You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataloader.py 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import gc
  11. import math
  12. import multiprocessing
  13. import platform
  14. import queue
  15. import random
  16. import threading
  17. import time
  18. from typing import Callable
  19. import numpy as np
  20. from ..logger import get_logger
  21. from ..random.rng import _random_seed_generator
  22. from .collator import Collator
  23. from .dataset import Dataset, StreamDataset
  24. from .sampler import MapSampler, Sampler, SequentialSampler, StreamSampler
  25. from .transform import PseudoTransform, Transform
  26. try:
  27. import thread
  28. except:
  29. import _thread as thread
  30. logger = get_logger(__name__)
  31. GLOBAL_TIMEOUT = 5
  32. def raise_timeout_error():
  33. raise RuntimeError("dataloader timeout")
  34. class DataLoader:
  35. r"""Provides a convenient way to iterate on a given dataset.
  36. DataLoader combines a dataset with
  37. :class:`~.Sampler`, :class:`~.Transform` and :class:`~.Collator`,
  38. make it flexible to get minibatch continually from a dataset.
  39. :param dataset: dataset from which to load the minibatch.
  40. :param sampler: defines the strategy to sample data from the dataset.
  41. :param transform: defined the transforming strategy for a sampled batch.
  42. Default: None
  43. :param collator: defined the merging strategy for a transformed batch.
  44. Default: None
  45. :param num_workers: the number of sub-process to load, transform and collate
  46. the batch. ``0`` means using single-process. Default: 0
  47. :param timeout: if positive, means the timeout value(second) for collecting a
  48. batch from workers. Default: 0
  49. :param timeout_event: callback function triggered by timeout, default to raise
  50. runtime error.
  51. :param divide: define the paralleling strategy in multi-processing mode.
  52. ``True`` means one batch is divided into :attr:`num_workers` pieces, and
  53. the workers will process these pieces parallelly. ``False`` means
  54. different sub-process will process different batch. Default: False
  55. """
  56. __initialized = False
  57. def __init__(
  58. self,
  59. dataset: Dataset,
  60. sampler: Sampler = None,
  61. transform: Transform = None,
  62. collator: Collator = None,
  63. num_workers: int = 0,
  64. timeout: int = 0,
  65. timeout_event: Callable = raise_timeout_error,
  66. divide: bool = False,
  67. ):
  68. if num_workers < 0:
  69. raise ValueError("num_workers should not be negative")
  70. if timeout < 0:
  71. raise ValueError("timeout should not be negative")
  72. if divide and num_workers <= 1:
  73. raise ValueError("divide should not be set to True when num_workers <= 1")
  74. self.dataset = dataset
  75. self.num_workers = num_workers
  76. self.timeout = timeout
  77. self.timeout_event = timeout_event
  78. self.divide = divide
  79. if isinstance(dataset, StreamDataset):
  80. self.sampler = sampler if sampler else StreamSampler(batch_size=1)
  81. assert isinstance(
  82. self.sampler, StreamSampler
  83. ), "types of dataset and sampler do not match"
  84. else:
  85. assert isinstance(
  86. dataset, Dataset
  87. ), "Can not recognize this kind of dataset: %s" % type(dataset)
  88. self.sampler = (
  89. sampler
  90. if sampler
  91. else SequentialSampler(dataset, batch_size=1, drop_last=False)
  92. )
  93. assert isinstance(
  94. self.sampler, MapSampler
  95. ), "types of dataset and sampler do not match"
  96. if divide:
  97. if self.sampler.batch_size <= self.num_workers:
  98. raise ValueError(
  99. "batch size must not smaller than num_workers in divide mode."
  100. )
  101. elif self.sampler.batch_size % self.num_workers:
  102. logger.warning(
  103. "batch size is not divisible by num_workers, may lose performance in divide mode."
  104. )
  105. if transform is None:
  106. self.transform = PseudoTransform()
  107. else:
  108. self.transform = transform
  109. if collator is None:
  110. self.collator = Collator()
  111. else:
  112. self.collator = collator
  113. self.__initialized = True
  114. def __iter__(self):
  115. if platform.system() == "Windows" and self.num_workers > 0:
  116. print(
  117. "pyarrow.plasma does not support ParallelDataLoader on windows, changing num_workers to be zero"
  118. )
  119. self.num_workers = 0
  120. if isinstance(self.dataset, StreamDataset):
  121. if not self.num_workers:
  122. return _SerialStreamDataLoaderIter(self)
  123. else:
  124. return _ParallelStreamDataLoaderIter(self)
  125. else:
  126. assert isinstance(
  127. self.dataset, Dataset
  128. ), "Can not recognize this kind of dataset: %s" % type(self.dataset)
  129. if not self.num_workers:
  130. return _SerialMapDataLoaderIter(self)
  131. else:
  132. return _ParallelMapDataLoaderIter(self)
  133. def __len__(self):
  134. return len(self.sampler)
  135. class _BaseMapDataLoaderIter:
  136. def __init__(self, loader):
  137. self.dataset = loader.dataset
  138. self.sampler = loader.sampler
  139. self.seed = _random_seed_generator().__next__()
  140. self.transform = loader.transform
  141. self.collator = loader.collator
  142. self.num_workers = loader.num_workers
  143. self.timeout = loader.timeout
  144. self.timeout_event = loader.timeout_event
  145. self.divide = loader.divide
  146. self.num_processed = 0
  147. def _get_next_batch(self):
  148. raise NotImplementedError
  149. def __len__(self):
  150. return len(self.sampler)
  151. def __iter__(self):
  152. return self
  153. def __next__(self):
  154. if self.num_processed >= len(self):
  155. raise StopIteration
  156. minibatch = self._get_next_batch()
  157. self.num_processed += 1
  158. return minibatch
  159. class _SerialMapDataLoaderIter(_BaseMapDataLoaderIter):
  160. def __init__(self, loader):
  161. super(_SerialMapDataLoaderIter, self).__init__(loader)
  162. self.indices_iter = iter(self.sampler)
  163. def _get_next_batch(self):
  164. indices = next(self.indices_iter)
  165. items = [self.dataset[idx] for idx in indices]
  166. trans_items = self.transform.apply_batch(items)
  167. return self.collator.apply(trans_items)
  168. class _ParallelMapDataLoaderIter(_BaseMapDataLoaderIter):
  169. __initialized = False
  170. def __init__(self, loader):
  171. super(_ParallelMapDataLoaderIter, self).__init__(loader)
  172. self.task_queues = [
  173. multiprocessing.Queue(maxsize=2) for _ in range(self.num_workers)
  174. ]
  175. self.feed_batch_idx = multiprocessing.Value("i", 0)
  176. self.target_batch_idx = multiprocessing.Value("i", 0)
  177. self.shutdown_flag = multiprocessing.Value("i", 0)
  178. self.trans_data_queues = [
  179. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  180. ]
  181. # use shared-memory queue implemented by pyarrow plasma store.
  182. from .tools._queue import PlasmaShmQueue
  183. self.batch_queue = PlasmaShmQueue(maxsize=2)
  184. self.task_feeding_worker = multiprocessing.Process(
  185. target=_task_feeding_loop,
  186. args=(
  187. iter(self.sampler),
  188. self.task_queues,
  189. self.num_workers,
  190. self.divide,
  191. self.shutdown_flag,
  192. self.feed_batch_idx,
  193. ),
  194. daemon=True,
  195. )
  196. gc.collect()
  197. self.task_feeding_worker.start()
  198. self.workers = []
  199. for worker_id in range(self.num_workers):
  200. worker = multiprocessing.Process(
  201. target=_worker_loop,
  202. args=(
  203. self.dataset,
  204. self.task_queues[worker_id],
  205. self.trans_data_queues[worker_id],
  206. self.transform,
  207. self.seed + worker_id + 1,
  208. self.shutdown_flag,
  209. ),
  210. daemon=True,
  211. )
  212. gc.collect()
  213. worker.start()
  214. self.workers.append(worker)
  215. if self.divide:
  216. self.data_collecting_worker = multiprocessing.Process(
  217. target=_data_gathering_loop,
  218. args=(
  219. self.trans_data_queues,
  220. self.batch_queue,
  221. self.collator,
  222. len(self),
  223. self.num_workers,
  224. self.shutdown_flag,
  225. self.target_batch_idx,
  226. ),
  227. daemon=True,
  228. )
  229. else:
  230. self.data_collecting_worker = multiprocessing.Process(
  231. target=_data_selecting_loop,
  232. args=(
  233. self.trans_data_queues,
  234. self.batch_queue,
  235. self.collator,
  236. len(self),
  237. self.num_workers,
  238. self.shutdown_flag,
  239. self.target_batch_idx,
  240. ),
  241. daemon=True,
  242. )
  243. gc.collect()
  244. self.data_collecting_worker.start()
  245. self.__initialized = True
  246. def _check_workers(self):
  247. # Check the status of each worker.
  248. if not self.data_collecting_worker.is_alive():
  249. exitcode = self.task_feeding_worker.exitcode
  250. if exitcode != 0:
  251. raise RuntimeError("data collecting worker died. {}".format(exitcode))
  252. if not self.task_feeding_worker.is_alive():
  253. exitcode = self.task_feeding_worker.exitcode
  254. if exitcode != 0:
  255. raise RuntimeError("task feeding worker died. {}".format(exitcode))
  256. for worker_id, worker in enumerate(self.workers):
  257. if not worker.is_alive():
  258. exitcode = worker.exitcode
  259. if exitcode != 0:
  260. raise RuntimeError("worker:{} died. {}".format(worker_id, exitcode))
  261. logger.debug("all workers are alive.")
  262. def _get_next_batch(self):
  263. start_time = time.time()
  264. while True:
  265. self._check_workers()
  266. try:
  267. return self.batch_queue.get(timeout=1)
  268. except queue.Empty:
  269. logger.debug("batch queue empty!")
  270. waited_time = time.time() - start_time
  271. if self.timeout > 0:
  272. if waited_time > self.timeout:
  273. raise RuntimeError("get_next_batch timeout!")
  274. def _shutdown(self):
  275. with self.shutdown_flag.get_lock():
  276. self.shutdown_flag.value = 1
  277. if self.task_feeding_worker.is_alive():
  278. self.task_feeding_worker.terminate()
  279. self.task_feeding_worker.join()
  280. if self.data_collecting_worker.is_alive():
  281. self.data_collecting_worker.terminate()
  282. self.data_collecting_worker.join()
  283. for worker in self.workers:
  284. if worker.is_alive():
  285. worker.terminate()
  286. worker.join()
  287. for q in self.trans_data_queues:
  288. q.cancel_join_thread()
  289. q.close()
  290. for q in self.task_queues:
  291. q.cancel_join_thread()
  292. q.close()
  293. self.batch_queue.cancel_join_thread()
  294. self.batch_queue.close()
  295. def __del__(self):
  296. if self.__initialized:
  297. self._shutdown()
  298. class _BaseStreamDataLoaderIter:
  299. def __init__(self, loader):
  300. self.dataset = loader.dataset
  301. self.sampler = loader.sampler
  302. self.transform = loader.transform
  303. self.collator = loader.collator
  304. self.num_workers = loader.num_workers
  305. self.timeout = loader.timeout
  306. self.timeout_event = loader.timeout_event
  307. def _get_next_batch(self):
  308. raise NotImplementedError
  309. def _process_raw_data(self, raw_data):
  310. assert len(raw_data) == 2 and isinstance(
  311. raw_data[0], bool
  312. ), "StreamDataset should provide a binary tuple, the first item indicates whether the data was batched."
  313. if not raw_data[0]:
  314. data = list((x,) for x in raw_data[1])
  315. else:
  316. data = raw_data[1]
  317. ret = []
  318. for idx in range(len(data[0])):
  319. ret.append(tuple(e[idx] for e in data))
  320. return ret
  321. def __iter__(self):
  322. return self
  323. def __next__(self):
  324. return self._get_next_batch()
  325. class _SerialStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  326. def __init__(self, loader):
  327. super().__init__(loader)
  328. self.dataset_iter = iter(self.dataset)
  329. self.idx = 0
  330. self.unused = []
  331. def _try_get_raw_data(self, start_time):
  332. raw_data = None
  333. while not raw_data:
  334. try:
  335. if self.timeout > 0:
  336. timer = threading.Timer(self.timeout, thread.interrupt_main)
  337. timer.start()
  338. raw_data = next(self.dataset_iter)
  339. if self.timeout > 0:
  340. timer.cancel()
  341. except KeyboardInterrupt:
  342. raw_data = self.timeout_event()
  343. except:
  344. if self.timeout > 0:
  345. timer.cancel()
  346. waited_time = time.time() - start_time
  347. if waited_time > self.timeout:
  348. raw_data = self.timeout_event()
  349. return raw_data
  350. def _get_next_batch(self):
  351. ret = []
  352. start_time = time.time()
  353. while len(ret) < self.sampler.batch_size:
  354. if len(self.unused) != 0:
  355. batch_data = self.unused
  356. else:
  357. raw_data = self._try_get_raw_data(start_time)
  358. batch_data = self._process_raw_data(raw_data)
  359. while len(batch_data) != 0 and len(ret) < self.sampler.batch_size:
  360. data = batch_data.pop()
  361. ret.append(self.transform.apply(data))
  362. self.unused = batch_data
  363. return self.collator.apply(ret)
  364. class _ParallelStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  365. __initialized = False
  366. def __init__(self, loader):
  367. super().__init__(loader)
  368. self.shutdown_flag = multiprocessing.Value("i", 0)
  369. self.raw_data_queues = [
  370. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  371. ]
  372. self.trans_data_queues = [
  373. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  374. ]
  375. # shared-memory queue implemented by pyarrow plasma store
  376. from .tools._queue import PlasmaShmQueue
  377. self.batch_queue = PlasmaShmQueue(maxsize=2)
  378. self.recieve_worker = multiprocessing.Process(
  379. target=self._worker_to_raw_data_queues, daemon=True
  380. )
  381. gc.collect()
  382. self.recieve_worker.start()
  383. self.transform_workers = []
  384. for worker_id in range(self.num_workers):
  385. worker = multiprocessing.Process(
  386. target=self._worker_to_trans_data_queues, args=(worker_id,), daemon=True
  387. )
  388. gc.collect()
  389. worker.start()
  390. self.transform_workers.append(worker)
  391. self.collect_worker = multiprocessing.Process(
  392. target=self._worker_to_batch_queue, daemon=True
  393. )
  394. gc.collect()
  395. self.collect_worker.start()
  396. self.__initialized = True
  397. def _put_raw_data_queues(self, raw_data, qidx):
  398. batch_data = self._process_raw_data(raw_data)
  399. for data in batch_data:
  400. while True:
  401. qidx = qidx % self.num_workers
  402. try:
  403. self.raw_data_queues[qidx].put(data)
  404. break
  405. except queue.Full:
  406. if self.shutdown_flag.value == 1:
  407. break
  408. logger.debug("raw data queue %d is full" % qidx)
  409. finally:
  410. qidx += 1
  411. return qidx
  412. def _worker_to_raw_data_queues(self):
  413. dataset_iter = iter(self.dataset)
  414. qidx = 0
  415. while True:
  416. if self.shutdown_flag.value == 1:
  417. break
  418. raw_data = next(dataset_iter)
  419. qidx = self._put_raw_data_queues(raw_data, qidx)
  420. def _worker_to_trans_data_queues(self, worker_id):
  421. while True:
  422. if self.shutdown_flag.value == 1:
  423. break
  424. try:
  425. data = self.raw_data_queues[worker_id].get(timeout=GLOBAL_TIMEOUT)
  426. except queue.Empty:
  427. continue
  428. trans_data = self.transform.apply(data)
  429. while True:
  430. try:
  431. self.trans_data_queues[worker_id].put(trans_data)
  432. break
  433. except queue.Full:
  434. if self.shutdown_flag.value == 1:
  435. break
  436. logger.debug("batch queue if full")
  437. def _worker_to_batch_queue(self):
  438. cnt = -1
  439. trans_items = []
  440. while True:
  441. if self.shutdown_flag.value == 1:
  442. break
  443. cnt += 1
  444. queue_id = cnt % self.num_workers
  445. try:
  446. trans_item = self.trans_data_queues[queue_id].get(
  447. timeout=GLOBAL_TIMEOUT
  448. )
  449. except queue.Empty:
  450. continue
  451. trans_items.append(trans_item)
  452. if len(trans_items) == self.sampler.batch_size:
  453. batch_data = self.collator.apply(trans_items)
  454. while True:
  455. try:
  456. self.batch_queue.put(batch_data, timeout=1)
  457. break
  458. except queue.Full:
  459. if self.shutdown_flag.value == 1:
  460. break
  461. logger.debug("batch queue is full")
  462. trans_items = []
  463. def _check_workers(self):
  464. if not self.collect_worker.is_alive():
  465. exitcode = self.collect_worker.exitcode
  466. if exitcode != 0:
  467. raise RuntimeError("collator worker died. {}".format(exitcode))
  468. for worker_id, worker in enumerate(self.transform_workers):
  469. if not worker.is_alive():
  470. exitcode = worker.exitcode
  471. if exitcode != 0:
  472. raise RuntimeError(
  473. "worker: {} died. {}".format(worker_id, exitcode)
  474. )
  475. def _get_next_batch(self):
  476. start_time = time.time()
  477. while True:
  478. self._check_workers()
  479. try:
  480. return self.batch_queue.get(timeout=1)
  481. except queue.Empty:
  482. logger.debug("batch queue empty!")
  483. waited_time = time.time() - start_time
  484. if self.timeout > 0 and waited_time > self.timeout:
  485. self._put_raw_data_queues(self.timeout_event(), 0)
  486. def _shutdown(self):
  487. with self.shutdown_flag.get_lock():
  488. self.shutdown_flag.value = 1
  489. if self.recieve_worker.is_alive():
  490. self.recieve_worker.terminate()
  491. self.recieve_worker.join()
  492. if self.collect_worker.is_alive():
  493. self.collect_worker.terminate()
  494. self.collect_worker.join()
  495. for worker in self.transform_workers:
  496. if worker.is_alive():
  497. worker.terminate()
  498. worker.join()
  499. for q in self.raw_data_queues:
  500. q.cancel_join_thread()
  501. q.close()
  502. for q in self.trans_data_queues:
  503. q.cancel_join_thread()
  504. q.close()
  505. self.batch_queue.cancel_join_thread()
  506. self.batch_queue.close()
  507. def __del__(self):
  508. if self.__initialized:
  509. self._shutdown()
  510. def _task_feeding_loop(
  511. indices_iter, task_queues, num_workers, divide, shutdown_flag, feed_batch_idx
  512. ):
  513. # Feed the indices into the task queues
  514. while True:
  515. if shutdown_flag.value == 1:
  516. break
  517. batch_idx = feed_batch_idx.value
  518. try:
  519. indices = next(indices_iter)
  520. except StopIteration:
  521. break
  522. if divide:
  523. # make sure all task_queues is ready for put
  524. while any([q.full() for q in task_queues]):
  525. if shutdown_flag.value == 1:
  526. return
  527. # divide into small pieces, feed to different workers.
  528. sub_num = math.ceil(len(indices) / num_workers)
  529. for worker_id in range(num_workers):
  530. sub_indices = indices[worker_id * sub_num : (worker_id + 1) * sub_num]
  531. task_queues[worker_id].put((batch_idx, sub_indices))
  532. else:
  533. # distribute tasks to different workers uniformly.
  534. target_id = batch_idx % num_workers
  535. while task_queues[target_id].full():
  536. if shutdown_flag.value == 1:
  537. return
  538. task_queues[target_id].put((batch_idx, indices))
  539. with feed_batch_idx.get_lock():
  540. feed_batch_idx.value += 1
  541. def _worker_loop(dataset, task_queue, trans_data_queue, transform, seed, shutdown_flag):
  542. # Get dataset items and do the transform
  543. random.seed(seed)
  544. np.random.seed(seed)
  545. while True:
  546. if shutdown_flag.value == 1:
  547. break
  548. try:
  549. batch_idx, indices = task_queue.get(timeout=GLOBAL_TIMEOUT)
  550. except queue.Empty:
  551. continue
  552. if len(indices) > 0:
  553. items = [dataset[idx] for idx in indices]
  554. trans_items = transform.apply_batch(items)
  555. else:
  556. # in case of incomplete last batch
  557. trans_items = ()
  558. while True:
  559. try:
  560. trans_data_queue.put((batch_idx, trans_items), timeout=1)
  561. break
  562. except queue.Full:
  563. if shutdown_flag.value == 1:
  564. break
  565. logger.debug("batch part queue is full!")
  566. def _data_gathering_loop(
  567. trans_data_queues,
  568. batch_queue,
  569. collator,
  570. length,
  571. num_workers,
  572. shutdown_flag,
  573. target_idx,
  574. ):
  575. # Gathering the small pieces of batch data into full batch data
  576. while True:
  577. if shutdown_flag.value == 1:
  578. break
  579. target_batch_idx = target_idx.value
  580. if target_batch_idx >= length:
  581. break
  582. full_trans_items = []
  583. for worker_id in range(num_workers):
  584. while True:
  585. try:
  586. batch_idx, trans_items = trans_data_queues[worker_id].get(
  587. timeout=GLOBAL_TIMEOUT
  588. )
  589. break
  590. except queue.Empty:
  591. if shutdown_flag.value == 1:
  592. break
  593. logger.debug(
  594. "worker:{} data queue get timeout! target batch idx:{}".format(
  595. worker_id, target_batch_idx
  596. )
  597. )
  598. if batch_idx != target_batch_idx:
  599. raise RuntimeError(
  600. "Unexperted batch_idx in data gathering loop. worker_id:{}.".format(
  601. worker_id
  602. )
  603. )
  604. else:
  605. full_trans_items.extend(trans_items)
  606. # Merge different parts into a batch.
  607. full_batch = collator.apply(full_trans_items)
  608. while True:
  609. try:
  610. batch_queue.put(full_batch, timeout=1)
  611. break
  612. except queue.Full:
  613. if shutdown_flag.value == 1:
  614. break
  615. logger.debug("batch queue is full!")
  616. with target_idx.get_lock():
  617. target_idx.value += 1
  618. batch_queue.disconnect_client()
  619. def _data_selecting_loop(
  620. trans_data_queues,
  621. batch_queue,
  622. collator,
  623. length,
  624. num_workers,
  625. shutdown_flag,
  626. target_idx,
  627. ):
  628. # Make sure that batch is generated exactly with the same order as generated indices
  629. while True:
  630. if shutdown_flag.value == 1:
  631. break
  632. target_batch_idx = target_idx.value
  633. if target_batch_idx >= length:
  634. break
  635. target_worker_id = target_batch_idx % num_workers
  636. while True:
  637. try:
  638. batch_idx, trans_items = trans_data_queues[target_worker_id].get(
  639. timeout=GLOBAL_TIMEOUT
  640. )
  641. batch_data = collator.apply(trans_items)
  642. break
  643. except queue.Empty:
  644. if shutdown_flag.value == 1:
  645. break
  646. logger.debug(
  647. "worker:{} data queue get timeout! target batch idx:{}".format(
  648. target_worker_id, target_batch_idx
  649. )
  650. )
  651. if batch_idx != target_batch_idx:
  652. raise RuntimeError(
  653. "batch_idx {} mismatch the target_batch_idx {}".format(
  654. batch_idx, target_batch_idx
  655. )
  656. )
  657. while True:
  658. try:
  659. batch_queue.put(batch_data, timeout=1)
  660. break
  661. except queue.Full:
  662. if shutdown_flag.value == 1:
  663. break
  664. logger.debug("batch queue is full!")
  665. with target_idx.get_lock():
  666. target_idx.value += 1
  667. batch_queue.disconnect_client()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台