You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

adaptive_pooling.py 3.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. from abc import abstractmethod
  10. from typing import Tuple, Union
  11. from ..functional import adaptive_avg_pool2d, adaptive_max_pool2d
  12. from ..tensor import Parameter, Tensor
  13. from .module import Module
  14. class _AdaptivePoolNd(Module):
  15. def __init__(
  16. self, oshp: Union[Tuple[int, int], int, Tensor],
  17. ):
  18. super(_AdaptivePoolNd, self).__init__()
  19. self.oshp = oshp
  20. @abstractmethod
  21. def forward(self, inp):
  22. pass
  23. class AdaptiveMaxPool2d(_AdaptivePoolNd):
  24. r"""Applies a 2D max adaptive pooling over an input.
  25. For instance, given an input of the size :math:`(N, C, H, W)` and
  26. an output shape :math:`(OH, OW)`, this layer generates the output of
  27. the size :math:`(N, C, OH, OW)` through a process described as:
  28. .. math::
  29. \begin{aligned}
  30. out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1}
  31. \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
  32. \text{stride[1]} \times w + n)
  33. \end{aligned}
  34. Kernel_size and stride can be inferred from input shape and out shape:
  35. padding: (0, 0)
  36. stride: (floor(IH / OH), floor(IW / OW))
  37. kernel_size: (IH - (OH - 1) * stride_h, IW - (OW - 1) * stride_w)
  38. Examples:
  39. .. testcode::
  40. import numpy as np
  41. import megengine as mge
  42. import megengine.module as M
  43. m = M.AdaptiveMaxPool2d((2, 2))
  44. inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
  45. oup = m(inp)
  46. print(oup.numpy())
  47. Outputs:
  48. .. testoutput::
  49. [[[[5. 7.]
  50. [13. 15.]]]]
  51. """
  52. def forward(self, inp):
  53. return adaptive_max_pool2d(inp, self.oshp)
  54. class AdaptiveAvgPool2d(_AdaptivePoolNd):
  55. r"""Applies a 2D average pooling over an input.
  56. For instance, given an input of the size :math:`(N, C, H, W)` and
  57. an output shape :math:`(OH, OW)`, this layer generates the output of
  58. the size :math:`(N, C, OH, OW)` through a process described as:
  59. .. math::
  60. out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
  61. input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
  62. Kernel_size and stride can be inferred from input shape and out shape:
  63. padding: (0, 0)
  64. stride: (floor(IH / OH), floor(IW / OW))
  65. kernel_size: (IH - (OH - 1) * stride_h, IW - (OW - 1) * stride_w)
  66. Examples:
  67. .. testcode::
  68. import numpy as np
  69. import megengine as mge
  70. import megengine.module as M
  71. m = M.AdaptiveAvgPool2d((2, 2))
  72. inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
  73. oup = m(inp)
  74. print(oup.numpy())
  75. Outputs:
  76. .. testoutput::
  77. [[[[2.5 4.5]
  78. [10.5 12.5]]]]
  79. """
  80. def forward(self, inp):
  81. return adaptive_avg_pool2d(inp, self.oshp)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台