You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

traced_module.py 49 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import builtins
  10. import collections
  11. import copy
  12. import fnmatch
  13. import functools
  14. import keyword
  15. import re
  16. import weakref
  17. from inspect import getcallargs, getmembers, isclass, ismethod
  18. from typing import Callable, Dict, Iterable, List, Optional, Sequence, Type, Union
  19. from ... import functional as F
  20. from ... import get_logger
  21. from ... import module as M
  22. from ...core._imperative_rt.core2 import Tensor as RawTensor
  23. from ...core._imperative_rt.core2 import (
  24. is_tracing_module,
  25. set_module_tracing,
  26. unset_module_tracing,
  27. )
  28. from ...core._trace_option import set_symbolic_shape
  29. from ...core.tensor.array_method import ArrayMethodMixin
  30. from ...module import Module
  31. from ...quantization.fake_quant import LSQ, TQT, FakeQuantize
  32. from ...quantization.observer import (
  33. ExponentialMovingAverageObserver,
  34. MinMaxObserver,
  35. SyncMinMaxObserver,
  36. )
  37. from ...tensor import Tensor
  38. from .expr import Apply, CallFunction, CallMethod, Constant, Expr, GetAttr, Input
  39. from .module_tracer import (
  40. Patcher,
  41. active_module_tracer,
  42. module_tracer,
  43. set_active_module_tracer,
  44. )
  45. from .node import ModuleNode, Node, NodeMixin, TensorNode
  46. from .pytree import ArgsIndex, tree_flatten
  47. logger = get_logger(__name__)
  48. def _is_builtin_name(name: str) -> bool:
  49. return (
  50. name in builtins.__dict__
  51. or name in keyword.kwlist
  52. or name in {"inf", "nan", "NoneType"}
  53. )
  54. def _is_leaf(node):
  55. assert isinstance(node, RawTensor), "doesn't support {} in return values".format(
  56. type(node)
  57. )
  58. return isinstance(node, RawTensor)
  59. def wrap_tensors(tensors: Tensor, nodes: TensorNode):
  60. inp_tensors = copy.deepcopy(tensors)
  61. inp_tensors, inp_def_v = tree_flatten(inp_tensors)
  62. inp_nodes, inp_def_n = tree_flatten(nodes)
  63. for v, n in zip(inp_tensors, inp_nodes):
  64. if isinstance(n, TensorNode) and isinstance(v, Tensor):
  65. NodeMixin.wrap_safe(v, n)
  66. return inp_def_v.unflatten(inp_tensors)
  67. class _InsertExprs:
  68. def __init__(self, graph, expr: Optional[Expr] = None, after: bool = True):
  69. self.graph = graph
  70. self.global_scope = InternalGraph()
  71. self.global_scope._used_names.update(graph._used_names)
  72. self.expr = expr
  73. self.after = after
  74. def __enter__(self):
  75. self.use_sym_shape = set_symbolic_shape(True)
  76. set_module_tracing()
  77. assert active_module_tracer() is None
  78. set_active_module_tracer(module_tracer(_wrapped_function))
  79. active_module_tracer().patcher.__enter__()
  80. active_module_tracer().push_scope(self.global_scope)
  81. def __exit__(self, ty, va, tr):
  82. set_symbolic_shape(self.use_sym_shape)
  83. unset_module_tracing()
  84. active_module_tracer().patcher.__exit__(ty, va, tr)
  85. set_active_module_tracer(None)
  86. index = len(self.graph._exprs) if self.after else 0
  87. if self.expr is not None:
  88. index = self.graph._exprs.index(self.expr)
  89. if self.after:
  90. index += 1
  91. for expr in self.global_scope._exprs:
  92. self.graph._exprs.insert(index, expr)
  93. index += 1
  94. self.graph._used_names.update(self.global_scope._used_names)
  95. class InternalGraph:
  96. """
  97. ``InternalGraph`` is a graph consist of ``Node`` and ``Expr``, it is used to represent the execution procedure of Module's forward method.
  98. Attributes:
  99. _exprs: List of Exprs in order of execution
  100. _inputs: Input Nodes of InternalGraph
  101. _outputs: Output Nodes of InternalGraph
  102. """
  103. _exprs = None # type: List[Expr]
  104. _inputs = None # type: List[Node]
  105. _outputs = None # type: List[Node]
  106. def __init__(self, name: str = None, prefix_name: str = ""):
  107. self._exprs = []
  108. self._inputs = []
  109. self._outputs = []
  110. self._watch_point = []
  111. self._end_point = []
  112. self._used_names = {}
  113. self._rst = collections.defaultdict(list)
  114. self._name = name
  115. self._prefix_name = prefix_name
  116. def insert(self, expr):
  117. self._exprs.append(expr)
  118. def _create_unique_name(self, name: str) -> str:
  119. assert isinstance(name, str)
  120. name = re.sub("[^0-9a-zA-Z_]+", "_", name)
  121. if name[0].isdigit():
  122. name = "_{}".format(name)
  123. while name in self._used_names or _is_builtin_name(name):
  124. match = re.match(r"(.*)_(\d+)$", name)
  125. if match is None:
  126. name = name + "_1"
  127. else:
  128. base, num = match.group(1, 2)
  129. name = "{}_{}".format(base, int(num) + 1)
  130. self._used_names.setdefault(name)
  131. return name
  132. @property
  133. def inputs(self):
  134. return self._inputs
  135. @property
  136. def outputs(self):
  137. return self._outputs
  138. @property
  139. def expr_filter(self):
  140. return ExprFilter(_expr_iter(self))
  141. @property
  142. def node_filter(self):
  143. return NodeFilter(_node_iter(self))
  144. def get_function_by_type(self, func: Callable = None):
  145. return self.expr_filter.call_function(func)
  146. def get_method_by_type(self, method: str = None):
  147. return self.expr_filter.call_method(method)
  148. def get_expr_by_id(self, expr_id: List[int] = None):
  149. return self.expr_filter.expr_id(expr_id)
  150. def get_module_by_type(self, module_cls: Module):
  151. assert issubclass(module_cls, Module)
  152. return self.node_filter.type(module_cls, ModuleNode)
  153. def get_node_by_id(self, node_id: List[int] = None):
  154. return self.node_filter.node_id(node_id)
  155. def get_node_by_name(self, name: str = None, ignorecase: bool = True):
  156. return self.node_filter.name(name, ignorecase)
  157. def add_input(self, i):
  158. self._inputs.append(i)
  159. def add_output(self, o):
  160. self._outputs.append(o)
  161. def _replace_inputs_outputs_and_add_prefixname(self, repl_dict, prefix_name=""):
  162. for node, repl_node in repl_dict.items():
  163. assert node in self._inputs or node in self._outputs
  164. for i in node.users:
  165. if i not in repl_node.users:
  166. repl_node.users.append(i)
  167. for idx, i in enumerate(self._inputs):
  168. if i in repl_dict:
  169. self._inputs[idx] = repl_dict[i]
  170. for idx, o in enumerate(self._outputs):
  171. if o in repl_dict:
  172. self._outputs[idx] = repl_dict[o]
  173. for expr in self._exprs:
  174. for idx, i in enumerate(expr.inputs):
  175. assert i._name is not None
  176. if i in repl_dict:
  177. expr.inputs[idx] = repl_dict[i]
  178. elif isinstance(i, TensorNode) and prefix_name not in i._name:
  179. if i.top_graph != active_module_tracer().current_scope():
  180. i._name = (
  181. active_module_tracer()
  182. .current_scope()
  183. ._create_unique_name(prefix_name + i._name.lstrip("_"))
  184. )
  185. for idx, o in enumerate(expr.outputs):
  186. assert o._name is not None
  187. if o in repl_dict:
  188. expr.outputs[idx] = repl_dict[o]
  189. expr.outputs[idx].expr = expr
  190. elif isinstance(o, TensorNode) and prefix_name not in i._name:
  191. if o.top_graph != active_module_tracer().current_scope():
  192. o._name = (
  193. active_module_tracer()
  194. .current_scope()
  195. ._create_unique_name(prefix_name + o._name.lstrip("_"))
  196. )
  197. def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
  198. if not isinstance(nodes, Sequence):
  199. nodes = (nodes,)
  200. ret = list()
  201. queue = list(nodes)
  202. visited_queue = list()
  203. while queue:
  204. node = queue.pop()
  205. visited_queue.append(node)
  206. expr = node.expr
  207. if expr not in ret:
  208. ret.append(expr)
  209. for i in expr.inputs:
  210. if i not in queue and i not in visited_queue:
  211. queue.append(i)
  212. return ret
  213. def reset_inputs(self, *args, **kwargs):
  214. forma_mnode = self.inputs[0]
  215. actual_mnodes = forma_mnode.actual_mnode
  216. call_nodes = []
  217. for n in actual_mnodes:
  218. for c_expr in n.users:
  219. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  220. call_nodes.append((c_expr, n))
  221. moudle = forma_mnode.owner
  222. assert moudle._is_top, "reset_inputs only support the top-level graph"
  223. inputs, tree_def = tree_flatten(((moudle, *args), kwargs))
  224. def create_node(val: Tensor):
  225. node = Input(type=TensorNode).outputs[0]
  226. node.shape = val.shape
  227. node.dtype = val.dtype
  228. return node
  229. formal_node_inputs = [
  230. forma_mnode,
  231. ]
  232. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  233. if call_nodes:
  234. org_argdef = call_nodes[0][0].arg_def
  235. for v in inputs[1:]:
  236. assert isinstance(v, RawTensor)
  237. formal_node_inputs.append(create_node(v))
  238. actual_nodes = []
  239. for e, n in call_nodes:
  240. e.arg_def = tree_def
  241. actual_node_inputs = [
  242. n,
  243. ]
  244. for v in inputs[1:]:
  245. actual_node_inputs.append(create_node(v))
  246. for org_n in e.inputs:
  247. org_n.users.pop(e)
  248. e.inputs[:] = actual_node_inputs
  249. e.const_val = []
  250. actual_nodes.append(actual_node_inputs[1:])
  251. self._inputs[:] = formal_node_inputs
  252. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  253. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  254. # return formal_node_inputs[1:], actual_nodes
  255. return formal_node_inputs[1:]
  256. def add_input_node(self, shape, dtype="float32", name="args"):
  257. forma_mnode = self.inputs[0]
  258. actual_mnodes = forma_mnode.actual_mnode
  259. moudle = forma_mnode.owner
  260. assert moudle._is_top, "add_input_node only support the top-level graph"
  261. call_nodes = []
  262. for n in actual_mnodes:
  263. for c_expr in n.users:
  264. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  265. call_nodes.append(c_expr)
  266. def create_node(name=None, is_input: bool = True):
  267. if is_input:
  268. node = Input(type=TensorNode, name=name).outputs[0]
  269. else:
  270. node = TensorNode(expr=None, name=None)
  271. node.shape = shape
  272. node.dtype = dtype
  273. return node
  274. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  275. if call_nodes:
  276. org_argdef = call_nodes[0].arg_def
  277. args, kwargs = org_argdef.unflatten(self._inputs)
  278. formal_inp_node = create_node(self._create_unique_name(name), True)
  279. inputs, tree_def = tree_flatten(
  280. ((*args, formal_inp_node), kwargs),
  281. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  282. )
  283. self._inputs[:] = inputs[:]
  284. actual_inp_nodes = []
  285. for e in call_nodes:
  286. args, kwargs = e.unflatten_args(e.inputs)
  287. args = args + (create_node(False),)
  288. inputs, tree_def = tree_flatten(
  289. (args, kwargs),
  290. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  291. )
  292. e.inputs[:] = inputs[:]
  293. e.arg_def = tree_def
  294. actual_inp_nodes.append(args[-1])
  295. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  296. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  297. # return formal_inp_node, actual_inp_nodes
  298. return formal_inp_node
  299. def reset_outputs(self, outputs):
  300. outputs, out_def = tree_flatten(
  301. outputs, is_leaf=lambda x: isinstance(x, TensorNode),
  302. )
  303. forma_mnode = self.inputs[0]
  304. moudle = forma_mnode.owner
  305. assert moudle._is_top, "reset_outputs only support the top-level graph"
  306. actual_mnodes = forma_mnode.actual_mnode
  307. call_nodes = []
  308. for n in actual_mnodes:
  309. for c_expr in n.users:
  310. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  311. call_nodes.append((c_expr))
  312. def create_node(val: TensorNode, expr: Expr):
  313. node = TensorNode(expr)
  314. node.shape = val.shape
  315. node.dtype = val.dtype
  316. return node
  317. tree_def = list(moudle.argdef_graph_map.keys())[0]
  318. if call_nodes:
  319. tree_def = call_nodes[0].arg_def
  320. actual_nodes = []
  321. for e in call_nodes:
  322. actual_node_outputs = []
  323. for v in outputs:
  324. actual_node_outputs.append(create_node(v, e))
  325. e.outputs[:] = actual_node_outputs
  326. e.out_def = out_def
  327. actual_nodes.append(actual_node_outputs)
  328. self._outputs[:] = outputs
  329. moudle.argdef_outdef_map[tree_def] = out_def
  330. return actual_nodes
  331. def add_output_node(self, node: TensorNode):
  332. forma_mnode = self.inputs[0]
  333. moudle = forma_mnode.owner
  334. assert moudle._is_top, "add_output_node only support the top-level graph"
  335. actual_mnodes = forma_mnode.actual_mnode
  336. call_nodes = []
  337. for n in actual_mnodes:
  338. for c_expr in n.users:
  339. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  340. call_nodes.append((c_expr))
  341. def create_node(val: TensorNode, expr: Expr):
  342. node = TensorNode(expr)
  343. node.shape = val.shape
  344. node.dtype = val.dtype
  345. return node
  346. tree_def = list(moudle.argdef_graph_map.keys())[0]
  347. if call_nodes:
  348. tree_def = call_nodes[0].arg_def
  349. org_out_def = moudle.argdef_outdef_map[tree_def]
  350. org_outs = org_out_def.unflatten(self._outputs)
  351. outputs, out_def = tree_flatten(
  352. (org_outs, node), is_leaf=lambda x: isinstance(x, TensorNode),
  353. )
  354. self._outputs[:] = outputs
  355. actual_out_nodes = []
  356. for e in call_nodes:
  357. actual_node = create_node(node, e)
  358. org_outs = org_out_def.unflatten(e.outputs)
  359. outputs, out_def = tree_flatten(
  360. (org_outs, actual_node), is_leaf=lambda x: isinstance(x, TensorNode),
  361. )
  362. e.outputs[:] = outputs
  363. e.out_def = out_def
  364. actual_out_nodes.append(actual_node)
  365. moudle.argdef_outdef_map[tree_def] = out_def
  366. return actual_out_nodes
  367. def insert_function(self, func: Callable, *args, **kwargs):
  368. assert isinstance(func, Callable)
  369. inp_nodes, inp_def = tree_flatten((args, kwargs))
  370. insert_idx = -1
  371. for i in inp_nodes:
  372. if isinstance(i, TensorNode) and i.expr in self._exprs:
  373. insert_idx = max(insert_idx, self._exprs.index(i.expr))
  374. fake_inp_val = list(
  375. F.zeros(shape=i.shape, dtype=i.dtype) if isinstance(i, TensorNode) else i
  376. for i in inp_nodes
  377. )
  378. for v, n in zip(fake_inp_val, inp_nodes):
  379. if isinstance(n, TensorNode):
  380. NodeMixin.wrap_safe(v, n)
  381. fake_args, fake_kwargs = inp_def.unflatten(fake_inp_val)
  382. insert_point = self.insert_exprs_before()
  383. if insert_idx != -1:
  384. insert_point = self.insert_exprs_after(self._exprs[insert_idx])
  385. with insert_point:
  386. rst = func(*fake_args, **fake_kwargs)
  387. if rst is None:
  388. return None
  389. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  390. node_outputs = []
  391. for out in outputs:
  392. assert isinstance(out, RawTensor)
  393. node_outputs.append(NodeMixin.get(out, None))
  394. node_outputs = out_def.unflatten(node_outputs)
  395. return node_outputs
  396. def insert_exprs_after(self, expr: Optional[Expr] = None):
  397. if expr is not None:
  398. assert expr.top_graph == self, "Expr to insert after is not in graph."
  399. return _InsertExprs(self, expr, after=True)
  400. def insert_exprs_before(self, expr: Optional[Expr] = None):
  401. if expr is not None:
  402. assert expr.top_graph == self, "Expr to insert before is not in graph."
  403. return _InsertExprs(self, expr, after=False)
  404. def replace_node(self, repl_dict: Dict[Node, Node]):
  405. while repl_dict:
  406. node, repl_node = repl_dict.popitem()
  407. # check graph inputs and outputs
  408. assert node not in self.inputs, "Cannot replace inputs"
  409. for i, n in enumerate(self.outputs):
  410. if n is node:
  411. self.outputs[i] = repl_node
  412. # update users of node and repl_node
  413. # update inputs of expr in node.users
  414. dep_exprs = self.get_dep_exprs(repl_node)
  415. i = 0
  416. while i < len(node.users):
  417. n = node.users[i]
  418. if n in dep_exprs:
  419. logger.info("Find a loop: ignore this replacement once")
  420. logger.info("node: %s" % node.__repr__())
  421. logger.info("repl_node: %s" % repl_node.__repr__())
  422. i += 1
  423. continue
  424. repl_node.users.append(n)
  425. node.users.pop(i)
  426. idx = n.inputs.index(node)
  427. n.inputs[idx] = repl_node
  428. def compile(self):
  429. """
  430. Delete unused expr.
  431. """
  432. dep_exprs = self.get_dep_exprs(self.outputs)
  433. i = 0
  434. while i < len(self._exprs):
  435. expr = self._exprs[i]
  436. if expr in dep_exprs or expr._disable_remove:
  437. i += 1
  438. continue
  439. for n in expr.inputs:
  440. n.users.remove(expr)
  441. self._exprs.remove(expr)
  442. def interpret(self, *inputs):
  443. node2value = {}
  444. end_nodes_set = set(self._end_point)
  445. endnode2value = {}
  446. def get_all_endnode_val(n, v):
  447. if n in end_nodes_set:
  448. endnode2value[n] = v
  449. end_nodes_set.remove(n)
  450. return not end_nodes_set
  451. return False
  452. for n, v in zip(self._inputs, inputs):
  453. node2value[n] = v
  454. if n in self._watch_point:
  455. self._rst[n].append(v)
  456. if n in self._end_point and get_all_endnode_val(n, v):
  457. return list(endnode2value[i] for i in self._end_point)
  458. for expr in self._exprs:
  459. values = expr.interpret(*list(node2value[i] for i in expr.inputs))
  460. if values is not None:
  461. for n, v in zip(expr.outputs, values):
  462. node2value[n] = v
  463. if n in self._watch_point:
  464. self._rst[n] = v
  465. if self._end_point and get_all_endnode_val(n, v):
  466. return list(endnode2value[i] for i in self._end_point)
  467. return list(node2value[i] for i in self._outputs)
  468. def eval(self, *inputs):
  469. assert len(inputs) == len(self._inputs) - 1
  470. inp = [self._inputs[0].owner] + list(inputs)
  471. return self.interpret(*inp)
  472. def __repr__(self):
  473. return self.__format__()
  474. def __format__(self, format_spec: str = "") -> str:
  475. saved_format_spec = Node.set_format_spec(format_spec)
  476. name = ""
  477. if self._name:
  478. name = "%s.Graph" % self._name
  479. res = "{} ({}) {{\n\t{}\n\treturn {}\n}}".format(
  480. name,
  481. ", ".join(str(i) for i in self._inputs),
  482. "\n\t".join("{}".format(str(i)) for i in self._exprs),
  483. ", ".join(str(i) for i in self._outputs),
  484. )
  485. Node.set_format_spec(saved_format_spec)
  486. return res
  487. def _get_meth_name(obj, func):
  488. tp = obj if isinstance(obj, type) else type(obj)
  489. for cls in tp.mro():
  490. for k, v in cls.__dict__.items():
  491. if v == func:
  492. return k
  493. return None
  494. def _wrapped_function(orig_func):
  495. @functools.wraps(orig_func)
  496. def wrapped_fn(*args, **kwargs):
  497. if is_tracing_module():
  498. unset_module_tracing()
  499. inputs, tree_def = tree_flatten((args, kwargs))
  500. for i in inputs:
  501. if not NodeMixin.get(i, None):
  502. if isinstance(i, (RawTensor, NodeMixin)):
  503. NodeMixin.wrap_safe(i, Constant.make(i))
  504. meth_name = _get_meth_name(args[0], wrapped_fn) if args else None
  505. if meth_name:
  506. self = inputs[0]
  507. if meth_name == "__new__":
  508. if all([not isinstance(i, RawTensor) for i in inputs]):
  509. # only trace Tensor.__new__() when there are tensors in args
  510. set_module_tracing()
  511. return orig_func(*args, **kwargs)
  512. if isinstance(args[1], RawTensor):
  513. node = NodeMixin.get(inputs[1])
  514. inputs[1] = copy.copy(inputs[1])
  515. # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor, which will cause they have same _NodeMixin__node in tracing.
  516. NodeMixin.wrap_safe(inputs[1], node)
  517. args, kwargs = tree_def.unflatten(inputs)
  518. call_node = CallMethod.make(self, meth_name)
  519. else:
  520. call_node = CallMethod.make(NodeMixin.get(self), meth_name)
  521. call_node.add_inputs(inputs[1:])
  522. else:
  523. call_node = CallFunction.make(orig_func)
  524. call_node.add_inputs(inputs)
  525. call_node.arg_def = tree_def
  526. rst = orig_func(*args, **kwargs)
  527. if meth_name == "__setitem__":
  528. rst = self
  529. if rst is not None:
  530. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  531. call_node.out_def = out_def
  532. else:
  533. outputs = None
  534. call_node.add_outputs(outputs)
  535. set_module_tracing()
  536. return rst
  537. return orig_func(*args, **kwargs)
  538. return wrapped_fn
  539. class TracedModuleBuilder(NodeMixin):
  540. _mod = None # type: Module
  541. _body = None # type: InternalGraph
  542. _is_builtin = None # type: bool
  543. _argdef_graph_map = None # type: Dict[Treedef, "InternalGraph"]
  544. _argdef_outdef_map = None # type: Dict[Treedef, Treedef]
  545. nodes = None
  546. __builder_attributes__ = [
  547. "_mod",
  548. "_body",
  549. "_NodeMixin__node",
  550. "_is_builtin",
  551. "build",
  552. "_record_wrapped_nodes",
  553. "_argdef_graph_map",
  554. "_argdef_outdef_map",
  555. "nodes",
  556. "__class__",
  557. "__dict__",
  558. ]
  559. def __init__(self, mod, is_top_module=False):
  560. super(TracedModuleBuilder, self).__init__()
  561. assert isinstance(mod, Module)
  562. self._mod = mod
  563. self._body = None
  564. self._is_top = is_top_module
  565. self._is_builtin = module_tracer.is_builtin(mod)
  566. self._argdef_graph_map = {}
  567. self._argdef_outdef_map = {}
  568. self.nodes = set()
  569. # The builder will be passed to self._mod.forward as 'self' argument. If the 'forward' uses super().xxx to call method of its base classes, the trace procedure will throw exceprion, because the builder doesn't inherit from self._mod.__bases__.
  570. # modify self.__class__ and let the builder inherit from TracedModuleBuilder and mod.__class__.
  571. self.__class__ = type(
  572. "TracedModuleBuilder",
  573. (TracedModuleBuilder, mod.__class__),
  574. dict(TracedModuleBuilder.__dict__),
  575. )
  576. def build(self):
  577. if self._is_builtin or isinstance(self._mod, TracedModule):
  578. for node in self.nodes:
  579. node.module_type = type(self._mod)
  580. # node._owner = weakref.ref(self._mod)
  581. return self._mod
  582. else:
  583. traced_module = TracedModule(
  584. self._is_top, self._argdef_graph_map, self._argdef_outdef_map
  585. )
  586. for _, g in self._argdef_graph_map.items():
  587. g.compile()
  588. for k, v in self.__dict__.items():
  589. if k not in TracedModuleBuilder.__builder_attributes__:
  590. if isinstance(v, TracedModuleBuilder):
  591. v = v.build()
  592. setattr(traced_module, k, v)
  593. return traced_module
  594. def _record_wrapped_nodes(self, node):
  595. self.nodes.add(node)
  596. def __call__(self, *args, **kwargs):
  597. assert isinstance(self._mod, Module)
  598. # prepare args and kwargs for inner graph
  599. def mark_constant(x):
  600. node = NodeMixin.get(x, None)
  601. if node is None: # capture as constant
  602. NodeMixin.wrap(x, lambda: Constant.make(x))
  603. inputs, tree_def = tree_flatten(((self, *args), kwargs))
  604. for i in inputs:
  605. mark_constant(i)
  606. callnode = CallMethod.make(NodeMixin.get(self))
  607. callnode.add_inputs(inputs[1:])
  608. callnode.arg_def = tree_def
  609. if (
  610. self._is_builtin
  611. or tree_def in self._argdef_graph_map
  612. or isinstance(self._mod, TracedModule)
  613. ):
  614. unset_module_tracing()
  615. rst = self._mod(*args, **kwargs)
  616. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  617. set_module_tracing()
  618. if self._is_builtin:
  619. self._body = None
  620. elif tree_def in self._argdef_graph_map:
  621. self._body = self._argdef_graph_map[tree_def]
  622. else:
  623. self._mod._is_top = False
  624. self._body = self._mod.graph
  625. name = NodeMixin.get(self)._name
  626. if name:
  627. self._body._name = name
  628. else:
  629. self_node = None
  630. orig_self = NodeMixin.get(self)
  631. top_graph = active_module_tracer().current_scope()
  632. graph_prefix_name = top_graph._name
  633. if top_graph._prefix_name:
  634. graph_prefix_name = "{}_{}".format(
  635. top_graph._prefix_name, graph_prefix_name.lstrip("_")
  636. )
  637. self._body = InternalGraph(orig_self._name, prefix_name=graph_prefix_name)
  638. active_module_tracer().push_scope(self._body)
  639. # rebind self to new input node
  640. if self_node:
  641. NodeMixin.wrap_safe(self, self_node)
  642. active_module_tracer().current_scope().add_input(self_node)
  643. else:
  644. NodeMixin.wrap_safe(
  645. self,
  646. self_node
  647. if self_node
  648. else Input.make("self", NodeMixin.get_wrapped_type(self)),
  649. )
  650. origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]]
  651. # prepare args and kwargs for inner graph
  652. index_args, index_kwargs = tree_def.unflatten(
  653. [
  654. ArgsIndex(0),
  655. *list(ArgsIndex(i + 1) for i in range(len(origin_inp_node))),
  656. ]
  657. )
  658. key2idx = getcallargs(type(self._mod).forward, *index_args, **index_kwargs)
  659. idx2key = {}
  660. for k, v in key2idx.items():
  661. if isinstance(v, ArgsIndex):
  662. idx2key[v.index] = k
  663. else:
  664. flatten_argidx, _ = tree_flatten(v)
  665. for _i, v in enumerate(flatten_argidx):
  666. if isinstance(v, ArgsIndex):
  667. idx2key[v.index] = k + "_%d" % _i
  668. def wrap(x, name):
  669. if isinstance(x, (RawTensor, NodeMixin)):
  670. NodeMixin.wrap(
  671. x,
  672. lambda: Input.make(
  673. type=NodeMixin.get_wrapped_type(x), name=name
  674. ),
  675. )
  676. return x
  677. args = [self]
  678. for i, v in enumerate(inputs[1:]):
  679. args.append(wrap(v, idx2key[i + 1]))
  680. args, kwargs = tree_def.unflatten(args)
  681. active_module_tracer().patcher.auto_patch(
  682. getattr(getattr(self._mod, "forward", self._mod), "__globals__", {})
  683. )
  684. rst = type(self._mod).forward(*args, **kwargs)
  685. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  686. for i in (
  687. outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
  688. ):
  689. active_module_tracer().current_scope().add_output(NodeMixin.get(i))
  690. NodeMixin.get(self, None).actual_mnode.append(orig_self)
  691. NodeMixin.wrap_safe(self, orig_self)
  692. for arg, node in zip(inputs[1:], origin_inp_node):
  693. if node:
  694. NodeMixin.wrap_safe(arg, node)
  695. active_module_tracer().pop_scope()
  696. # rebind output to outer graph
  697. callnode.out_def = out_def
  698. callnode.add_outputs(outputs)
  699. self._argdef_graph_map[callnode.arg_def] = self._body
  700. self._argdef_outdef_map[callnode.arg_def] = out_def
  701. return rst
  702. def __setattr__(self, name, value):
  703. object.__setattr__(self, name, value)
  704. def __repr__(self):
  705. return repr(self._mod)
  706. def __getattr__(self, name):
  707. if name not in self._mod.__dict__:
  708. attr = getattr(type(self._mod), name).__get__(self, type(self))
  709. else:
  710. attr = getattr(self._mod, name)
  711. if isinstance(attr, Module):
  712. attr = TracedModuleBuilder(attr)
  713. setattr(self, name, attr)
  714. NodeMixin.wrap(
  715. attr,
  716. lambda: GetAttr.make(
  717. NodeMixin.get(self), name, type=NodeMixin.get_wrapped_type(attr)
  718. ),
  719. )
  720. return attr
  721. def __getattribute__(self, name):
  722. if name in TracedModuleBuilder.__builder_attributes__:
  723. return object.__getattribute__(self, name)
  724. else:
  725. wrapped = object.__getattribute__(self, name)
  726. if name in self._mod.__dict__:
  727. mod_attr = getattr(self._mod, name)
  728. if not isinstance(mod_attr, Module) and wrapped is not mod_attr:
  729. wrapped = mod_attr
  730. setattr(self, name, wrapped)
  731. if isinstance(mod_attr, Module):
  732. assert mod_attr is wrapped._mod
  733. else:
  734. assert mod_attr is wrapped
  735. # assert not self._is_builtin
  736. if isinstance(wrapped, (NodeMixin, RawTensor)):
  737. NodeMixin.wrap(
  738. wrapped,
  739. lambda: GetAttr.make(
  740. NodeMixin.get(self),
  741. name,
  742. type=NodeMixin.get_wrapped_type(wrapped),
  743. ),
  744. )
  745. return wrapped
  746. class _expr_iter:
  747. def __init__(self, graph: InternalGraph):
  748. self.graph = graph
  749. def __iter__(self):
  750. for expr in self.graph._exprs:
  751. if isinstance(expr, CallMethod) and isinstance(expr.inputs[0], ModuleNode):
  752. yield expr
  753. if expr.graph is not None:
  754. yield from expr.graph.expr_filter
  755. else:
  756. yield expr
  757. class _node_iter:
  758. def __init__(self, graph: InternalGraph) -> None:
  759. nodes = []
  760. node_ids = set()
  761. for expr in graph.expr_filter:
  762. for n in expr.inputs + expr.outputs:
  763. if n._id in node_ids:
  764. continue
  765. nodes.append(n)
  766. node_ids.add(n._id)
  767. self.nodes = list(sorted(nodes, key=lambda x: x._id))
  768. def __iter__(self):
  769. for node in self.nodes:
  770. yield node
  771. class BaseFilter:
  772. def __init__(self, expr_iter: Iterable):
  773. self._iter = expr_iter
  774. def __iter__(self):
  775. return iter(self._iter)
  776. def as_list(self):
  777. return list(self)
  778. def as_dict(self):
  779. return collections.OrderedDict((i._id, i) for i in self)
  780. def as_unique(self):
  781. rst = self.as_list()
  782. assert len(rst) == 1, "{} elements found".format(len(rst))
  783. (expr,) = self
  784. return expr
  785. def as_count(self):
  786. return sum(1 for _ in self)
  787. class ExprFilter(BaseFilter):
  788. def call_function(self, func):
  789. return ExprFilterCallFunction(self, func)
  790. def call_method(self, method):
  791. return ExprFilterCallMethod(self, method)
  792. def expr_id(self, expr_id: List[int]):
  793. return ExprFilterExprId(self, expr_id)
  794. class NodeFilter(BaseFilter):
  795. def type(self, owner_type, node_type):
  796. return NodeFilterType(self, owner_type, node_type)
  797. def node_id(self, node_id: List[int]):
  798. return NodeFilterNodeId(self, node_id)
  799. def name(self, name: str, ignorecase: bool = True):
  800. return NodeFilterName(self, name, ignorecase)
  801. class NodeFilterType(NodeFilter):
  802. def __init__(self, expr_iter, owner_type, node_type):
  803. super().__init__(expr_iter)
  804. self.owner_type = owner_type
  805. self.node_type = node_type
  806. def __iter__(self):
  807. for node in self._iter:
  808. if not isinstance(node, self.node_type):
  809. continue
  810. if not hasattr(node, "owner"):
  811. continue
  812. if isinstance(node.owner, self.owner_type):
  813. yield node
  814. class NodeFilterNodeId(NodeFilter):
  815. def __init__(self, expr_iter, node_id: List[int]):
  816. super().__init__(expr_iter)
  817. if not isinstance(node_id, Sequence):
  818. node_id = [node_id]
  819. self.node_id = node_id
  820. def __iter__(self):
  821. for node in self._iter:
  822. if node._id in self.node_id:
  823. yield node
  824. class NodeFilterName(NodeFilter):
  825. _re = None
  826. def __init__(self, node_iter, pattern, ignorecase):
  827. super().__init__(node_iter)
  828. self.pattern = pattern
  829. self._re = self.make_re(pattern, ignorecase)
  830. @classmethod
  831. def make_re(cls, pattern, ignorecase=True):
  832. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  833. assert isinstance(ignorecase, bool)
  834. flags = 0
  835. if ignorecase:
  836. flags |= re.IGNORECASE
  837. return re.compile(fnmatch.translate(pattern), flags=flags)
  838. def __iter__(self):
  839. for i in self._iter:
  840. graph = i.top_graph
  841. name = "{}_{}".format(graph._name, i._name.lstrip("_"))
  842. if graph._prefix_name:
  843. name = "{}_{}".format(graph._prefix_name, name.lstrip("_"))
  844. if self.pattern == name or self._re.match(name):
  845. yield i
  846. class ExprFilterCallFunction(ExprFilter):
  847. def __init__(self, expr_iter, func: Callable = None):
  848. super().__init__(expr_iter)
  849. self.func = func
  850. def __iter__(self):
  851. for expr in self._iter:
  852. if not isinstance(expr, CallFunction):
  853. continue
  854. if self.func is None or expr.func == self.func:
  855. yield expr
  856. class ExprFilterCallMethod(ExprFilter):
  857. def __init__(self, expr_iter, method: str = None):
  858. super().__init__(expr_iter)
  859. self.method = method
  860. def __iter__(self):
  861. for expr in self._iter:
  862. if not isinstance(expr, CallMethod):
  863. continue
  864. if self.method is None or expr.method == self.method:
  865. yield expr
  866. class ExprFilterExprId(ExprFilter):
  867. def __init__(self, expr_iter, expr_id: List[int]):
  868. super().__init__(expr_iter)
  869. if not isinstance(expr_id, Sequence):
  870. expr_id = [expr_id]
  871. self.expr_id = expr_id
  872. def __iter__(self):
  873. for expr in self._iter:
  874. if expr._id in self.expr_id:
  875. yield expr
  876. class TracedModule(Module):
  877. """
  878. `TracedModule` is the Module created by tracing normal module. It owns an argdef to graph(InternalGraph) map. The forward method of `TracedModule` will get a graph from `argdef_graph_map` according to the argdef of input args/kwargs and interpret it.
  879. """
  880. # m_node = None # type: ModuleNode
  881. argdef_graph_map = None
  882. argdef_outdef_map = None
  883. def __init__(self, is_top, argdef_graph_map, argdef_outdef_map):
  884. super(TracedModule, self).__init__()
  885. self.argdef_graph_map = argdef_graph_map
  886. self.argdef_outdef_map = argdef_outdef_map
  887. self._is_top = is_top
  888. self.watch_points = []
  889. self.watch_node_value = {}
  890. self.end_points = []
  891. def forward(self, *args, **kwargs):
  892. inputs, treedef = tree_flatten(((self, *args), kwargs))
  893. assert treedef in self.argdef_graph_map
  894. inputs = filter(
  895. lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs
  896. ) # allow TracedModuleBuilder for retrace.
  897. outputs = self.argdef_graph_map[treedef].interpret(*inputs)
  898. if self.watch_points:
  899. self.watch_node_value = {}
  900. for n in self.watch_points:
  901. self.watch_node_value[n] = n.top_graph._rst.pop(n)
  902. if self.end_points:
  903. return outputs
  904. out_def = self.argdef_outdef_map[treedef]
  905. outputs = out_def.unflatten(outputs)
  906. return outputs
  907. def set_watch_points(self, nodes):
  908. if not isinstance(nodes, Sequence):
  909. nodes = [nodes]
  910. self.watch_points = nodes
  911. for n in nodes:
  912. n.top_graph._watch_point.append(n)
  913. def clear_watch_points(self):
  914. for n in self.watch_points:
  915. n.top_graph._watch_point = []
  916. self.watch_points = []
  917. self.watch_node_value = {}
  918. def set_end_points(self, nodes):
  919. if not isinstance(nodes, Sequence):
  920. nodes = [nodes]
  921. self.end_points = nodes
  922. graphs = list(self.argdef_graph_map.values())
  923. for n in nodes:
  924. assert n.top_graph in graphs
  925. n.top_graph._end_point.append(n)
  926. def clear_end_points(self):
  927. for n in self.end_points:
  928. n.top_graph._end_point = []
  929. self.end_points = []
  930. @property
  931. def graph(self) -> InternalGraph:
  932. if self._is_top:
  933. self._update_ref()
  934. assert len(self.argdef_graph_map) == 1
  935. return list(self.argdef_graph_map.values())[0]
  936. def _update_ref(self, actual_node_map: Union[Dict] = None):
  937. for inp_def, graph in self.argdef_graph_map.items():
  938. for n in graph._inputs + graph.outputs:
  939. n._top_graph = weakref.ref(graph)
  940. graph._inputs[0]._owner = weakref.ref(self)
  941. graph._inputs[0].actual_mnode = []
  942. if actual_node_map is not None and inp_def in actual_node_map.keys():
  943. graph._inputs[0].actual_mnode = actual_node_map[inp_def]
  944. node2obj = {}
  945. next_actual_node_map = collections.defaultdict(
  946. lambda: collections.defaultdict(list)
  947. )
  948. node2obj[graph._inputs[0]] = self
  949. for expr in graph._exprs:
  950. for n in expr.inputs + expr.outputs:
  951. n._top_graph = weakref.ref(graph)
  952. expr._top_graph = weakref.ref(graph)
  953. if isinstance(expr, GetAttr) and isinstance(
  954. expr.outputs[0], ModuleNode
  955. ):
  956. obj = getattr(node2obj[expr.inputs[0]], expr.name)
  957. expr.outputs[0]._owner = weakref.ref(obj)
  958. node2obj[expr.outputs[0]] = obj
  959. if isinstance(expr, Constant) and isinstance(
  960. expr.outputs[0], ModuleNode
  961. ):
  962. obj = expr.value
  963. expr.outputs[0]._owner = weakref.ref(obj)
  964. node2obj[expr.outputs[0]] = obj
  965. if (
  966. isinstance(expr, CallMethod)
  967. and expr.method == "__call__"
  968. and isinstance(expr.inputs[0], ModuleNode)
  969. ):
  970. obj = node2obj[expr.inputs[0]]
  971. if expr.arg_def is not None:
  972. next_actual_node_map[obj][expr.arg_def].append(expr.inputs[0])
  973. for obj in node2obj.values():
  974. if obj is self:
  975. continue
  976. mnode_map = None
  977. if obj in next_actual_node_map.keys():
  978. mnode_map = next_actual_node_map[obj]
  979. if isinstance(obj, TracedModule):
  980. obj._update_ref(mnode_map)
  981. def flatten(self):
  982. """
  983. Get a new module, which eliminates ``GetAttr`` and has no hierarchy.
  984. :return: :class:`TracedModule`
  985. """
  986. new_module = copy.deepcopy(self)
  987. module2name = {}
  988. assert active_module_tracer() is None
  989. set_active_module_tracer(module_tracer(lambda x: x))
  990. active_module_tracer().push_scope(new_module.graph)
  991. for n, m in new_module.named_modules():
  992. module2name[id(m)] = n
  993. def _flatten_subgraph(
  994. graph: InternalGraph, module: Module, call=None, prefix_name=""
  995. ):
  996. if graph is not None and prefix_name and prefix_name[-1] != "_":
  997. prefix_name += "_"
  998. if graph is None:
  999. assert not isinstance(module, TracedModule)
  1000. const = Constant(module, "self.%s" % module2name[id(module)])
  1001. m_node = call.inputs[0]
  1002. if m_node.top_graph != active_module_tracer().current_scope():
  1003. m_node._name = (
  1004. active_module_tracer()
  1005. .current_scope()
  1006. ._create_unique_name(prefix_name)
  1007. )
  1008. const.outputs[0] = m_node
  1009. const.outputs[0].expr = const
  1010. return [const, call]
  1011. if call is not None:
  1012. graph = copy.deepcopy(graph)
  1013. exprs = []
  1014. node2obj = {}
  1015. node2obj[graph._inputs[0]] = module
  1016. if call:
  1017. node2obj[call.inputs[0]] = module
  1018. # replace inputs for submodule's exprx
  1019. if call:
  1020. repl_dict = dict(zip(graph._inputs, call.inputs))
  1021. for ind, out in enumerate(graph.outputs):
  1022. if isinstance(out.expr, Input):
  1023. assert out in repl_dict
  1024. call_out = call.outputs[ind]
  1025. for expr in call.outputs[ind].users:
  1026. for index, inp in enumerate(expr.inputs):
  1027. if inp is call_out:
  1028. expr.inputs[index] = repl_dict[out]
  1029. continue
  1030. repl_dict[out] = call.outputs[ind]
  1031. graph._replace_inputs_outputs_and_add_prefixname(repl_dict, prefix_name)
  1032. for expr in graph._exprs:
  1033. if isinstance(expr, GetAttr):
  1034. # replace GetAttr with Constant
  1035. if isinstance(expr.outputs[0], TensorNode):
  1036. const = Constant(getattr(node2obj[expr.inputs[0]], expr.name))
  1037. const.outputs = expr.outputs
  1038. const.outputs[0].expr = const
  1039. exprs.append(const)
  1040. elif isinstance(expr.outputs[0], ModuleNode):
  1041. node2obj[expr.outputs[0]] = getattr(
  1042. node2obj[expr.inputs[0]], expr.name
  1043. )
  1044. elif isinstance(expr, CallMethod):
  1045. obj_node = expr.inputs[0]
  1046. if isinstance(obj_node, ModuleNode):
  1047. pre_expr = expr.inputs[0].expr
  1048. if isinstance(pre_expr, GetAttr):
  1049. (obj,) = pre_expr.interpret(node2obj[pre_expr.inputs[0]])
  1050. expr_graph = (
  1051. obj.argdef_graph_map[expr.arg_def]
  1052. if hasattr(obj, "argdef_graph_map")
  1053. else None
  1054. )
  1055. exprs.extend(
  1056. _flatten_subgraph(
  1057. expr_graph,
  1058. obj,
  1059. expr,
  1060. prefix_name + obj_node._name.lstrip("_"),
  1061. )
  1062. )
  1063. else:
  1064. # module has been replaced.
  1065. assert isinstance(pre_expr, Constant)
  1066. exprs.append(expr)
  1067. else:
  1068. exprs.append(expr)
  1069. else:
  1070. exprs.append(expr)
  1071. if call is not None:
  1072. for i in call.inputs:
  1073. i.users.remove(call)
  1074. return exprs
  1075. new_module.graph._exprs = _flatten_subgraph(new_module.graph, new_module)
  1076. new_module.graph.compile()
  1077. set_active_module_tracer(None)
  1078. for _id, expr in enumerate(new_module.graph._exprs):
  1079. expr._id = _id
  1080. total_node_id = 0
  1081. for i in new_module.graph._inputs:
  1082. i._id = total_node_id
  1083. total_node_id += 1
  1084. for expr in new_module.graph._exprs:
  1085. for o in expr.outputs:
  1086. o._id = total_node_id
  1087. total_node_id += 1
  1088. return new_module
  1089. def __getstate__(self):
  1090. d = self.__dict__
  1091. for k in Module.__dict__:
  1092. d.pop(k, None)
  1093. return d
  1094. def cpp_apply_module_trace(opdef, *args):
  1095. return Apply.apply_module_trace_hook(opdef, *args)
  1096. def register_as_builtin(mod_cls: Type[Module]) -> None:
  1097. """
  1098. Registers class ``mod_cls`` (subclass of megengine.module.Module) as builtin module.
  1099. param mod_cls: the Module class which will be threated as builtin module in tracing
  1100. """
  1101. module_tracer.register_as_builtin(mod_cls)
  1102. wrap = _wrapped_function
  1103. def _register_all_builtin_module():
  1104. for sub_mod in [M, M.qat, M.quantized]:
  1105. for m in getmembers(sub_mod):
  1106. if (
  1107. isclass(m[1])
  1108. and issubclass(m[1], M.Module)
  1109. and m[1] is not M.Sequential
  1110. ):
  1111. module_tracer.register_as_builtin(m[1])
  1112. def trace_module(mod: Module, *args: Tensor, **kwargs: Tensor) -> TracedModule:
  1113. """
  1114. Traces module ``mod`` and returns corresponding TracedModule.
  1115. param mod: the module will be converted to TracedModule
  1116. param input: the positional arguments passed to forward method of ``mod``
  1117. param kwargs: the keyword arguments passed to forward method of ``mod``
  1118. """
  1119. assert active_module_tracer() is None
  1120. assert isinstance(mod, Module)
  1121. try:
  1122. use_sym_shape = set_symbolic_shape(True)
  1123. set_module_tracing()
  1124. set_active_module_tracer(module_tracer(_wrapped_function))
  1125. with active_module_tracer().patcher:
  1126. global_scope = InternalGraph(name="")
  1127. active_module_tracer().push_scope(global_scope)
  1128. builder = TracedModuleBuilder(mod, True)
  1129. name = mod._name if mod._name else mod.__class__.__name__
  1130. NodeMixin.wrap_safe(builder, Input.make(name, ModuleNode))
  1131. inputs, _ = tree_flatten((args, kwargs))
  1132. for _, i in enumerate(inputs):
  1133. # assert isinstance(i, Tensor), "not support "
  1134. if isinstance(i, RawTensor):
  1135. NodeMixin.wrap_safe(
  1136. i, Input.make("arg_{}".format(_), NodeMixin.get_wrapped_type(i))
  1137. )
  1138. builder(*args, **kwargs)
  1139. active_module_tracer().pop_scope()
  1140. return builder.build()
  1141. finally:
  1142. set_symbolic_shape(use_sym_shape)
  1143. set_active_module_tracer(None)
  1144. unset_module_tracing()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台