|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028 |
- /**
- * \file dnn/test/arm_common/conv_bias_multi_thread.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "test/arm_common/fixture.h"
- #include "test/common/benchmarker.h"
- #include "test/common/conv_bias.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
-
- std::vector<conv_bias::TestArg> get_int8_quint8_conv_bias_args(
- std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
- bool no_nonlinemode) {
- using namespace conv_bias;
- using Param = param::ConvBias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h,
- size_t kernel, size_t stride, NLMode nlmode) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- if (!no_pad) {
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- } else {
- param.pad_h = 0;
- param.pad_w = 0;
- }
- param.nonlineMode = nlmode;
-
- args.emplace_back(param, TensorShape{n, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- if (!no_bias) {
- args.emplace_back(param, TensorShape{n, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
-
- for (size_t n : {1, 2}) {
- for (auto nlmode : nonlinemode) {
- for (size_t ic : {1, 3, 7}) {
- for (size_t oc : {1, 3, 7}) {
- for (size_t size : {4, 6, 8, 14, 16, 18}) {
- for (size_t kern : kernel) {
- pack(n, oc, ic, size, size, kern, stride, nlmode);
- }
- }
- }
- }
- }
- }
- return args;
- }
- std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
- std::vector<size_t> kernel_vec, size_t stride, bool no_pad = false,
- bool no_bias = false, bool no_nonlinemode = false,
- bool is_input_nchw = false, bool is_nchw44_dot = false,
- bool support_full_bias = false, bool support_sigmoid = false,
- bool only_no_bias = false) {
- using namespace conv_bias;
- using NLMode = param::ConvBias::NonlineMode;
-
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w,
- size_t kernel, size_t stride, size_t group, NLMode nlmode,
- megdnn::BiasMode bias_mode, int any_pad = -1) {
- constexpr int pack_c = 4;
- const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
- auto oc_per_group = oc / group;
- auto ic_per_group = ic / group;
- bool ok_group = (oc % group == 0 && ic % group == 0) &&
- oc_per_group % pack_c == 0 && oc_per_group > 0 &&
- ic_per_group > 0;
- bool nchw_disable = group > 1 || ic_per_group >= 4;
- bool nchw44_disable = ic_per_group % pack_c != 0;
- bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
- if (!(ok_group) || invalid_pad) {
- return;
- }
- if ((is_input_nchw && nchw_disable) ||
- (!is_input_nchw && nchw44_disable)) {
- return;
- }
-
- size_t kernel_h = kernel;
- size_t kernel_w = kernel;
- param::ConvBias param;
- if (!is_nchw44_dot) {
- param.format = param::ConvBias::Format::NCHW44;
- } else {
- param.format = param::ConvBias::Format::NCHW44_DOT;
- }
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = pad;
- param.pad_w = pad;
- param.nonlineMode = nlmode;
-
- auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
- auto weight_tensor_shape = TensorShape{
- oc / pack_c, ic / pack_c, kernel_h, kernel_w, pack_c, pack_c};
- auto bias_tensor_shape = TensorShape{};
- if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
- } else if (bias_mode == megdnn::BiasMode::BIAS) {
- bias_tensor_shape = {n, oc / pack_c,
- (h + 2 * pad - kernel) / stride + 1,
- (w + 2 * pad - kernel) / stride + 1, pack_c};
- }
- if (group == 1) {
- param.sparse = param::ConvBias::Sparse::DENSE;
- } else if (group > 1 && ic / group == 1 && oc / group == 1) {
- megdnn_assert(0, "not support channel wise");
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{group / pack_c, 1, 1,
- kernel_h, kernel_w, pack_c};
- } else if (group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
- ic_per_group % pack_c == 0 && ic / group > 0) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{group,
- oc_per_group / pack_c,
- ic_per_group / pack_c,
- kernel_h,
- kernel_w,
- pack_c,
- pack_c};
- }
- if (is_input_nchw) {
- src_tensor_shape = TensorShape{n, ic, h, w};
- weight_tensor_shape =
- TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
- }
- args.emplace_back(param, src_tensor_shape, weight_tensor_shape,
- bias_tensor_shape);
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
- if (support_sigmoid) {
- nonlinemode.emplace_back(NLMode::SIGMOID);
- }
-
- std::vector<megdnn::BiasMode> bias_mode;
- if (!only_no_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::BROADCAST_CHANNEL_BIAS);
- if (no_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
- }
- } else {
- bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
- }
- if (support_full_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::BIAS);
- }
- for (auto bias : bias_mode)
- for (auto nlmode : nonlinemode)
- for (size_t n : {1,2})
- for (size_t kernel : kernel_vec)
- for (size_t oc : {4, 12})
- for (size_t ic : {1, 3, 4, 12})
- for (size_t h : {3, 5, 12})
- for (size_t w : {7, 16, 23}) {
- for (size_t group = 1;
- group <=
- std::min(std::min(oc, ic), 4_z);
- ++group) {
- pack(n, oc, ic, h, w, kernel, stride,
- group, nlmode, bias);
- }
- }
- return args;
- }
-
- std::vector<conv_bias::TestArg> get_nchw44_channel_wise_args(
- std::vector<size_t> kernel, size_t stride, bool no_bias,
- bool no_nonlinemode, bool no_full_bias) {
- using namespace conv_bias;
- using Param = param::ConvBias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel,
- size_t stride, NLMode nlmode, bool pad) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- if (pad) {
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- } else {
- param.pad_h = 0;
- param.pad_w = 0;
- }
- param.nonlineMode = nlmode;
- param.format = param::ConvBias::Format::NCHW44;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- args.emplace_back(param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{});
- if (!no_bias) {
- args.emplace_back(param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{1, group, 1, 1, 4});
- }
- if (!no_full_bias) {
- args.emplace_back(
- param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{n, group,
- (h + 2 * param.pad_w - kernel) / stride + 1,
- (w + 2 * param.pad_w - kernel) / stride + 1,
- 4});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
- for (size_t n : {1, 2}) {
- for (auto nlmode : nonlinemode) {
- for (bool pad : {true}) {
- for (size_t group : {1, 2, 4, 7, 128}) {
- for (size_t size : {4, 6, 7, 9, 15, 40}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode,
- pad);
- }
- }
- }
- }
- for (bool pad : {false}) {
- for (size_t group : {1, 2, 7, 128}) {
- for (size_t size : {7, 9, 15, 40}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode,
- pad);
- }
- }
- }
- }
- }
- }
- return args;
- }
-
- void checker_conv_bias_qint8x8x8(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_qint8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
-
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {});
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_quint8x8x8(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- UniformIntRNG rng(0, 255);
- checker.set_dtype(0, dtype::Quantized8Asymm(0.2f, 100))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, 120))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, 110))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_quint8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
-
- NormalRNG rng(128.f);
- checker.set_rng(0, &rng).set_rng(1, &rng);
- checker.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
- .set_dtype(2, dtype::QuantizedS32(1.2 * 1.3))
- .set_dtype(4, {});
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_int8x8x32_multi(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int32());
- checker.set_dtype(4, dtype::Int32());
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
-
- /**********************************F32 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_LARGE_GROUP) {
- check_conv_bias(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), "F32DIRECT_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_SMALL_GROUP) {
- check_conv_bias(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), "F32DIRECT_SMALL_GROUP");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K7) {
- check_conv_bias(get_nchw44_conv_bias_args({7}, 1, false, true, true,
- false, false, false),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K2K3) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3}, 1, false, false, false,
- false, false, true, true),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K5) {
- check_conv_bias(get_nchw44_conv_bias_args({5}, 1, false, false, false,
- false, false, true, true),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S2) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
- false, false, false, true, true),
- handle(), "F32_CONV_NCHW44_DIRECT");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_LARGE_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "F32STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_SMALL_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "F32STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_LARGE_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "F32STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_SMALL_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "F32STRD2_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
- false, true),
- handle(), "F32_CONV_NCHW_NCHW44");
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false,
- false, true),
- handle(), "F32_CONV_NCHW_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE1_FP32_NCHW44_1) {
- check_conv_bias(
- get_nchw44_channel_wise_args({2, 3}, 1, false, false, false),
- handle(), "F32_CHANNEL_WISE_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE1_FP32_NCHW44_2) {
- check_conv_bias(get_nchw44_channel_wise_args({5}, 1, false, false, false),
- handle(), "F32_CHANNEL_WISE_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE2_FP32_NCHW44) {
- check_conv_bias(
- get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, false),
- handle(), "F32_CHANNEL_WISE_NCHW44");
- }
-
- /**********************************F16 direct************************/
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_LARGE_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), rng, "F16DIRECT_LARGE_GROUP", 0.03);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_SMALL_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), rng, "F16DIRECT_SMALL_GROUP", 0.03);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_LARGE_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
- handle(), rng, "F16STRD1_LARGE_GROUP", 0.03);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_SMALL_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
- handle(), rng, "F16STRD1_SMALL_GROUP", 0.03);
- }
- #endif
-
- /**********************************algo 8816 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_LARGE_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
- "I8816DIRECT_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_SMALL_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
- "I8816DIRECT_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
- "I8816STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
- "I8816STRD2_SMALL_GROUP");
- }
-
- /**********************************algo 8-8-32 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "S8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "S8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "S8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "S8STRD2_SMALL_GROUP");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT1_NCHW44) {
- checker_conv_bias_int8x8x32_multi(
- get_nchw44_channel_wise_args({2, 3, 5}, 1, false, true, true),
- handle(), "S8_CHAN_WISE_STRD1_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT2_NCHW44) {
- checker_conv_bias_int8x8x32_multi(
- get_nchw44_channel_wise_args({2, 3, 5}, 2, false, true, true),
- handle(), "S8_CHAN_WISE_STRD2_NCHW44");
- }
-
- /********************************qint8 direct******************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8STRD2_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44_8832) {
- checker_conv_bias_qint8x8x32(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, true),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44_8832) {
- checker_conv_bias_qint8x8x32(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, true),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8_NCHW44_DIRECT");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT1_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_channel_wise_args({2, 3, 5}, 1, false, false, true),
- handle(), "S8_CHAN_WISE_STRD1_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT2_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, true),
- handle(), "S8_CHAN_WISE_STRD2_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_NCHW_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false,
- true),
- handle(), "S8_CONV_NCHW_NCHW44");
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false,
- true),
- handle(), "S8_CONV_NCHW_NCHW44");
- }
-
- /*****************************quint8 direct****************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "QU8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "QU8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "QU8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "QU8STRD2_SMALL_GROUP");
- }
-
- /****************************dot qint8 direct*************************/
- #if __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_DOT_NCHW_NCHW44) {
- auto args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false,
- true);
- for (auto&& arg : args) {
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- }
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8_NCHW_NCHW44");
-
- args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false,
- true);
- for (auto&& arg : args) {
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- }
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8_NCHW_NCHW44");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTS8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTS8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTS8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTS8STRD2_SMALL_GROUP");
- }
-
- /****************************dot 8-8-32 direct*************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_LARGE_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTS8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_SMALL_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTS8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_LARGE_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTS8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_SMALL_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTS8STRD2_SMALL_GROUP");
- }
- /******************************dot quint8*****************************/
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTU8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTU8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(
- get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTU8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(
- get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTU8STRD2_SMALL_GROUP");
- }
-
- /******************************dot quint8x8x32***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTU8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTU8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTU8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTU8STRD2_SMALL_GROUP");
- }
-
- /******************************dot int8x8x8 nchw44 ***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_Q8x8x8) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 1);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_Q8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x32(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_int8x8x32_multi(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_Q8x8x8) {
- using namespace conv_bias;
- //! test qint8x8x8
- std::vector<TestArg> args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 2);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_Q8x8x32) {
- using namespace conv_bias;
- //! test qint8x8x8
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_qint8x8x32(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_8x8x32) {
- using namespace conv_bias;
- //! test qint8x8x8
- std::vector<TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, true, true);
- for (auto&& arg : args)
- arg.param.format = param::ConvBias::Format::NCHW44_DOT;
- checker_conv_bias_int8x8x32_multi(args, handle(), "ARMDOTS8DIRECT_NCHW44");
- }
-
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_NCHW44) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
- Checker<ConvBiasForward> checker(handle());
- check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4,
- param::ConvBias::Format::NCHW44);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:6:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_NCHW44) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
- Checker<ConvBiasForward> checker(handle());
- check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4,
- param::ConvBias::Format::NCHW44);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(4);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:5:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:4:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
-
- Checker<ConvBiasForward> checker(handle());
-
- auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
- param::ConvBias param, Handle* handle) {
- megdnn_assert(param.format == param::ConvBias::Format::NCHW);
- auto winograd_preprocess_opr =
- handle->create_operator<WinogradFilterPreprocess>();
- winograd_preprocess_opr->param().output_block_size = m;
- TensorLayout filter_transform_layout;
- winograd_preprocess_opr->deduce_layout(tensors[1].layout,
- filter_transform_layout);
- size_t winograd_preprocess_workspace_in_bytes =
- winograd_preprocess_opr->get_workspace_in_bytes(
- tensors[1].layout, filter_transform_layout);
-
- auto conv_bias_opr = handle->create_operator<ConvBias>();
- conv_bias_opr->param() = param;
- conv_bias_opr->param().format = param::ConvBias::Format::NCHW_WINOGRAD;
- conv_bias_opr->param().output_block_size = m;
- size_t conv_bias_workspace_in_bytes =
- conv_bias_opr->get_workspace_in_bytes(
- tensors[0].layout, filter_transform_layout,
- tensors[2].layout, tensors[3].layout, tensors[4].layout,
- nullptr);
-
- WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
- conv_bias_workspace_in_bytes,
- winograd_preprocess_workspace_in_bytes});
- wb.set(malloc(wb.total_size_in_bytes()));
-
- TensorND filter_transform_tensor(wb.get(0),
- std::move(filter_transform_layout));
- winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
- wb.get_workspace(2));
- conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
- tensors[3], tensors[4], nullptr,
- wb.get_workspace(1));
-
- free(wb.ptr());
- };
-
- auto run = [&checker, &extra_impl](
- Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- const float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(extra_impl,
- std::placeholders::_1, m,
- arg.param, handle));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- run(handle(), args, {6}, dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32(), 1e-3f);
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
- run(handle(), args, {6}, dtype::Float16(), dtype::Float16(),
- dtype::Float16(), dtype::Float16(), 0.35f);
- #endif
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_PREPROCESS_NCHW44) {
- using namespace conv_bias;
- std::vector<TestArg> nchw44_args = get_nchw44_conv_bias_args({3}, 1);
-
- Checker<ConvBiasForward> checker(handle());
-
- auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
- param::ConvBias param, Handle* handle) {
- megdnn_assert(param.format == param::ConvBias::Format::NCHW44);
- auto winograd_preprocess_opr =
- handle->create_operator<WinogradFilterPreprocess>();
- winograd_preprocess_opr->param().output_block_size = m;
- winograd_preprocess_opr->param().format = param::MatrixMul::Format::MK4;
- TensorLayout filter_transform_layout;
- winograd_preprocess_opr->deduce_layout(tensors[1].layout,
- filter_transform_layout);
- size_t winograd_preprocess_workspace_in_bytes =
- winograd_preprocess_opr->get_workspace_in_bytes(
- tensors[1].layout, filter_transform_layout);
-
- auto conv_bias_opr = handle->create_operator<ConvBias>();
- conv_bias_opr->param() = param;
- conv_bias_opr->param().format =
- param::ConvBias::Format::NCHW44_WINOGRAD;
- conv_bias_opr->param().output_block_size = m;
- size_t conv_bias_workspace_in_bytes =
- conv_bias_opr->get_workspace_in_bytes(
- tensors[0].layout, filter_transform_layout,
- tensors[2].layout, tensors[3].layout, tensors[4].layout,
- nullptr);
-
- WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
- conv_bias_workspace_in_bytes,
- winograd_preprocess_workspace_in_bytes});
- wb.set(malloc(wb.total_size_in_bytes()));
-
- TensorND filter_transform_tensor(wb.get(0),
- std::move(filter_transform_layout));
- winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
- wb.get_workspace(2));
- conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
- tensors[3], tensors[4], nullptr,
- wb.get_workspace(1));
- free(wb.ptr());
- };
-
- auto run = [&checker, &extra_impl](
- Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- const float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(extra_impl,
- std::placeholders::_1, m,
- arg.param, handle));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- run(handle(), nchw44_args, {2, 6}, dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32(), 1e-3f);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_1) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_first_half(args.begin(),
- args.begin() + args.size() / 2);
- run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_second_half(args.begin() + args.size() / 2,
- args.end());
- run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
- run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8,
- 0.25);
- }
- #endif
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_INT8) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args =
- get_quantized_winograd_mk_packed_args(8);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_GROUPMODE) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> quantized_args =
- get_int8_nchw44_args(3, 4, false, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_F32_MK4_4x16";
- #else
- const char* matmul_name = "ARMV7_F32_MK4_4x8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
- std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
- dtype::QuantizedS8(0.01887994f),
- dtype::QuantizedS32(0.41113496f * 0.01887994f),
- dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
- epsilon);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32_GROUPMODE) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_F32_MK4_4x16";
- #else
- const char* matmul_name = "ARMV7_F32_MK4_4x8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
- std::vector<TestArg> quantized_args =
- get_int8_nchw44_args(3, 4, true, true);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
- dtype::QuantizedS8(0.01887994f),
- dtype::QuantizedS32(0.41113496f * 0.01887994f),
- dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
- epsilon);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
- check_winograd_fp16("1:2:32", checker, args, NULL, 0.08);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_1) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_2) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25);
- }
- //! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but
- //! it will pass when run single testcase
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:6:32", checker, args, rng, 0.3);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_1) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward> checker(handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_2) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward> checker(handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- #endif
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8);
- Checker<ConvBiasForward> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8);
- }
-
- void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle,
- RNG* rng, float epsilon, DType type0, DType type1,
- DType type2, DType type3, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, type0);
- checker.set_dtype(1, type1);
- checker.set_dtype(2, type2);
- checker.set_dtype(4, type3);
- checker.set_epsilon(epsilon);
- if (NULL != rng) {
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
- }
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- // clang-format off
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) {
- #define cb(name) \
- check_conv_bias( \
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \
- handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1) {
- #define cb(name) \
- check_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \
- handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
- #undef cb
- }
-
- #if __ARM_FEATURE_DOTPROD
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, \
- false, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_S8x8x32_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- true, false, true, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- true, false, true, false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CONV1x1_QUANTIZEDSYM_MK4_DOT) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 1, true, true, false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 1, true, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name); \
- checker_conv_bias( \
- get_nchw44_conv_bias_args({1}, 1, true, true, true, false, true, \
- false, false, true), \
- handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(), \
- dtype::Int32(), {}, name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:AARCH32_INT8_MK4_8X4X4_DOTPROD");
- #endif
- #undef cb
- }
- #endif
-
- // clang-format on
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM) {
- NormalRNG rng(128.f);
-
- #define cb(name) \
- checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); \
- checker_conv_bias( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
- #endif
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name); \
- checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
- &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name); \
- checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
- &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16");
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8");
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16");
- #endif
- #undef cb
- }
- #endif
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16) {
- using namespace conv_bias;
-
- param::ConvBias cur_param;
-
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, false, false);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- NormalRNG rng(1);
- #define cb(name) \
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{}, \
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, \
- name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F16_K8X24X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_F16_K4X16X1");
- #endif
- #undef cb
- }
- #endif
-
- void checker_conv_bias_mul_int8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int32());
- checker.set_dtype(4, dtype::Int32());
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
-
- UniformIntRNG rng{-50, 50};
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- #if !__ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({2, 5, 7}, 2, false, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({3, 4, 6}, 1, false, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
-
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({3, 4, 6}, 2), handle(), &rng, \
- epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({2, 5, 7}, 1), handle(), &rng, \
- epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- #if MEGDNN_AARCH64
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({3}, 1), handle(), &rng, \
- epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #undef cb
- }
- #endif
-
- #endif
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, true, true);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
-
- #if MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
- {2, 4, 7}, 1, false, false, false, false, false, true,true);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
- #endif
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
- {3, 5, 6}, 2, false, false, false, false, false, true, true);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
- #endif
- }
-
- /***************************** Conv1x1 Algo Test ***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32K8X12X1:24");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32:48");
- #endif
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, false, false);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32_MK4_K8X12X1:24");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32_MK4_PACK_4X12:24");
- #endif
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_NO_PACK_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, false, false);
- std::vector<conv_bias::TestArg> args_of_4;
- for (auto&& arg : args) {
- if (arg.src.shape[2] * arg.src.shape[3] % 4 == 0) {
- args_of_4.push_back(arg);
- }
- }
- #if MEGDNN_AARCH64
- check_conv_bias(args_of_4, handle(), "CONV1x1:AARCH64_F32_MK4_4x16:24");
- #elif MEGDNN_ARMV7
- check_conv_bias(args_of_4, handle(), "CONV1x1:ARMV7_F32_MK4_4x8:48");
- #endif
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F16) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- NormalRNG rng(1);
- #if MEGDNN_AARCH64
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
- "CONV1x1:AARCH64_F16_K8X24X1:48");
- #elif MEGDNN_ARMV7
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
- "CONV1x1:AARCH32_F16_K4X16X1:24");
- #endif
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDSYM) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:24");
- #else
- cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:48");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:48");
- #endif
- #undef cb
- }
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDASYM) {
- NormalRNG rng(128.f);
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:48");
- #else
- cb("CONV1x1:AARCH64_QUINT8_K8X8X8:24");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("CONV1x1:ARMV7_QUINT8_K4X8X8:48");
- #endif
- #undef cb
- }
- #endif
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUINT8x8x32) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
- epsilon, dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:24");
- #else
- cb("CONV1x1:AARCH64_QUINT8_K8X8X8:48");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH32_QUINT8_K4X8X4:48");
- #endif
- cb("CONV1x1:ARMV7_QUINT8_K4X8X8:24");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_1X1_S1_INT8x8x16) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
- epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, \
- dtype::Int16{}, name);
-
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X16_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X16_K4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X16_K4X8X8:24");
- cb("CONV1x1:ARMV7_INT8X8X16_K4X2X16:48");
- #endif
- cb("CONV1x1:ARM_COMMON_INT8X8X16:48");
- #undef cb
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:48");
- #else
- cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:24");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH32_INT8_K6X8X4:48");
- #endif
- cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:24");
- #endif
-
- #if MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_K4X2X16:48");
- #endif
- #undef cb
- }
-
- #ifndef __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_MK4) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
- #endif
- #undef cb
-
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({1}, 1, true, false, false), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
- #endif
- #undef cb
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|