You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_equivalence.py 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import copy
  10. import itertools
  11. import os
  12. from typing import Callable
  13. import numpy as np
  14. import pytest
  15. import megengine as mge
  16. import megengine.module.init as init
  17. from megengine.core import tensor
  18. from megengine.functional import cross_entropy_with_softmax, relu
  19. from megengine.jit import trace
  20. from megengine.module import Linear, Module
  21. from megengine.optimizer import SGD, Optimizer
  22. from megengine.test import assertTensorClose
  23. batch_size = 64
  24. data_shape = (batch_size, 2)
  25. label_shape = (batch_size,)
  26. def minibatch_generator():
  27. while True:
  28. inp_data = np.zeros((batch_size, 2))
  29. label = np.zeros(batch_size, dtype=np.int32)
  30. for i in range(batch_size):
  31. # [x0, x1], sampled from U[-1, 1]
  32. inp_data[i, :] = np.random.rand(2) * 2 - 1
  33. label[i] = 0 if np.prod(inp_data[i]) < 0 else 1
  34. yield inp_data.astype(np.float32), label.astype(np.int32)
  35. class SimpleNet(Module):
  36. def __init__(self):
  37. self.mid_layers = 14
  38. self.num_class = 2
  39. super().__init__()
  40. self.fc0 = Linear(self.num_class, self.mid_layers, bias=True)
  41. fan_in, _ = init.calculate_fan_in_and_fan_out(self.fc0.weight)
  42. init.normal_(self.fc0.weight, std=np.sqrt(float(1.0) / fan_in))
  43. init.zeros_(self.fc0.bias)
  44. self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True)
  45. fan_in, _ = init.calculate_fan_in_and_fan_out(self.fc1.weight)
  46. init.normal_(self.fc1.weight, std=np.sqrt(float(1.0) / fan_in))
  47. init.zeros_(self.fc1.bias)
  48. self.fc2 = Linear(self.mid_layers, self.num_class, bias=True)
  49. fan_in, _ = init.calculate_fan_in_and_fan_out(self.fc2.weight)
  50. init.normal_(self.fc2.weight, std=np.sqrt(float(1.0) / fan_in))
  51. init.zeros_(self.fc2.bias)
  52. def forward(self, x):
  53. x = self.fc0(x)
  54. x = relu(x) # Should use tanh but it's not stable now.
  55. x = self.fc1(x)
  56. x = relu(x) # Should use tanh but it's not stable now.
  57. x = self.fc2(x)
  58. return x
  59. def generate_eager_step(net: Module, opt_factory: Callable[[Module], Optimizer]):
  60. data_inp = tensor(np.zeros(data_shape), dtype=np.float32)
  61. label_inp = tensor(np.zeros(label_shape), dtype=np.int32)
  62. opt = opt_factory(net)
  63. def step(data, label):
  64. opt.zero_grad()
  65. data_inp.set_value(data)
  66. label_inp.set_value(label)
  67. pred = net(data_inp)
  68. loss = cross_entropy_with_softmax(pred, label_inp)
  69. opt.backward(loss)
  70. opt.step()
  71. return loss.numpy()[0]
  72. return step
  73. def generate_static_step(net: Module, opt_factory: Callable[[Module], Optimizer]):
  74. data = tensor(np.zeros(data_shape), dtype=np.float32)
  75. label = tensor(np.zeros(label_shape), dtype=np.int32)
  76. opt = opt_factory(net)
  77. # Save state to reset parameters later.
  78. state = copy.deepcopy(net.state_dict())
  79. # Evaluate network in eager mode once.
  80. pred = net(data)
  81. loss = cross_entropy_with_softmax(pred, label)
  82. opt.zero_grad()
  83. grads = opt.backward(loss)
  84. f = mge.graph.compile(loss, grads)
  85. def step(data, label):
  86. opt.zero_grad()
  87. out = f(data=data, label=label)
  88. opt.step()
  89. loss = out[0][0]
  90. return loss
  91. # Reset parameters.
  92. net.load_state_dict(state)
  93. return step
  94. def generate_trace_step(
  95. net: Module, opt_factory: Callable[[Module], Optimizer], enable: bool
  96. ):
  97. opt = opt_factory(net)
  98. @trace
  99. def train(data, label):
  100. pred = net(data)
  101. loss = cross_entropy_with_softmax(pred, label)
  102. opt.zero_grad()
  103. opt.backward(loss)
  104. return loss
  105. train.enabled = enable
  106. def step(data, label):
  107. out = train(data, label)
  108. opt.step()
  109. loss = out[0][0]
  110. return loss
  111. return step
  112. def assert_network_equvilence(nets):
  113. net_state = [net.state_dict() for net in nets]
  114. for state in net_state[1:]:
  115. assert len(net_state[0]) == len(state)
  116. for k, v in net_state[0].items():
  117. for state in net_state[1:]:
  118. assert k in state
  119. assertTensorClose(v, state[k])
  120. @pytest.mark.slow
  121. def test_eager_equvilence():
  122. eager_net = SimpleNet()
  123. trace_enable_net = copy.deepcopy(eager_net)
  124. trace_disable_net = copy.deepcopy(eager_net)
  125. opt_factory = lambda net: SGD(
  126. net.parameters(requires_grad=True), lr=0.01, momentum=0.01
  127. )
  128. estep = generate_eager_step(eager_net, opt_factory)
  129. te_step = generate_trace_step(trace_enable_net, opt_factory, True)
  130. td_step = generate_trace_step(trace_disable_net, opt_factory, False)
  131. assert_network_equvilence([eager_net, trace_enable_net, trace_disable_net])
  132. # Use hard code number as limit, may increase if needed.
  133. for data, label in itertools.islice(minibatch_generator(), 200):
  134. eloss = estep(data, label)
  135. te_loss = te_step(data, label)
  136. td_loss = td_step(data, label)
  137. assertTensorClose(eloss, te_loss)
  138. assertTensorClose(eloss, td_loss)
  139. assert_network_equvilence(
  140. [eager_net, trace_enable_net, trace_disable_net,]
  141. )

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台