You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.cpp 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634
  1. /**
  2. * \file dnn/test/arm_common/pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megdnn/dtype.h"
  12. #include "megdnn/opr_param_defs.h"
  13. #include "test/arm_common/fixture.h"
  14. #include "test/common/pooling.h"
  15. #include "test/common/checker.h"
  16. #include "test/common/benchmarker.h"
  17. #include "test/common/rng.h"
  18. namespace megdnn {
  19. namespace test {
  20. TEST_F(ARM_COMMON, POOLING)
  21. {
  22. using Param = param::Pooling;
  23. // clang-format off
  24. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  25. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  26. for (size_t p: {1, 2})
  27. {
  28. Param param;
  29. param.mode = Param::Mode::MAX;
  30. param.window_h = param.window_w = 3;
  31. param.stride_h = param.stride_w = 2;
  32. param.pad_h = param.pad_w = p;
  33. Checker<Pooling> checker(handle());
  34. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  35. param.mode = Param::Mode::AVERAGE;
  36. param.window_h = param.window_w = 3;
  37. param.stride_h = param.stride_w = 2;
  38. param.pad_h = param.pad_w = p;
  39. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  40. param.mode = Param::Mode::MAX;
  41. param.window_h = param.window_w = 4;
  42. param.stride_h = param.stride_w = 2;
  43. param.pad_h = param.pad_w = p;
  44. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  45. param.mode = Param::Mode::MAX;
  46. param.window_h = param.window_w = 5;
  47. param.stride_h = param.stride_w = 2;
  48. param.pad_h = param.pad_w = p;
  49. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  50. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  51. }
  52. // clang-format on
  53. }
  54. TEST_F(ARM_COMMON, POOLING_INT8_W2x2_S2x2)
  55. {
  56. // clang-format off
  57. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  58. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  59. for (size_t ph: {0, 1})
  60. for (size_t pw: {0, 1})
  61. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  62. {
  63. Checker<Pooling> checker(handle());
  64. checker.set_dtype(0, dtype::Int8());
  65. param::Pooling param;
  66. param.mode = param::Pooling::Mode::MAX;
  67. param.pad_h = ph;
  68. param.pad_w = pw;
  69. param.stride_h = param.stride_w = 2;
  70. param.window_h = param.window_w = 2;
  71. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  72. }
  73. // clang-format on
  74. }
  75. TEST_F(ARM_COMMON, POOLING_INT8_W3x3_S2x2)
  76. {
  77. // clang-format off
  78. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  79. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  80. for (size_t ph: {0, 1, 2})
  81. for (size_t pw: {0, 1, 2})
  82. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  83. {
  84. Checker<Pooling> checker(handle());
  85. checker.set_dtype(0, dtype::Int8());
  86. param::Pooling param;
  87. param.mode = param::Pooling::Mode::MAX;
  88. param.pad_h = ph;
  89. param.pad_w = pw;
  90. param.stride_h = param.stride_w = 2;
  91. param.window_h = param.window_w = 3;
  92. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  93. }
  94. // clang-format on
  95. }
  96. TEST_F(ARM_COMMON, POOLING_MAX_W3x3_S2x2_NCHW44)
  97. {
  98. // clang-format off
  99. for (size_t ih: {3, 5, 10})
  100. for (size_t iw: {3, 5, 7, 9, 15, 20})
  101. for (size_t ph: {0})
  102. for (size_t pw: {0})
  103. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  104. {
  105. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  106. Checker<Pooling> checker(handle());
  107. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  108. checker.set_rng(0,&rng);
  109. param::Pooling param;
  110. param.mode = param::Pooling::Mode::MAX;
  111. param.format = param::Pooling::Format::NCHW44;
  112. param.pad_h = ph;
  113. param.pad_w = pw;
  114. param.stride_h = param.stride_w = 2;
  115. param.window_h = param.window_w = 3;
  116. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  117. }
  118. // clang-format on
  119. }
  120. TEST_F(ARM_COMMON, POOLING_MAX_W3x3_S1x1_NCHW44)
  121. {
  122. // clang-format off
  123. for (size_t ih: {3, 5, 10})
  124. for (size_t iw: {3, 5, 7, 9, 15, 20})
  125. for (size_t ph: {0})
  126. for (size_t pw: {0})
  127. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  128. {
  129. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  130. Checker<Pooling> checker(handle());
  131. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  132. checker.set_rng(0,&rng);
  133. param::Pooling param;
  134. param.mode = param::Pooling::Mode::MAX;
  135. param.format = param::Pooling::Format::NCHW44;
  136. param.pad_h = ph;
  137. param.pad_w = pw;
  138. param.stride_h = param.stride_w = 1;
  139. param.window_h = param.window_w = 3;
  140. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  141. }
  142. // clang-format on
  143. }
  144. TEST_F(ARM_COMMON, POOLING_MAX_W2x2_S1x1_NCHW44)
  145. {
  146. // clang-format off
  147. for (size_t ih: {2, 5, 10, 17})
  148. for (size_t iw: {2, 6, 8, 16, 26})
  149. for (size_t ph: {0})
  150. for (size_t pw: {0})
  151. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  152. {
  153. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  154. Checker<Pooling> checker(handle());
  155. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  156. checker.set_rng(0,&rng);
  157. param::Pooling param;
  158. param.mode = param::Pooling::Mode::MAX;
  159. param.format = param::Pooling::Format::NCHW44;
  160. param.pad_h = ph;
  161. param.pad_w = pw;
  162. param.stride_h = param.stride_w = 1;
  163. param.window_h = param.window_w = 2;
  164. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  165. }
  166. // clang-format on
  167. }
  168. TEST_F(ARM_COMMON, POOLING_MAX_W2x2_S2x2_NCHW44)
  169. {
  170. // clang-format off
  171. for (size_t ih: {2, 5, 10, 17})
  172. for (size_t iw: {2, 6, 8, 16, 26})
  173. for (size_t ph: {0})
  174. for (size_t pw: {0})
  175. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  176. {
  177. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  178. Checker<Pooling> checker(handle());
  179. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  180. checker.set_rng(0,&rng);
  181. param::Pooling param;
  182. param.mode = param::Pooling::Mode::MAX;
  183. param.format = param::Pooling::Format::NCHW44;
  184. param.pad_h = ph;
  185. param.pad_w = pw;
  186. param.stride_h = param.stride_w = 2;
  187. param.window_h = param.window_w = 2;
  188. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  189. }
  190. // clang-format on
  191. }
  192. TEST_F(ARM_COMMON, POOLING_MAX_W4x4_S1x1_NCHW44)
  193. {
  194. // clang-format off
  195. for (size_t ih: {4, 7, 10, 17, 20})
  196. for (size_t iw: {4, 8, 10, 21, 32})
  197. for (size_t ph: {0})
  198. for (size_t pw: {0})
  199. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  200. {
  201. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  202. Checker<Pooling> checker(handle());
  203. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  204. checker.set_rng(0,&rng);
  205. param::Pooling param;
  206. param.mode = param::Pooling::Mode::MAX;
  207. param.format = param::Pooling::Format::NCHW44;
  208. param.pad_h = ph;
  209. param.pad_w = pw;
  210. param.stride_h = param.stride_w = 1;
  211. param.window_h = param.window_w = 4;
  212. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  213. }
  214. // clang-format on
  215. }
  216. TEST_F(ARM_COMMON, POOLING_MAX_W4x4_S2x2_NCHW44)
  217. {
  218. // clang-format off
  219. for (size_t ih: {4, 10, 18, 25, 30})
  220. for (size_t iw: {4, 12, 17, 20, 25})
  221. for (size_t ph: {0})
  222. for (size_t pw: {0})
  223. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  224. {
  225. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  226. Checker<Pooling> checker(handle());
  227. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  228. checker.set_rng(0,&rng);
  229. param::Pooling param;
  230. param.mode = param::Pooling::Mode::MAX;
  231. param.format = param::Pooling::Format::NCHW44;
  232. param.pad_h = ph;
  233. param.pad_w = pw;
  234. param.stride_h = param.stride_w = 2;
  235. param.window_h = param.window_w = 4;
  236. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  237. }
  238. // clang-format on
  239. }
  240. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  241. TEST_F(ARM_COMMON, POOLING_FP16) {
  242. Checker<Pooling> checker(handle());
  243. checker.set_dtype(0, dtype::Float16{})
  244. .set_dtype(1, dtype::Float16{})
  245. .set_epsilon(3e-3);
  246. using Param = param::Pooling;
  247. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  248. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  249. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  250. for (size_t window : {2, 3}) {
  251. Param param;
  252. param.mode = mode;
  253. param.window_h = param.window_w = window;
  254. param.stride_h = param.stride_w = 1;
  255. param.pad_h = param.pad_w = window / 2;
  256. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  257. //! == 3)
  258. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  259. //! test for SH = SW = 2 && FH = FW = 2
  260. param.stride_h = param.stride_w = 2;
  261. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  262. }
  263. }
  264. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  265. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  266. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  267. for (size_t ph : {0, 1, 2})
  268. for (size_t pw : {0, 1, 2})
  269. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  270. param::Pooling param;
  271. param.mode = param::Pooling::Mode::MAX;
  272. param.pad_h = ph;
  273. param.pad_w = pw;
  274. param.stride_h = param.stride_w = 2;
  275. param.window_h = param.window_w = 3;
  276. checker.set_param(param).exec(
  277. TensorShapeArray{{2, 3, ih, iw}, {}});
  278. }
  279. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  280. for (size_t ih :
  281. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  282. for (size_t iw :
  283. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  284. for (size_t p : {1, 2}) {
  285. Param param;
  286. param.mode = Param::Mode::MAX;
  287. param.window_h = param.window_w = 4;
  288. param.stride_h = param.stride_w = 2;
  289. param.pad_h = param.pad_w = p;
  290. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  291. }
  292. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  293. for (size_t ih :
  294. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  295. for (size_t iw :
  296. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  297. for (size_t p : {1, 2}) {
  298. Param param;
  299. param.mode = Param::Mode::MAX;
  300. param.window_h = param.window_w = 5;
  301. param.stride_h = param.stride_w = 2;
  302. param.pad_h = param.pad_w = p;
  303. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  304. }
  305. }
  306. #endif
  307. TEST_F(ARM_COMMON, POOLING_QUANTIZED) {
  308. Checker<Pooling> checker(handle());
  309. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  310. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  311. using Param = param::Pooling;
  312. for (auto type : std::vector<DType>{
  313. dtype::QuantizedS8(1.1f),
  314. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  315. if (type.enumv() == DTypeEnum::QuantizedS8) {
  316. checker.set_rng(0, &rng1);
  317. } else {
  318. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  319. checker.set_rng(0, &rng2);
  320. }
  321. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  322. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  323. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  324. for (size_t window : {2, 3}) {
  325. Param param;
  326. param.mode = mode;
  327. param.window_h = param.window_w = window;
  328. param.stride_h = param.stride_w = 1;
  329. param.pad_h = param.pad_w = window / 2;
  330. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  331. //! FH
  332. //! == 3)
  333. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  334. //! test for SH = SW = 2 && FH = FW = 2
  335. param.stride_h = param.stride_w = 2;
  336. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  337. }
  338. }
  339. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  340. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  341. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  342. for (size_t ph : {0, 1, 2})
  343. for (size_t pw : {0, 1, 2})
  344. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  345. param::Pooling param;
  346. param.mode = param::Pooling::Mode::MAX;
  347. param.pad_h = ph;
  348. param.pad_w = pw;
  349. param.window_h = param.window_w = 3;
  350. param.stride_h = param.stride_w = 2;
  351. checker.set_param(param).exec(
  352. TensorShapeArray{{2, 3, ih, iw}, {}});
  353. }
  354. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  355. for (size_t ih :
  356. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  357. for (size_t iw :
  358. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  359. for (size_t p : {1, 2}) {
  360. Param param;
  361. param.mode = Param::Mode::MAX;
  362. param.window_h = param.window_w = 4;
  363. param.stride_h = param.stride_w = 2;
  364. param.pad_h = param.pad_w = p;
  365. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  366. }
  367. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  368. for (size_t ih :
  369. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  370. for (size_t iw :
  371. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  372. for (size_t p : {1, 2}) {
  373. Param param;
  374. param.mode = Param::Mode::MAX;
  375. param.window_h = param.window_w = 5;
  376. param.stride_h = param.stride_w = 2;
  377. param.pad_h = param.pad_w = p;
  378. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  379. }
  380. }
  381. }
  382. #if MEGDNN_WITH_BENCHMARK
  383. TEST_F(ARM_COMMON, BENCHMARK_POOLING_INT8_W3x3_S2x2)
  384. {
  385. using Param = param::Pooling;
  386. auto run = [&](const TensorShapeArray &shapes,
  387. Param param) {
  388. auto handle_naive = create_cpu_handle(2);
  389. TensorLayoutArray layouts;
  390. layouts.emplace_back(shapes[0], dtype::Int8());
  391. layouts.emplace_back(shapes[1], dtype::Int8());
  392. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  393. Benchmarker<Pooling> benchmarker_float(handle());
  394. Benchmarker<Pooling> benchmarker_int(handle());
  395. size_t RUN = 10;
  396. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  397. set_param(param).exec(shapes);
  398. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  399. set_param(param).exec(shapes);
  400. auto t3 = benchmarker_int.set_display(false).set_times(RUN).
  401. set_param(param).execl(layouts);
  402. printf("naive=%.3fms float=%.3fms, int=%.3fms\n",
  403. t1 / RUN, t2 / RUN, t3 / RUN);
  404. auto speedup = t2/t3;
  405. ASSERT_GE(speedup, 2.0);
  406. };
  407. Param param;
  408. param.window_h = param.window_w = 3;
  409. param.stride_h = param.stride_w = 2;
  410. param.pad_h = param.pad_w = 1;
  411. std::cout << "3x3 with 2x2 stride max pooling:" << std::endl;
  412. run({{1, 3, 640, 480}, {}}, param);
  413. }
  414. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W4x4_S2x2)
  415. {
  416. using Param = param::Pooling;
  417. auto run = [&](const TensorShapeArray &shapes,
  418. Param param) {
  419. std::cout << "N:" << shapes[0][0] << " "
  420. << "IC:" << shapes[0][1] << " "
  421. << "IH:" << shapes[0][2] << " "
  422. << "IW:" << shapes[0][3] << std::endl;
  423. auto handle_naive = create_cpu_handle(2);
  424. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  425. Benchmarker<Pooling> benchmarker_float(handle());
  426. size_t RUN = 10;
  427. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  428. set_param(param).exec(shapes);
  429. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  430. set_param(param).exec(shapes);
  431. TensorLayout dst_layout;
  432. auto opr = handle()->create_operator<Pooling>();
  433. opr->param() = param;
  434. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  435. float calc_amount = dst_layout.total_nr_elems() *
  436. param.window_h * param.window_w;
  437. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  438. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  439. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  440. };
  441. Param param;
  442. param.window_h = param.window_w = 4;
  443. param.stride_h = param.stride_w = 2;
  444. param.pad_h = param.pad_w = 1;
  445. std::cout << "4x4 with 2x2 stride max pooling:" << std::endl;
  446. run({{1, 24, 160, 128}, {}}, param);
  447. run({{1, 4, 240, 135}, {}}, param);
  448. run({{1, 32, 120, 67}, {}}, param);
  449. run({{1, 64, 60, 33}, {}}, param);
  450. }
  451. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W5x5_S2x2)
  452. {
  453. using Param = param::Pooling;
  454. auto run = [&](const TensorShapeArray &shapes,
  455. Param param) {
  456. std::cout << "N:" << shapes[0][0] << " "
  457. << "IC:" << shapes[0][1] << " "
  458. << "IH:" << shapes[0][2] << " "
  459. << "IW:" << shapes[0][3] << std::endl;
  460. auto handle_naive = create_cpu_handle(2);
  461. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  462. Benchmarker<Pooling> benchmarker_float(handle());
  463. size_t RUN = 10;
  464. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  465. set_param(param).exec(shapes);
  466. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  467. set_param(param).exec(shapes);
  468. TensorLayout dst_layout;
  469. auto opr = handle()->create_operator<Pooling>();
  470. opr->param() = param;
  471. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  472. float calc_amount = dst_layout.total_nr_elems() *
  473. param.window_h * param.window_w;
  474. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  475. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  476. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  477. };
  478. Param param;
  479. param.window_h = param.window_w = 5;
  480. param.stride_h = param.stride_w = 2;
  481. param.pad_h = param.pad_w = 1;
  482. std::cout << "5x5 with 2x2 stride max pooling:" << std::endl;
  483. run({{1, 24, 160, 128}, {}}, param);
  484. run({{1, 4, 240, 135}, {}}, param);
  485. run({{1, 32, 120, 67}, {}}, param);
  486. run({{1, 64, 60, 33}, {}}, param);
  487. }
  488. TEST_F(ARM_COMMON, BENCHMARK_POOLING_FP16) {
  489. using Param = param::Pooling;
  490. auto run = [&](const TensorShapeArray& shapes, Param param) {
  491. TensorLayoutArray layouts;
  492. layouts.emplace_back(shapes[0], dtype::Float16());
  493. layouts.emplace_back(shapes[1], dtype::Float16());
  494. Benchmarker<Pooling> benchmarker_float(handle());
  495. Benchmarker<Pooling> benchmarker_half(handle());
  496. size_t RUN = 10;
  497. auto tf = benchmarker_float.set_display(false)
  498. .set_times(RUN)
  499. .set_param(param)
  500. .exec(shapes) /
  501. RUN;
  502. auto th = benchmarker_half.set_display(false)
  503. .set_times(RUN)
  504. .set_param(param)
  505. .execl(layouts) /
  506. RUN;
  507. TensorLayout dst_layout;
  508. auto opr = handle()->create_operator<Pooling>();
  509. opr->param() = param;
  510. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  511. float computations = dst_layout.total_nr_elems() * param.window_h *
  512. param.window_w / (1024.f * 1024 * 1024);
  513. printf("float=%.3fms %f gflops, float16=%.3fms %f gflops speedup: %f\n",
  514. tf, computations / tf * 1e3, th, computations / th * 1e3,
  515. tf / th);
  516. };
  517. Param param;
  518. param.window_h = param.window_w = 2;
  519. param.stride_h = param.stride_w = 1;
  520. param.pad_h = param.pad_w = 1;
  521. printf("2x2 with 1x1 stride max pooling:\n");
  522. run({{1, 3, 640, 480}, {}}, param);
  523. for (size_t oh : {640, 128})
  524. for (size_t ow : {480, 112}) {
  525. param.window_h = param.window_w = 3;
  526. param.stride_h = param.stride_w = 2;
  527. param.pad_h = param.pad_w = 1;
  528. param.mode = Param::Mode::AVERAGE;
  529. printf("3x3 with 2x2 stride average pooling.\n");
  530. run({{1, 3, oh, ow}, {}}, param);
  531. for (size_t pw : {2, 3, 4, 5}) {
  532. param.window_h = param.window_w = pw;
  533. param.stride_h = param.stride_w = 2;
  534. param.pad_h = param.pad_w = 1;
  535. param.mode = Param::Mode::MAX;
  536. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  537. run({{1, 3, oh, ow}, {}}, param);
  538. }
  539. }
  540. }
  541. TEST_F(ARM_COMMON, BENCHMARK_POOLING_QUANTIZED) {
  542. using Param = param::Pooling;
  543. auto run = [&](const TensorShapeArray& shapes, Param param) {
  544. auto handle_naive = create_cpu_handle(2);
  545. TensorLayoutArray layouts;
  546. layouts.emplace_back(shapes[0], dtype::QuantizedS8(1.1f));
  547. layouts.emplace_back(shapes[1], dtype::QuantizedS8(1.1f));
  548. Benchmarker<Pooling> benchmarker_int(handle());
  549. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  550. size_t RUN = 10;
  551. auto time_int = benchmarker_int.set_display(false)
  552. .set_times(RUN)
  553. .set_param(param)
  554. .exec(shapes) /
  555. RUN;
  556. auto time_naive = benchmarker_naive.set_display(false)
  557. .set_times(RUN)
  558. .set_param(param)
  559. .execl(layouts) /
  560. RUN;
  561. TensorLayout dst_layout;
  562. auto opr = handle()->create_operator<Pooling>();
  563. opr->param() = param;
  564. opr->deduce_layout({shapes[0], dtype::QuantizedS8(1.1f)}, dst_layout);
  565. float computations = dst_layout.total_nr_elems() * param.window_h *
  566. param.window_w / (1024.f * 1024 * 1024);
  567. printf("naive=%.3fms %f gflops, int8=%.3fms %f gflops speedup: %f\n",
  568. time_naive, computations / time_naive * 1e3, time_int,
  569. computations / time_int * 1e3, time_naive / time_int);
  570. };
  571. Param param;
  572. param.window_h = param.window_w = 2;
  573. param.stride_h = param.stride_w = 1;
  574. param.pad_h = param.pad_w = 1;
  575. printf("2x2 with 1x1 stride max pooling:\n");
  576. run({{1, 3, 640, 480}, {}}, param);
  577. // clang-format off
  578. for (size_t oh : {640, 128})
  579. for (size_t ow : {480, 112})
  580. for (size_t pw : {2, 3, 4, 5}) {
  581. param.window_h = param.window_w = pw;
  582. param.stride_h = param.stride_w = 2;
  583. param.pad_h = param.pad_w = 1;
  584. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  585. run({{1, 3, oh, ow}, {}}, param);
  586. }
  587. // clang-format on
  588. }
  589. #endif
  590. } // namespace test
  591. } // namespace megdnn
  592. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台