You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

node.py 6.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import abc
  10. import weakref
  11. from typing import Any, Dict, List, Tuple, Type
  12. import numpy
  13. from ...core._imperative_rt.core2 import Tensor as RawTensor
  14. from ...module import Module
  15. from ...tensor import Tensor
  16. class Node:
  17. """
  18. ``Node`` represents the variables (Tensor/Module/other python object) used in Module's forward method. They are inputs/outputs of Expr(the operations on variables).
  19. param expr: the Expr which produces the node
  20. param name: the name of the node
  21. """
  22. expr = None
  23. __total_id = 0
  24. _id = None
  25. _top_graph = None # type: weakref.ReferenceType
  26. _name = None
  27. _format_spec = ""
  28. def __init__(self, expr: "Expr", name: str = None):
  29. self.expr = expr
  30. self.users = [] # List[Expr]
  31. self._id = Node.__total_id
  32. Node.__total_id += 1
  33. self._name = name
  34. def __setstate__(self, d):
  35. self.__dict__ = d
  36. Node.__total_id = max(Node.__total_id, self._id) + 1
  37. def __repr__(self):
  38. format_spec = Node._format_spec
  39. return self.__format__(format_spec)
  40. def __format__(self, format_spec: str) -> str:
  41. if format_spec == "" or format_spec is None:
  42. format_spec = Node._format_spec
  43. name = self._name
  44. if name is None:
  45. name = ""
  46. if format_spec in ["i", "p", "ip", "pi"]:
  47. if "p" in format_spec:
  48. graph = self.top_graph
  49. prefix_name = ""
  50. if graph is not None:
  51. prefix_name = graph._name
  52. if graph._prefix_name:
  53. prefix_name = "{}_{}".format(
  54. graph._prefix_name, prefix_name.lstrip("_")
  55. )
  56. if name:
  57. name = "_" + name.lstrip("_")
  58. name = "{}{}".format(prefix_name, name)
  59. if "i" in format_spec:
  60. if name:
  61. name = "_" + name.lstrip("_")
  62. name = "%{}{}".format(self._id, name)
  63. return name
  64. else:
  65. return name if name else ("%d" % self._id)
  66. @property
  67. def top_graph(self):
  68. if self._top_graph:
  69. return self._top_graph()
  70. return None
  71. @classmethod
  72. def set_format_spec(cls, str):
  73. old_format_spec = cls._format_spec
  74. cls._format_spec = str
  75. return old_format_spec
  76. class ModuleNode(Node):
  77. """
  78. ``ModuleNode`` represents the Module objects.
  79. Attributes:
  80. module_type: type of the Module correspending to the ModuleNode
  81. graph: the InternalGraph which will be interpreted when call Module's forward method
  82. attr_type_map: record the type of Module's attributes
  83. """
  84. module_type = Module # type: Type[Module]
  85. _owner = None # type: weakref.ReferenceType
  86. def __init__(self, expr: "Expr", name: str = None):
  87. super().__init__(expr, name)
  88. self.actual_mnode = []
  89. def __getstate__(self):
  90. return {
  91. "expr": self.expr,
  92. "users": self.users,
  93. "_id": self._id,
  94. "_name": self._name,
  95. "module_type": self.module_type,
  96. }
  97. @property
  98. def owner(self):
  99. if self._owner:
  100. return self._owner()
  101. return None
  102. class TensorNode(Node):
  103. """
  104. ``TensorNode`` represents the Tensor objects.
  105. """
  106. shape = None # type: Tuple[int]
  107. dtype = None # type: numpy.dtype
  108. qparam = None
  109. device = None
  110. def __getstate__(self):
  111. return {
  112. "expr": self.expr,
  113. "users": self.users,
  114. "_id": self._id,
  115. "qparam": self.qparam,
  116. "shape": self.shape,
  117. "dtype": self.dtype,
  118. "device": self.device,
  119. "_name": self._name,
  120. }
  121. class NodeMixin(abc.ABC):
  122. __node = None
  123. @abc.abstractmethod
  124. def _record_wrapped_nodes(self, node):
  125. # record the nodes which had been bound to this NodeMixin
  126. pass
  127. @classmethod
  128. def _record_tensornode_property(cls, node, value):
  129. assert isinstance(node, TensorNode)
  130. assert isinstance(value, RawTensor)
  131. if isinstance(value, RawTensor):
  132. node.dtype = value.dtype
  133. node.shape = (
  134. value._tuple_shape if isinstance(value, Tensor) else value.shape
  135. )
  136. node.device = value.device
  137. if hasattr(value, "_qparams") and value._qparams is not None:
  138. node.qparams = value.qparams
  139. @classmethod
  140. def wrap(cls, value, node):
  141. if isinstance(value, (NodeMixin, RawTensor)):
  142. if isinstance(node, Node):
  143. if isinstance(value, RawTensor):
  144. cls._record_tensornode_property(node, value)
  145. if isinstance(value, NodeMixin):
  146. value._record_wrapped_nodes(node)
  147. setattr(value, "_NodeMixin__node", node)
  148. else:
  149. assert callable(node)
  150. n = node()
  151. assert isinstance(n, Node)
  152. if isinstance(value, RawTensor):
  153. cls._record_tensornode_property(n, value)
  154. if isinstance(value, NodeMixin):
  155. value._record_wrapped_nodes(n)
  156. setattr(value, "_NodeMixin__node", n)
  157. @classmethod
  158. def wrap_safe(cls, value, node):
  159. assert isinstance(value, (NodeMixin, RawTensor))
  160. if isinstance(value, RawTensor):
  161. cls._record_tensornode_property(node, value)
  162. setattr(value, "_NodeMixin__node", node)
  163. if isinstance(value, NodeMixin):
  164. value._record_wrapped_nodes(node)
  165. @classmethod
  166. def get(cls, value, *default):
  167. return getattr(value, "_NodeMixin__node", *default)
  168. @classmethod
  169. def get_wrapped_type(cls, value):
  170. if isinstance(value, RawTensor):
  171. return TensorNode
  172. if isinstance(value, (Module, NodeMixin)):
  173. return ModuleNode
  174. return Node

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台