You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

observer.py 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import math
  9. from abc import abstractmethod
  10. from enum import Enum
  11. import numpy as np
  12. from .. import functional as F
  13. from .._internal.dtype import _metadata_dict, get_quantized_dtype
  14. from ..core import Buffer
  15. from ..jit import sideeffect
  16. from ..module import Module
  17. from .utils import QuantMode, Round, get_qparam_dict
  18. class Observer(Module):
  19. r"""
  20. A base class for Observer Module.
  21. :param dtype: a string indicating to collect scale and zero_point of which dtype
  22. :param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``,
  23. instead of 1 greater. Usually True for weight and False for activation.
  24. """
  25. def __init__(self, dtype: str, narrow_range: bool = False):
  26. super().__init__()
  27. if dtype not in _metadata_dict.keys():
  28. raise ValueError(
  29. "unknown dtype: {}, only support {}".format(
  30. dtype, _metadata_dict.keys()
  31. )
  32. )
  33. self.dtype = dtype
  34. self.narrow_range = narrow_range
  35. self.qmin = (
  36. -_metadata_dict[dtype].qmax if narrow_range else _metadata_dict[dtype].qmin
  37. )
  38. self.qmax = _metadata_dict[dtype].qmax
  39. self.enabled = True
  40. def get_dtype(self):
  41. q_dict = self.get_qparams()
  42. numpy_scale = None if "scale" not in q_dict else q_dict["scale"].numpy()[0]
  43. numpy_zero_point = (
  44. None if "zero_point" not in q_dict else q_dict["zero_point"].numpy()[0]
  45. )
  46. return get_quantized_dtype(self.dtype, numpy_scale, numpy_zero_point)
  47. def enable(self):
  48. self.enabled = True
  49. def disable(self):
  50. self.enabled = False
  51. def train(self, mode: bool = True, recursive: bool = True) -> None:
  52. super().train(mode, recursive)
  53. if mode:
  54. self.enable()
  55. else:
  56. self.disable()
  57. @abstractmethod
  58. def forward(self, x):
  59. pass
  60. @abstractmethod
  61. def get_qparams(self, **kwargs):
  62. pass
  63. class MinMaxObserver(Observer):
  64. def __init__(
  65. self,
  66. mode=QuantMode.SYMMERTIC,
  67. eps=0.00001,
  68. dtype="qint8",
  69. narrow_range: bool = False,
  70. ):
  71. super().__init__(dtype, narrow_range)
  72. self.mode = mode
  73. self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32)
  74. self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32)
  75. self.scale_limit = eps
  76. def _calculate_qparams(self, inp_min_val, inp_max_val):
  77. min_val = F.minimum(0.0, inp_min_val)
  78. max_val = F.maximum(0.0, inp_max_val)
  79. q_dict = get_qparam_dict(self.mode)
  80. q_dict["min_val"] = inp_min_val
  81. q_dict["max_val"] = inp_max_val
  82. q_dict["enable_observer"] = self.enable
  83. if self.mode == QuantMode.SYMMERTIC:
  84. symmetric_max_vals = F.maximum(-min_val, max_val)
  85. # use maximun to avoid scale too small at the begin
  86. q_dict["scale"] = F.maximum(
  87. symmetric_max_vals / ((self.qmax - self.qmin) / 2), self.scale_limit
  88. )
  89. # zero_point = self.zero_point
  90. else:
  91. # use maximun to avoid scale too small at the begin
  92. q_dict["scale"] = F.maximum(
  93. (max_val - min_val) / (self.qmax - self.qmin), self.scale_limit,
  94. )
  95. # caculate zero_point
  96. q_dict["zero_point"] = self.qmin - Round()((min_val / q_dict["scale"]))
  97. return q_dict
  98. def get_qparams(self):
  99. return self._calculate_qparams(self.min_val, self.max_val)
  100. def forward(self, x_orig):
  101. if self.enabled:
  102. # stop gradient
  103. x = F.zero_grad(x_orig)
  104. # find max and min
  105. F.add_update(
  106. self.min_val,
  107. F.minimum(self.min_val, x.min()),
  108. alpha=0.0,
  109. beta=1.0,
  110. bias=0.0,
  111. )
  112. F.add_update(
  113. self.max_val,
  114. F.maximum(self.max_val, x.max()),
  115. alpha=0.0,
  116. beta=1.0,
  117. bias=0.0,
  118. )
  119. return x_orig
  120. class ExponentialMovingAverageObserver(MinMaxObserver):
  121. def __init__(
  122. self,
  123. momentum=0.9,
  124. mode=QuantMode.SYMMERTIC,
  125. eps=0.00001,
  126. dtype="qint8",
  127. narrow_range: bool = False,
  128. ):
  129. super().__init__(mode, eps, dtype, narrow_range)
  130. self.momentum = Buffer(momentum)
  131. self.runtime_momentum = Buffer(0.0)
  132. def set_momentum(self, momentum):
  133. self.momentum.set_value(momentum)
  134. def forward(self, x_orig):
  135. if self.enabled:
  136. # stop gradient
  137. x = F.zero_grad(x_orig)
  138. # Exponential Moving Average
  139. tmp_min = (
  140. self.min_val * self.runtime_momentum
  141. + (1 - self.runtime_momentum) * x.min()
  142. )
  143. tmp_max = (
  144. self.max_val * self.runtime_momentum
  145. + (1 - self.runtime_momentum) * x.max()
  146. )
  147. F.add_update(self.min_val, tmp_min, alpha=0.0, beta=1.0, bias=0.0)
  148. F.add_update(self.max_val, tmp_max, alpha=0.0, beta=1.0, bias=0.0)
  149. F.add_update(
  150. self.runtime_momentum, self.momentum, alpha=0.0, beta=1.0, bias=0.0
  151. )
  152. return x_orig
  153. class HistogramObserver(MinMaxObserver):
  154. def __init__(
  155. self,
  156. bins=2048,
  157. upsample_rate=128,
  158. mode=QuantMode.SYMMERTIC,
  159. eps=0.00001,
  160. dtype="qint8",
  161. narrow_range: bool = False,
  162. ):
  163. super().__init__(mode, eps, dtype, narrow_range)
  164. self.bins = bins
  165. self.upsample_rate = upsample_rate
  166. self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1
  167. self.histogram = Buffer([-1] + [0.0] * (bins - 1))
  168. def _non_linear_param_search(self):
  169. r"""Non-linear parameter search.
  170. An approximation for L2 error minimization for selecting min/max.
  171. By selecting new min/max, we filter out outliers in input distribution.
  172. """
  173. np_min_val = self.min_val.numpy()[0]
  174. np_max_val = self.max_val.numpy()[0]
  175. np_histogram = self.histogram.numpy()
  176. assert len(np_histogram) == self.bins, "bins mistmatch"
  177. bin_width = (np_max_val - np_min_val) / self.bins
  178. def _get_norm(delta_begin, delta_end, density, norm_type):
  179. r"""
  180. Compute the norm of the values uniformaly distributed between
  181. delta_begin and delta_end.
  182. norm = density * (integral_{begin, end} x^2)
  183. = density * (end^3 - begin^3) / 3
  184. """
  185. assert norm_type == "L2", "Only L2 norms are currently supported"
  186. norm = 0.0
  187. if norm_type == "L2":
  188. norm = (
  189. delta_end * delta_end * delta_end
  190. - delta_begin * delta_begin * delta_begin
  191. ) / 3
  192. return density * norm
  193. def _compute_quantization_error(next_start_bin, next_end_bin, norm_type):
  194. r"""
  195. Compute the quantization error if we use start_bin to end_bin as the
  196. min and max to do the quantization.
  197. """
  198. norm = 0.0
  199. dst_bin_width = (
  200. bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins
  201. )
  202. if dst_bin_width == 0.0:
  203. return 0.0
  204. for src_bin in range(self.bins):
  205. # distances from the beginning of first dst_bin to the beginning and
  206. # end of src_bin
  207. src_bin_begin = (src_bin - next_start_bin) * bin_width
  208. src_bin_end = src_bin_begin + bin_width
  209. # which dst_bins the beginning and end of src_bin belong to?
  210. dst_bin_of_begin = min(
  211. self.dst_nbins - 1,
  212. max(0.0, math.floor(src_bin_begin / dst_bin_width)),
  213. )
  214. dst_bin_of_end = min(
  215. self.dst_nbins - 1,
  216. max(0.0, math.floor(src_bin_end / dst_bin_width)),
  217. )
  218. dst_bin_of_begin_center = (
  219. dst_bin_of_begin * dst_bin_width + dst_bin_width / 2
  220. )
  221. density = np_histogram[src_bin] / bin_width
  222. if dst_bin_of_begin == dst_bin_of_end:
  223. # if src_bin is entirely within 1 dst_bin
  224. delta_begin = src_bin_begin - dst_bin_of_begin_center
  225. delta_end = src_bin_end - dst_bin_of_begin_center
  226. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  227. else:
  228. delta_begin = src_bin_begin - dst_bin_of_begin_center
  229. delta_end = dst_bin_width / 2
  230. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  231. norm = norm + (dst_bin_of_end - dst_bin_of_begin - 1) * _get_norm(
  232. -dst_bin_width / 2, dst_bin_width / 2, density, norm_type
  233. )
  234. dst_bin_of_end_center = (
  235. dst_bin_of_end * dst_bin_width + dst_bin_width / 2
  236. )
  237. delta_begin = -dst_bin_width / 2
  238. delta_end = src_bin_end - dst_bin_of_end_center
  239. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  240. return norm
  241. # cumulative sum
  242. total = sum(np_histogram)
  243. cSum = np.cumsum(np_histogram, axis=0)
  244. stepsize = 1e-5 # granularity
  245. alpha = 0.0 # lower bound
  246. beta = 1.0 # upper bound
  247. start_bin = 0
  248. end_bin = self.bins - 1
  249. norm_min = float("inf")
  250. while alpha < beta:
  251. # Find the next step
  252. next_alpha = alpha + stepsize
  253. next_beta = beta - stepsize
  254. # find the left and right bins between the quantile bounds
  255. l = start_bin
  256. r = end_bin
  257. while l < end_bin and cSum[l] < next_alpha * total:
  258. l = l + 1
  259. while r > start_bin and cSum[r] > next_beta * total:
  260. r = r - 1
  261. # decide the next move
  262. next_start_bin = start_bin
  263. next_end_bin = end_bin
  264. if (l - start_bin) > (end_bin - r):
  265. # move the start bin
  266. next_start_bin = l
  267. alpha = next_alpha
  268. else:
  269. # move the end bin
  270. next_end_bin = r
  271. beta = next_beta
  272. if next_start_bin == start_bin and next_end_bin == end_bin:
  273. continue
  274. # calculate the quantization error using next_start_bin and next_end_bin
  275. norm = _compute_quantization_error(next_start_bin, next_end_bin, "L2")
  276. if norm > norm_min:
  277. break
  278. norm_min = norm
  279. start_bin = next_start_bin
  280. end_bin = next_end_bin
  281. new_min = self.min_val + bin_width * start_bin
  282. new_max = self.min_val + bin_width * (end_bin + 1)
  283. return new_min, new_max
  284. def get_qparams(self):
  285. new_min, new_max = self._non_linear_param_search()
  286. return self._calculate_qparams(new_min, new_max)
  287. def _combine_histograms(
  288. self, orig_hist, new_hist, upsample_rate, downsample_rate, start_idx, Nbins
  289. ):
  290. # First up-sample the histogram with new data by a factor of L
  291. # This creates an approximate probability density thats piecwise constant
  292. upsampled_histogram = new_hist.repeat(upsample_rate)
  293. # Now insert the upsampled histogram into the output
  294. # histogram, which is initialized with zeros.
  295. # The offset at which the histogram is introduced is determined
  296. # by the start index as the output histogram can cover a wider range
  297. histogram_with_output_range = np.zeros((Nbins * downsample_rate))
  298. histogram_with_output_range[
  299. start_idx : Nbins * upsample_rate + start_idx
  300. ] = upsampled_histogram
  301. # Compute integral histogram, double precision is needed to ensure
  302. # that there are no overflows
  303. integral_histogram = np.cumsum(histogram_with_output_range, 0)[
  304. downsample_rate - 1 :: downsample_rate
  305. ]
  306. # Finally perform interpolation
  307. shifted_integral_histogram = np.zeros((Nbins))
  308. shifted_integral_histogram[1:Nbins] = integral_histogram[0:-1]
  309. interpolated_histogram = (
  310. integral_histogram - shifted_integral_histogram
  311. ) / upsample_rate
  312. orig_hist = orig_hist + interpolated_histogram
  313. return orig_hist
  314. def _adjust_min_max(self, combined_min, combined_max, upsample_rate):
  315. # We ensure that:
  316. # (combined_max - combined_min)/(downsample_rate*Nbins) = (max - min)/(upsample_rate*Nbins)
  317. # This allows us to have a common grid of resolution s, where we can align
  318. # the input histogram
  319. # start_idx maps min_val to the histogram bin index.
  320. np_min_val = self.min_val.numpy()[0]
  321. np_max_val = self.max_val.numpy()[0]
  322. hist_bin_width = (np_max_val - np_min_val) / (self.bins * upsample_rate)
  323. downsample_rate = int(
  324. np.ceil((combined_max - combined_min) / (self.bins * hist_bin_width))
  325. )
  326. e = downsample_rate * (self.bins * hist_bin_width) - (
  327. combined_max - combined_min
  328. )
  329. combined_max = combined_max + e / 2
  330. combined_min = combined_min - e / 2
  331. start_idx = int(np.round((np_min_val - combined_min) / hist_bin_width))
  332. return combined_min, combined_max, downsample_rate, start_idx
  333. @sideeffect
  334. def sideeffect_forward(self, x_orig):
  335. x = x_orig.numpy()
  336. min_val = self.min_val.numpy()[0]
  337. max_val = self.max_val.numpy()[0]
  338. histogram = self.histogram.numpy()
  339. new_min = x.min()
  340. new_max = x.max()
  341. if histogram[0] == -1:
  342. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  343. else:
  344. new_min = min(new_min, min_val)
  345. new_max = max(new_max, max_val)
  346. # combine the existing histogram and new histogram into 1 histogram
  347. # We do this by first upsampling the histogram to a dense grid
  348. # and then downsampling the histogram efficiently
  349. (new_min, new_max, downsample_rate, start_idx,) = self._adjust_min_max(
  350. new_min, new_max, self.upsample_rate
  351. )
  352. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  353. new_histogram = new_histogram.astype(np.float64)
  354. if new_min == min_val and new_max == max_val:
  355. new_histogram += histogram
  356. else:
  357. new_histogram = self._combine_histograms(
  358. new_histogram,
  359. histogram,
  360. self.upsample_rate,
  361. downsample_rate,
  362. start_idx,
  363. self.bins,
  364. )
  365. self.histogram.set_value(new_histogram)
  366. self.min_val.set_value(new_min)
  367. self.max_val.set_value(new_max)
  368. def forward(self, x_orig):
  369. self.sideeffect_forward(x_orig)
  370. return x_orig

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台