You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #include <chrono>
  16. #include <memory>
  17. #include <random>
  18. #include <unordered_map>
  19. using namespace lite;
  20. namespace {
  21. class CheckAllocator : public lite::Allocator {
  22. public:
  23. //! allocate memory of size in the given device with the given align
  24. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  25. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  26. m_nr_left++;
  27. m_nr_allocated++;
  28. #ifdef WIN32
  29. return _aligned_malloc(size, align);
  30. #elif defined(__ANDROID__) || defined(ANDROID)
  31. return memalign(align, size);
  32. #else
  33. void* ptr = nullptr;
  34. auto err = posix_memalign(&ptr, align, size);
  35. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  36. return ptr;
  37. #endif
  38. };
  39. //! free the memory pointed by ptr in the given device
  40. void free(LiteDeviceType device, int, void* ptr) override {
  41. m_nr_left--;
  42. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  43. #ifdef WIN32
  44. _aligned_free(ptr);
  45. #else
  46. ::free(ptr);
  47. #endif
  48. };
  49. std::atomic_size_t m_nr_left{0};
  50. std::atomic_size_t m_nr_allocated{0};
  51. };
  52. } // namespace
  53. TEST(TestNetWork, Basic) {
  54. Config config;
  55. auto lite_tensor = get_input_data("./input_data.npy");
  56. std::string model_path = "./shufflenet.mge";
  57. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  58. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  59. compare_lite_tensor<float>(result_lite, result_mgb);
  60. }
  61. TEST(TestNetWork, SetDeviceId) {
  62. Config config;
  63. auto lite_tensor = get_input_data("./input_data.npy");
  64. std::string model_path = "./shufflenet.mge";
  65. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  66. network->set_device_id(4);
  67. network->load_model(model_path);
  68. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  69. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  70. network->forward();
  71. network->wait();
  72. ASSERT_EQ(input_tensor->get_device_id(), 4);
  73. ASSERT_EQ(output_tensor->get_device_id(), 4);
  74. }
  75. TEST(TestNetWork, GetAllName) {
  76. Config config;
  77. auto lite_tensor = get_input_data("./input_data.npy");
  78. std::string model_path = "./shufflenet.mge";
  79. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  80. network->load_model(model_path);
  81. auto input_names = network->get_all_input_name();
  82. auto output_names = network->get_all_output_name();
  83. auto output_tensor = network->get_output_tensor(0);
  84. auto out_layout = output_tensor->get_layout();
  85. ASSERT_EQ(out_layout.ndim, 2);
  86. ASSERT_EQ(out_layout.shapes[0], 1);
  87. ASSERT_EQ(out_layout.shapes[1], 1000);
  88. ASSERT_EQ(input_names.size(), 1);
  89. ASSERT_EQ(output_names.size(), 1);
  90. ASSERT_TRUE(input_names[0] == "data");
  91. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  92. }
  93. TEST(TestNetWork, LoadFBSModel) {
  94. Config config;
  95. std::string model_path = "./ax.mge";
  96. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  97. network->load_model(model_path);
  98. auto output_tensor = network->get_output_tensor(0);
  99. auto out_layout = output_tensor->get_layout();
  100. ASSERT_EQ(out_layout.ndim, 4);
  101. ASSERT_EQ(out_layout.shapes[0], 1);
  102. ASSERT_EQ(out_layout.shapes[1], 1);
  103. ASSERT_EQ(out_layout.shapes[2], 40);
  104. ASSERT_EQ(out_layout.shapes[3], 180);
  105. }
  106. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  107. Config config;
  108. auto lite_tensor = get_input_data("./input_data.npy");
  109. std::string model_path = "./shufflenet.mge";
  110. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  111. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  112. Runtime::set_cpu_inplace_mode(network);
  113. network->load_model(model_path);
  114. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  115. int affinity_set = false;
  116. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  117. ASSERT_EQ(id, 0);
  118. affinity_set = true;
  119. });
  120. auto src_ptr = lite_tensor->get_memory_ptr();
  121. auto src_layout = lite_tensor->get_layout();
  122. input_tensor->reset(src_ptr, src_layout);
  123. //! inplace mode not support async mode
  124. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  125. network->forward();
  126. network->wait();
  127. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  128. ASSERT_EQ(affinity_set, true);
  129. compare_lite_tensor<float>(output_tensor, result_mgb);
  130. }
  131. TEST(TestNetWork, NetworkShareWeights) {
  132. Config config;
  133. auto lite_tensor = get_input_data("./input_data.npy");
  134. std::string model_path = "./shufflenet.mge";
  135. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  136. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  137. network->load_model(model_path);
  138. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  139. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  140. Runtime::set_cpu_inplace_mode(network2);
  141. Runtime::shared_weight_with_network(network2, network);
  142. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  143. auto src_ptr = lite_tensor->get_memory_ptr();
  144. auto src_layout = lite_tensor->get_layout();
  145. input_tensor->reset(src_ptr, src_layout);
  146. input_tensor2->reset(src_ptr, src_layout);
  147. ASSERT_NE(input_tensor, input_tensor2);
  148. network->forward();
  149. network->wait();
  150. network2->forward();
  151. network2->wait();
  152. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  153. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  154. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  155. compare_lite_tensor<float>(output_tensor, result_mgb);
  156. compare_lite_tensor<float>(output_tensor2, result_mgb);
  157. }
  158. TEST(TestNetWork, SharedRuntimeMem) {
  159. Config config;
  160. auto lite_tensor = get_input_data("./input_data.npy");
  161. std::string model_path = "./shufflenet.mge";
  162. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  163. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  164. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  165. Runtime::share_runtime_memory_with(network_dst, network_src);
  166. network_src->load_model(model_path);
  167. network_dst->load_model(model_path);
  168. }
  169. TEST(TestNetWork, UserAllocator) {
  170. auto allocator = std::make_shared<CheckAllocator>();
  171. {
  172. Config config;
  173. auto lite_tensor = get_input_data("./input_data.npy");
  174. std::string model_path = "./shufflenet.mge";
  175. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  176. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  177. Runtime::set_memory_allocator(network, allocator);
  178. network->load_model(model_path);
  179. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  180. auto src_ptr = lite_tensor->get_memory_ptr();
  181. auto src_layout = lite_tensor->get_layout();
  182. input_tensor->reset(src_ptr, src_layout);
  183. network->forward();
  184. network->wait();
  185. ASSERT_GE(allocator->m_nr_allocated, 1);
  186. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  187. compare_lite_tensor<float>(output_tensor, result_mgb);
  188. }
  189. ASSERT_EQ(allocator->m_nr_left, 0);
  190. }
  191. TEST(TestNetWork, BasicMultiThread) {
  192. Config config;
  193. auto lite_tensor = get_input_data("./input_data.npy");
  194. std::string model_path = "./shufflenet.mge";
  195. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  196. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  197. Runtime::set_cpu_threads_number(network, 2);
  198. network->load_model(model_path);
  199. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  200. auto src_ptr = lite_tensor->get_memory_ptr();
  201. auto src_layout = lite_tensor->get_layout();
  202. input_tensor->reset(src_ptr, src_layout);
  203. network->forward();
  204. network->wait();
  205. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  206. compare_lite_tensor<float>(output_tensor, result_mgb);
  207. }
  208. TEST(TestNetWork, ThreadAffinity) {
  209. size_t nr_threads = 4;
  210. Config config;
  211. auto lite_tensor = get_input_data("./input_data.npy");
  212. std::string model_path = "./shufflenet.mge";
  213. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  214. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  215. Runtime::set_cpu_threads_number(network, nr_threads);
  216. ASSERT_THROW(
  217. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  218. network->load_model(model_path);
  219. std::vector<std::thread::id> thread_ids(nr_threads);
  220. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  221. Runtime::set_runtime_thread_affinity(network, affinity);
  222. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  223. auto src_ptr = lite_tensor->get_memory_ptr();
  224. auto src_layout = lite_tensor->get_layout();
  225. input_tensor->reset(src_ptr, src_layout);
  226. network->forward();
  227. network->wait();
  228. for (size_t i = 0; i < nr_threads; i++) {
  229. for (size_t j = i + 1; j < nr_threads; j++) {
  230. ASSERT_NE(thread_ids[i], thread_ids[j]);
  231. }
  232. }
  233. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  234. compare_lite_tensor<float>(output_tensor, result_mgb);
  235. }
  236. TEST(TestNetWork, BasicCryptAes) {
  237. Config config;
  238. auto lite_tensor = get_input_data("./input_data.npy");
  239. std::string model_path = "./shufflenet.mge";
  240. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  241. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  242. config.bare_model_cryption_name = "AES_default";
  243. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  244. compare_lite_tensor<float>(result_lite, result_mgb);
  245. }
  246. TEST(TestNetWork, BasicCryptRc4) {
  247. Config config;
  248. auto lite_tensor = get_input_data("./input_data.npy");
  249. std::string model_path = "./shufflenet.mge";
  250. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  251. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  252. config.bare_model_cryption_name = "RC4_default";
  253. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  254. compare_lite_tensor<float>(result_lite, result_mgb);
  255. }
  256. TEST(TestNetWork, PackedCryptRc4) {
  257. Config config;
  258. auto lite_tensor = get_input_data("./input_data.npy");
  259. std::string model_path = "./shufflenet.mge";
  260. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  261. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  262. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  263. compare_lite_tensor<float>(result_lite, result_mgb);
  264. }
  265. TEST(TestNetWork, BasicCryptSfRc4) {
  266. Config config;
  267. auto lite_tensor = get_input_data("./input_data.npy");
  268. std::string model_path = "./shufflenet.mge";
  269. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  270. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  271. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  272. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  273. compare_lite_tensor<float>(result_lite, result_mgb);
  274. }
  275. TEST(TestNetWork, ResetInput) {
  276. Config config;
  277. auto tensor = get_input_data("./input_data.npy");
  278. std::string model_path = "./shufflenet.mge";
  279. std::string input_name = "data";
  280. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  281. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  282. network->load_model(model_path);
  283. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  284. auto src_ptr = tensor->get_memory_ptr();
  285. auto src_layout = tensor->get_layout();
  286. input_tensor->reset(src_ptr, src_layout);
  287. network->forward();
  288. network->wait();
  289. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  290. compare_lite_tensor<float>(output_tensor, result_mgb);
  291. }
  292. TEST(TestNetWork, ChangeInputShape) {
  293. Config config;
  294. auto tensor = get_input_data("./input_data.npy");
  295. std::string model_path = "./shufflenet.mge";
  296. std::string input_name = "data";
  297. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  298. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  299. network->load_model(model_path);
  300. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  301. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  302. input_tensor->set_layout(src_layout);
  303. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  304. //! Check memory is equal
  305. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  306. network->forward();
  307. network->wait();
  308. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  309. auto output_layout = output_tensor->get_layout();
  310. ASSERT_EQ(output_layout.shapes[0], 2);
  311. ASSERT_EQ(output_layout.shapes[1], 1000);
  312. }
  313. TEST(TestNetWork, ResetOutput) {
  314. Config config;
  315. auto tensor = get_input_data("./input_data.npy");
  316. std::string model_path = "./shufflenet.mge";
  317. std::string input_name = "data";
  318. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  319. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  320. network->load_model(model_path);
  321. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  322. auto src_ptr = tensor->get_memory_ptr();
  323. auto src_layout = tensor->get_layout();
  324. input_tensor->reset(src_ptr, src_layout);
  325. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  326. auto result_tensor = std::make_shared<Tensor>(
  327. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  328. void* out_data = result_tensor->get_memory_ptr();
  329. output_tensor->reset(out_data, result_tensor->get_layout());
  330. network->forward();
  331. network->wait();
  332. compare_lite_tensor<float>(output_tensor, result_mgb);
  333. }
  334. TEST(TestNetWork, OutputNoCopy) {
  335. Config config;
  336. config.options.force_output_use_user_specified_memory = true;
  337. auto tensor = get_input_data("./input_data.npy");
  338. std::string model_path = "./shufflenet.mge";
  339. std::string input_name = "data";
  340. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  341. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  342. network->load_model(model_path);
  343. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  344. auto src_ptr = tensor->get_memory_ptr();
  345. auto src_layout = tensor->get_layout();
  346. input_tensor->reset(src_ptr, src_layout);
  347. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  348. size_t times = 5;
  349. std::vector<std::shared_ptr<Tensor>> result_tensors;
  350. for (size_t i = 0; i < times; i++) {
  351. auto tmp = std::make_shared<Tensor>(
  352. LiteDeviceType::LITE_CPU,
  353. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  354. result_tensors.push_back(tmp);
  355. }
  356. for (size_t i = 0; i < times; i++) {
  357. void* out_data = result_tensors[i]->get_memory_ptr();
  358. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  359. network->forward();
  360. network->wait();
  361. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  362. compare_lite_tensor<float>(output_tensor, result_mgb);
  363. }
  364. for (size_t i = 0; i < times; i++) {
  365. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  366. }
  367. }
  368. TEST(TestNetWork, OutputDynamicAlloc) {
  369. Config config;
  370. config.options.force_output_dynamic_alloc = true;
  371. auto tensor = get_input_data("./input_data.npy");
  372. std::string model_path = "./shufflenet.mge";
  373. std::string input_name = "data";
  374. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  375. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  376. network->load_model(model_path);
  377. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  378. auto src_ptr = tensor->get_memory_ptr();
  379. auto src_layout = tensor->get_layout();
  380. input_tensor->reset(src_ptr, src_layout);
  381. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  382. size_t times = 5;
  383. for (size_t i = 0; i < times; i++) {
  384. network->forward();
  385. network->wait();
  386. compare_lite_tensor<float>(output_tensor, result_mgb);
  387. }
  388. }
  389. TEST(TestNetWork, AsyncExec) {
  390. Config config;
  391. config.options.var_sanity_check_first_run = false;
  392. auto tensor = get_input_data("./input_data.npy");
  393. std::string model_path = "./shufflenet.mge";
  394. std::string input_name = "data";
  395. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  396. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  397. network->load_model(model_path);
  398. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  399. auto src_ptr = tensor->get_memory_ptr();
  400. auto src_layout = tensor->get_layout();
  401. input_tensor->reset(src_ptr, src_layout);
  402. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  403. auto result_tensor = std::make_shared<Tensor>(
  404. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  405. void* out_data = result_tensor->get_memory_ptr();
  406. output_tensor->reset(out_data, result_tensor->get_layout());
  407. //! set async mode and callback
  408. volatile bool finished = false;
  409. network->set_async_callback([&finished]() { finished = true; });
  410. network->forward();
  411. size_t count = 0;
  412. while (finished == false) {
  413. count++;
  414. }
  415. ASSERT_GT(count, 0);
  416. compare_lite_tensor<float>(output_tensor, result_mgb);
  417. }
  418. TEST(TestNetWork, CPUDeviceInput) {
  419. auto tensor = get_input_data("./input_data.npy");
  420. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  421. std::string model_path = "./shufflenet.mge";
  422. std::string input_name = "data";
  423. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  424. NetworkIO IO;
  425. bool is_host = false;
  426. IO.inputs.push_back({input_name, is_host});
  427. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  428. network->load_model(model_path);
  429. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  430. auto src_ptr = tensor->get_memory_ptr();
  431. input_tensor->reset(src_ptr, layout);
  432. network->forward();
  433. network->wait();
  434. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  435. compare_lite_tensor<float>(output_tensor, result_mgb);
  436. }
  437. TEST(TestNetWork, ShareTensorWith) {
  438. auto tensor = get_input_data("./input_data.npy");
  439. std::string model_path = "./shufflenet.mge";
  440. std::string input_name = "data";
  441. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  442. std::shared_ptr<Network> network = std::make_shared<Network>();
  443. network->load_model(model_path);
  444. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  445. input_tensor->share_memory_with(*tensor);
  446. network->forward();
  447. network->wait();
  448. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  449. compare_lite_tensor<float>(output_tensor, result_mgb);
  450. }
  451. TEST(TestNetWork, InputCallBack) {
  452. auto tensor = get_input_data("./input_data.npy");
  453. std::string model_path = "./shufflenet.mge";
  454. std::string input_name = "data";
  455. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  456. NetworkIO ios;
  457. bool is_host = false;
  458. ios.inputs.push_back({input_name, is_host});
  459. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  460. network->load_model(model_path);
  461. volatile bool finised_check_input = false;
  462. auto input_callback =
  463. [&tensor, &finised_check_input,
  464. input_name](const std::unordered_map<
  465. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  466. input_map) {
  467. ASSERT_EQ(input_map.size(), 1);
  468. auto tensor_input = input_map.at(input_name).second;
  469. compare_lite_tensor<float>(tensor_input, tensor);
  470. finised_check_input = true;
  471. };
  472. network->set_start_callback(input_callback);
  473. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  474. input_tensor->share_memory_with(*tensor);
  475. network->forward();
  476. network->wait();
  477. ASSERT_TRUE(finised_check_input);
  478. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  479. compare_lite_tensor<float>(output_tensor, result_mgb);
  480. }
  481. TEST(TestNetWork, OutputCallBack) {
  482. auto tensor = get_input_data("./input_data.npy");
  483. std::string model_path = "./shufflenet.mge";
  484. std::string input_name = "data";
  485. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  486. std::shared_ptr<Network> network = std::make_shared<Network>();
  487. network->load_model(model_path);
  488. auto output_name = network->get_output_name(0);
  489. volatile bool finised_check_output = false;
  490. auto output_callback =
  491. [&result_mgb, &finised_check_output,
  492. output_name](const std::unordered_map<
  493. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  494. output_map) {
  495. ASSERT_EQ(output_map.size(), 1);
  496. auto tensor_output = output_map.at(output_name).second;
  497. compare_lite_tensor<float>(tensor_output, result_mgb);
  498. finised_check_output = true;
  499. };
  500. network->set_finish_callback(output_callback);
  501. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  502. input_tensor->share_memory_with(*tensor);
  503. network->forward();
  504. network->wait();
  505. ASSERT_TRUE(finised_check_output);
  506. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  507. compare_lite_tensor<float>(output_tensor, result_mgb);
  508. }
  509. TEST(TestNetWork, OutputShapeOnly) {
  510. auto tensor = get_input_data("./input_data.npy");
  511. std::string model_path = "./shufflenet.mge";
  512. std::string input_name = "data";
  513. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  514. NetworkIO IO;
  515. bool is_host = true;
  516. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  517. Config config;
  518. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  519. network->load_model(model_path);
  520. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  521. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  522. auto src_ptr = tensor->get_memory_ptr();
  523. auto src_layout = tensor->get_layout();
  524. input_tensor->reset(src_ptr, src_layout);
  525. network->forward();
  526. network->wait();
  527. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  528. }
  529. TEST(TestNetWork, ProfileIOdump) {
  530. auto tensor = get_input_data("./input_data.npy");
  531. std::string model_path = "./shufflenet.mge";
  532. std::string input_name = "data";
  533. NetworkIO IO;
  534. Config config;
  535. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  536. network->enable_profile_performance("./profile.json");
  537. network->load_model(model_path);
  538. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  539. auto src_ptr = tensor->get_memory_ptr();
  540. auto src_layout = tensor->get_layout();
  541. input_tensor->reset(src_ptr, src_layout);
  542. network->forward();
  543. network->wait();
  544. ASSERT_TRUE(fopen("./profile.json", "r"));
  545. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  546. network->forward();
  547. network->wait();
  548. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  549. }
  550. TEST(TestNetWork, LoadPackedModel) {
  551. auto tensor = get_input_data("./input_data.npy");
  552. std::string model_path = "./test_packed_model.lite";
  553. std::string input_name = "data";
  554. NetworkIO IO;
  555. Config config;
  556. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  557. network->load_model(model_path);
  558. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  559. auto src_ptr = tensor->get_memory_ptr();
  560. auto src_layout = tensor->get_layout();
  561. input_tensor->reset(src_ptr, src_layout);
  562. network->forward();
  563. network->wait();
  564. }
  565. TEST(TestNetWork, GetDeviceType) {
  566. auto tensor = get_input_data("./input_data.npy");
  567. std::string model_path = "./shufflenet.mge";
  568. Config config;
  569. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  570. network->load_model(model_path);
  571. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  572. }
  573. TEST(TestNetWork, GetModelExtraInfo) {
  574. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  575. Config config;
  576. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  577. network->load_model(model_path);
  578. auto& extra_info = network->get_model_extra_info();
  579. ASSERT_TRUE(extra_info.size() > 0);
  580. printf("extra_info %s \n", extra_info.c_str());
  581. }
  582. #ifndef __IN_TEE_ENV__
  583. #if MGB_ENABLE_JSON
  584. TEST(TestNetWork, GetMemoryInfo) {
  585. Config config;
  586. auto lite_tensor = get_input_data("./input_data.npy");
  587. std::string model_path = "./shufflenet.mge";
  588. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  589. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  590. Runtime::set_cpu_threads_number(network, 2);
  591. network->load_model(model_path);
  592. network->get_static_memory_alloc_info();
  593. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  594. auto src_ptr = lite_tensor->get_memory_ptr();
  595. auto src_layout = lite_tensor->get_layout();
  596. input_tensor->reset(src_ptr, src_layout);
  597. network->forward();
  598. network->wait();
  599. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  600. compare_lite_tensor<float>(output_tensor, result_mgb);
  601. }
  602. #endif
  603. #endif
  604. #if LITE_WITH_CUDA
  605. TEST(TestNetWork, BasicDevice) {
  606. auto lite_tensor = get_input_data("./input_data.npy");
  607. Config config;
  608. config.device_type = LiteDeviceType::LITE_CUDA;
  609. std::string model_path = "./shufflenet.mge";
  610. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  611. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  612. compare_lite_tensor<float>(result_lite, result_mgb);
  613. }
  614. TEST(TestNetWork, DeviceInput) {
  615. auto tensor = get_input_data("./input_data.npy");
  616. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  617. std::string model_path = "./shufflenet.mge";
  618. std::string input_name = "data";
  619. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  620. NetworkIO IO;
  621. bool is_host = false;
  622. IO.inputs.push_back({input_name, is_host});
  623. Config config;
  624. config.device_type = LiteDeviceType::LITE_CUDA;
  625. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  626. network->load_model(model_path);
  627. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  628. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  629. tensor_cuda.copy_from(*tensor);
  630. auto src_ptr = tensor_cuda.get_memory_ptr();
  631. input_tensor->reset(src_ptr, layout);
  632. network->forward();
  633. network->wait();
  634. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  635. compare_lite_tensor<float>(output_tensor, result_mgb);
  636. }
  637. TEST(TestNetWork, ChangeInputShapeDevice) {
  638. Config config;
  639. auto tensor = get_input_data("./input_data.npy");
  640. std::string model_path = "./shufflenet.mge";
  641. std::string input_name = "data";
  642. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  643. config.device_type = LiteDeviceType::LITE_CUDA;
  644. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  645. network->load_model(model_path);
  646. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  647. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  648. input_tensor->set_layout(src_layout);
  649. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  650. //! Check memory is equal
  651. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  652. network->forward();
  653. network->wait();
  654. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  655. auto output_layout = output_tensor->get_layout();
  656. ASSERT_EQ(output_layout.shapes[0], 2);
  657. ASSERT_EQ(output_layout.shapes[1], 1000);
  658. }
  659. TEST(TestNetWork, DeviceOutput) {
  660. auto tensor = get_input_data("./input_data.npy");
  661. std::string model_path = "./shufflenet.mge";
  662. std::string input_name = "data";
  663. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  664. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  665. NetworkIO IO;
  666. bool is_host = false;
  667. IO.outputs.push_back({output_name, is_host});
  668. Config config;
  669. config.device_type = LiteDeviceType::LITE_CUDA;
  670. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  671. network->load_model(model_path);
  672. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  673. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  674. auto src_ptr = tensor->get_memory_ptr();
  675. auto src_layout = tensor->get_layout();
  676. input_tensor->reset(src_ptr, src_layout);
  677. network->forward();
  678. network->wait();
  679. auto output_tensor = std::make_shared<Tensor>();
  680. output_tensor->copy_from(*output_tensor_cuda);
  681. compare_lite_tensor<float>(output_tensor, result_mgb);
  682. }
  683. TEST(TestNetWork, WrongIONameDevice) {
  684. auto tensor = get_input_data("./input_data.npy");
  685. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  686. std::string model_path = "./shufflenet.mge";
  687. std::string input_name = "data";
  688. std::string input_name_wrong = "data0";
  689. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  690. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  691. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  692. NetworkIO IO;
  693. bool is_host = false;
  694. IO.inputs.push_back({input_name, is_host});
  695. IO.outputs.push_back({output_name, is_host});
  696. IO.outputs.push_back({output_name_wrong, is_host});
  697. Config config;
  698. config.device_type = LiteDeviceType::LITE_CUDA;
  699. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  700. network->load_model(model_path);
  701. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  702. tensor_cuda.copy_from(*tensor);
  703. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  704. auto src_ptr = tensor_cuda.get_memory_ptr();
  705. auto src_layout = tensor_cuda.get_layout();
  706. input_tensor->reset(src_ptr, src_layout);
  707. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  708. network->forward();
  709. network->wait();
  710. auto output_tensor = std::make_shared<Tensor>();
  711. output_tensor->copy_from(*output_tensor_cuda);
  712. compare_lite_tensor<float>(output_tensor, result_mgb);
  713. }
  714. TEST(TestNetWork, ConfigIONameDevice) {
  715. std::string model_path = "./model.mgb";
  716. NetworkIO IO;
  717. bool is_host = false;
  718. IO.outputs.push_back({"clsfy", is_host});
  719. Config config;
  720. config.device_type = LiteDeviceType::LITE_CUDA;
  721. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  722. network->compute_only_configured_output();
  723. network->load_model(model_path);
  724. ASSERT_EQ(network->get_all_output_name().size(), 1);
  725. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  726. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  727. network2->load_model(model_path);
  728. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  729. }
  730. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  731. #if LITE_WITH_CUDA
  732. if (get_device_count(LITE_CUDA) <= 1)
  733. return;
  734. #endif
  735. std::string model_path = "./model.mgb";
  736. NetworkIO IO;
  737. bool is_host = false;
  738. IO.inputs.push_back({"data", is_host});
  739. IO.outputs.push_back({"clsfy", is_host});
  740. Config config;
  741. config.device_type = LiteDeviceType::LITE_CUDA;
  742. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  743. network->set_device_id(1);
  744. network->load_model(model_path);
  745. auto inputs_names = network->get_all_input_name();
  746. for (auto name : inputs_names) {
  747. auto tensor = network->get_io_tensor(name);
  748. ASSERT_EQ(tensor->get_device_id(), 1);
  749. if (name == "idx") {
  750. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  751. for (int i = 0; i < 23; i++) {
  752. index_ptr[i] = i % 3;
  753. }
  754. }
  755. if (name == "landmark") {
  756. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  757. for (int i = 0; i < 23 * 18 * 2; i++) {
  758. landmakrk_ptr[i] = 0.1f;
  759. }
  760. }
  761. }
  762. auto outputs_names = network->get_all_output_name();
  763. for (auto name : outputs_names) {
  764. auto tensor = network->get_io_tensor(name);
  765. ASSERT_EQ(tensor->get_device_id(), 1);
  766. }
  767. network->forward();
  768. network->wait();
  769. }
  770. TEST(TestNetWork, SetStreamIdDeviceTest) {
  771. std::string model_path = "./model.mgb";
  772. NetworkIO IO;
  773. bool is_host = false;
  774. IO.inputs.push_back({"data", is_host});
  775. IO.outputs.push_back({"clsfy", is_host});
  776. Config config;
  777. config.device_type = LiteDeviceType::LITE_CUDA;
  778. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  779. network->set_stream_id(1);
  780. network->load_model(model_path);
  781. auto inputs_names = network->get_all_input_name();
  782. for (auto name : inputs_names) {
  783. auto tensor = network->get_io_tensor(name);
  784. if (name == "idx") {
  785. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  786. for (int i = 0; i < 23; i++) {
  787. index_ptr[i] = i % 3;
  788. }
  789. }
  790. if (name == "landmark") {
  791. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  792. for (int i = 0; i < 23 * 18 * 2; i++) {
  793. landmakrk_ptr[i] = 0.1f;
  794. }
  795. }
  796. }
  797. network->forward();
  798. network->wait();
  799. }
  800. #if CUDART_VERSION >= 10000
  801. TEST(TestNetWork, DeviceAsyncExec) {
  802. auto tensor = get_input_data("./input_data.npy");
  803. Config config;
  804. config.device_type = LiteDeviceType::LITE_CUDA;
  805. config.options.var_sanity_check_first_run = false;
  806. std::string model_path = "./shufflenet.mge";
  807. std::string input_name = "data";
  808. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  809. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  810. network->load_model(model_path);
  811. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  812. auto src_ptr = tensor->get_memory_ptr();
  813. auto src_layout = tensor->get_layout();
  814. input_tensor->reset(src_ptr, src_layout);
  815. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  816. auto result_tensor = std::make_shared<Tensor>(
  817. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  818. void* out_data = result_tensor->get_memory_ptr();
  819. output_tensor->reset(out_data, result_tensor->get_layout());
  820. //! set async mode and callback
  821. volatile bool finished = false;
  822. network->set_async_callback([&finished]() { finished = true; });
  823. network->forward();
  824. size_t count = 0;
  825. while (finished == false) {
  826. count++;
  827. }
  828. ASSERT_GT(count, 0);
  829. compare_lite_tensor<float>(output_tensor, result_mgb);
  830. }
  831. #endif
  832. #endif
  833. #if MGB_ATLAS
  834. TEST(TestNetWork, AtlasLoadNoDevice) {
  835. lite::Config config;
  836. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  837. auto network = std::make_shared<lite::Network>(config);
  838. network->load_model("./model_atlas.mgb");
  839. network->forward();
  840. network->wait();
  841. }
  842. TEST(TestNetWork, AtlasLoadDeviceInput) {
  843. lite::NetworkIO networkio;
  844. lite::IO input_data_io = {};
  845. input_data_io.name = "data";
  846. input_data_io.is_host = false;
  847. networkio.inputs.emplace_back(input_data_io);
  848. lite::IO input_input0_io = {};
  849. input_input0_io.name = "input0";
  850. input_input0_io.is_host = false;
  851. networkio.inputs.emplace_back(input_input0_io);
  852. lite::Config config;
  853. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  854. auto network = std::make_shared<lite::Network>(config, networkio);
  855. network->load_model("./model_atlas.mgb");
  856. network->forward();
  857. network->wait();
  858. }
  859. TEST(TestNetWork, AtlasLoadAtlas) {
  860. lite::Config config;
  861. config.device_type = LiteDeviceType::LITE_ATLAS;
  862. auto network = std::make_shared<lite::Network>(config);
  863. network->load_model("./model_atlas.mgb");
  864. network->forward();
  865. network->wait();
  866. }
  867. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  868. lite::NetworkIO networkio;
  869. lite::IO input_data_io = {};
  870. input_data_io.name = "data";
  871. input_data_io.is_host = false;
  872. networkio.inputs.emplace_back(input_data_io);
  873. lite::IO input_input0_io = {};
  874. input_input0_io.name = "input0";
  875. input_input0_io.is_host = false;
  876. networkio.inputs.emplace_back(input_input0_io);
  877. lite::Config config;
  878. config.device_type = LiteDeviceType::LITE_ATLAS;
  879. auto network = std::make_shared<lite::Network>(config, networkio);
  880. network->load_model("./model_atlas.mgb");
  881. network->forward();
  882. network->wait();
  883. }
  884. TEST(TestNetWork, AtlasDeviceID) {
  885. lite::Config config;
  886. config.device_type = LiteDeviceType::LITE_ATLAS;
  887. auto network = std::make_shared<lite::Network>(config);
  888. network->set_device_id(1);
  889. network->load_model("./model_atlas.mgb");
  890. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  891. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  892. network->forward();
  893. network->wait();
  894. ASSERT_EQ(output_tensor->get_device_id(), 1);
  895. }
  896. #endif
  897. #endif
  898. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台