1], y2.node()->shape()[1]);
  4557. SmallVector<cg::OperatorNodeBase*> oprs;
  4558. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4559. if (opr->same_type<opr::ConvBias>()) {
  4560. oprs.push_back(opr);
  4561. }
  4562. };
  4563. cg::DepOprIter{cb}.add(y2_pad.node()->owner_opr());
  4564. ASSERT_EQ(oprs.size(), 2);
  4565. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4566. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  4567. HostTensorND t1, t2;
  4568. auto func1 = graph->compile({make_callback_copy(y2, t1)});
  4569. func1->execute();
  4570. auto func2 = graph->compile({make_callback_copy(y2_pad, t2)});
  4571. func2->execute();
  4572. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4573. }
  4574. TEST(TestGoptInference, PaddingChannelsWithPooling) {
  4575. REQUIRE_GPU(1);
  4576. auto cn = CompNode::load("gpu0");
  4577. cn.activate();
  4578. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  4579. HostTensorGenerator<dtype::Int8> gen;
  4580. auto graph = ComputingGraph::make();
  4581. graph->options().graph_opt_level = 0;
  4582. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4583. return opr::TypeCvt::make(
  4584. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4585. };
  4586. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4587. return opr::TypeCvt::make(
  4588. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4589. dtype);
  4590. };
  4591. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4592. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4593. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4594. opr::ConvBias::Param param;
  4595. param.format = opr::ConvBias::Param::Format::NCHW;
  4596. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4597. param.stride_h = param.stride_w = 1;
  4598. param.pad_h = param.pad_w = 1;
  4599. auto y = opr::ConvBias::make(
  4600. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4601. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4602. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4603. auto y1 = opr::ConvBias::make(
  4604. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4605. opr::Pooling::Param pool_param;
  4606. pool_param.format = opr::Pooling::Param::Format::NCHW;
  4607. y1 = opr::Pooling::make(y1, pool_param);
  4608. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  4609. SymbolVar y1_pad;
  4610. unpack_vector(
  4611. gopt::GraphOptimizer{}
  4612. .add_pass(gopt::PaddingChannelPass::make(
  4613. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4614. .apply({{y1}})
  4615. .endpoint_vars(),
  4616. y1_pad);
  4617. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  4618. SmallVector<cg::OperatorNodeBase*> oprs;
  4619. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4620. if (opr->same_type<opr::Pooling>()) {
  4621. oprs.push_back(opr);
  4622. }
  4623. };
  4624. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  4625. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4626. HostTensorND t1, t2;
  4627. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  4628. func1->execute();
  4629. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  4630. func2->execute();
  4631. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4632. }
  4633. // FIXME replace cpu with gpu to enable gpu validation
  4634. TEST(TestGoptInference, PaddingChannelsWithWarpPerspective) {
  4635. auto cn = CompNode::load("cpu0");
  4636. HostTensorGenerator<dtype::Int8> gen;
  4637. auto graph = ComputingGraph::make();
  4638. graph->options().graph_opt_level = 0;
  4639. auto mkvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4640. return opr::TypeCvt::make(
  4641. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name), dtype);
  4642. };
  4643. auto mkcvar = [&](const char* name, const TensorShape& shp, const DType& dtype) {
  4644. return opr::TypeCvt::make(
  4645. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)).rename(name),
  4646. dtype);
  4647. };
  4648. std::shared_ptr<HostTensorND> mat =
  4649. std::make_shared<HostTensorND>(cn, TensorShape{16, 3, 3}, dtype::Float32());
  4650. warp_perspective_mat_gen(*mat, 16, 14, 14);
  4651. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  4652. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  4653. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  4654. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  4655. opr::ConvBias::Param param;
  4656. param.format = opr::ConvBias::Param::Format::NCHW;
  4657. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  4658. param.stride_h = param.stride_w = 1;
  4659. param.pad_h = param.pad_w = 1;
  4660. auto y = opr::ConvBias::make(
  4661. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4662. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  4663. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  4664. auto y1 = opr::ConvBias::make(
  4665. y, w1, b1, param, {}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  4666. opr::WarpPerspective::Param warp_param;
  4667. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  4668. y1 = opr::WarpPerspective::make(y1, mat_var, TensorShape{14, 14}, warp_param);
  4669. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  4670. SymbolVar y1_pad;
  4671. unpack_vector(
  4672. gopt::GraphOptimizer{}
  4673. .add_pass(gopt::PaddingChannelPass::make(
  4674. cg::GraphCommonOptimizeOptions::LayoutTransform::NCHW64))
  4675. .apply({{y1}})
  4676. .endpoint_vars(),
  4677. y1_pad);
  4678. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  4679. SmallVector<cg::OperatorNodeBase*> oprs;
  4680. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  4681. if (opr->same_type<opr::WarpPerspective>()) {
  4682. oprs.push_back(opr);
  4683. }
  4684. };
  4685. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  4686. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  4687. HostTensorND t1, t2;
  4688. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  4689. func1->execute();
  4690. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  4691. func2->execute();
  4692. MGB_ASSERT_TENSOR_EQ(t1, t2);
  4693. }
  4694. #endif
  4695. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}