You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

convolution.cpp 90 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237
  1. /**
  2. * \file src/opr/impl/dnn/convolution.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/opr/dnn/convolution.h"
  12. #include "megbrain/graph/grad_impl.h"
  13. #include "megbrain/system.h"
  14. #include "megbrain/utils/hash_ct.h"
  15. #include "megbrain/utils/timer.h"
  16. #include "megdnn/oprs/utils.h"
  17. #include "../internal/megdnn_opr_wrapper.inl"
  18. #include <array>
  19. #include <chrono>
  20. #include <cstring>
  21. #include <thread>
  22. using namespace mgb;
  23. using namespace opr;
  24. using namespace cg::static_infer;
  25. using intl::WorkspaceLimitGetter;
  26. #define CACHE_KEY_VERSION "v2"
  27. #define MGB_FOREACH_FASTRUN_OPR(cb) \
  28. cb(ConvolutionForward); \
  29. cb(ConvBiasForward); \
  30. cb(ConvolutionBackwardData); \
  31. cb(ConvolutionBackwardFilter); \
  32. cb(Convolution3DForward); \
  33. cb(Convolution3DBackwardData); \
  34. cb(Convolution3DBackwardFilter); \
  35. cb(LocalShareForward); \
  36. cb(LocalShareBackwardData); \
  37. cb(LocalShareBackwardFilter); \
  38. cb(DeformableConvForward); \
  39. cb(DeformableConvBackwardFilter); \
  40. cb(DeformableConvBackwardData); \
  41. cb(BatchConvBiasForward);
  42. namespace mgb {
  43. namespace opr {
  44. namespace intl {
  45. #define cb(_Opr) \
  46. template <> \
  47. struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \
  48. static constexpr bool val = true; \
  49. };
  50. MGB_FOREACH_FASTRUN_OPR(cb)
  51. #undef cb
  52. } // namespace intl
  53. } // namespace opr
  54. } // namespace mgb
  55. namespace {
  56. template <class MegDNNOpr>
  57. struct MegDNNOpr2MGBOpr;
  58. #define cb(_Opr) \
  59. template <> \
  60. struct MegDNNOpr2MGBOpr<megdnn::_Opr> { \
  61. using MGBOpr = opr::_Opr; \
  62. };
  63. MGB_FOREACH_FASTRUN_OPR(cb)
  64. #undef cb
  65. template <class MGBOpr>
  66. struct OprAttributeTrait {
  67. static bool is_weights_persistent(const MGBOpr*) { return false; }
  68. };
  69. template <>
  70. struct OprAttributeTrait<opr::ConvBias> {
  71. //! return true if the flag of weights is PERSISTENT_DEVICE_VALUE, false
  72. //! otherwise. True means weights can be tranformed in the first run.
  73. static bool is_weights_persistent(const opr::ConvBias* opr) {
  74. return opr->input()[1]->contain_flag(
  75. VarNode::Flag::PERSISTENT_DEVICE_VALUE);
  76. }
  77. };
  78. template <typename Opr>
  79. struct OprArityTrait;
  80. #define cb(x) (x)
  81. #define cb_ref(x) (&(x))
  82. #define cb_dnn(x) ((x).as_megdnn())
  83. #define WS_ARG_true ,nullptr
  84. #define WS_ARG_false
  85. #define INST_ARITY(_Opr, _in, _out, _has_preprocessed_filter) \
  86. template <> \
  87. struct OprArityTrait<_Opr> { \
  88. static constexpr int arity_in = _in; \
  89. static constexpr int arity_out = _out; \
  90. static constexpr int arity = _in + _out; \
  91. using TensorLayoutArray = std::array<TensorLayout, arity>; \
  92. static size_t get_workspace_in_bytes( \
  93. _Opr* opr, typename _Opr::Algorithm* algo, \
  94. const TensorLayoutArray& layouts) { \
  95. opr->execution_policy() = {algo}; \
  96. return opr->get_workspace_in_bytes( \
  97. LAYOUTS(cb) WS_ARG_##_has_preprocessed_filter); \
  98. } \
  99. \
  100. static std::vector<typename _Opr::Algorithm*> get_all_algorithms( \
  101. _Opr* opr, const TensorLayoutArray& layouts) { \
  102. return opr->get_all_algorithms(LAYOUTS(cb)); \
  103. } \
  104. \
  105. static typename _Opr::Algorithm* get_algorithm_heuristic( \
  106. _Opr* opr, const TensorLayoutArray& layouts, \
  107. size_t workspace_limit, bool reproducible) { \
  108. return opr->get_algorithm_heuristic(LAYOUTS(cb), workspace_limit, \
  109. reproducible); \
  110. } \
  111. \
  112. static void exec(_Opr* opr, const DeviceTensorND* inp_val, \
  113. const DeviceTensorND* out_val, \
  114. megdnn::Workspace& workspace) { \
  115. opr->exec(TENSORS(cb_dnn), workspace); \
  116. } \
  117. }
  118. #define TENSORS(cb) cb(inp_val[0]), cb(inp_val[1]), cb(out_val[0])
  119. #define LAYOUTS(cb) cb(layouts[0]), cb(layouts[1]), cb(layouts[2])
  120. #define INST_ARITY_2_1(Opr) INST_ARITY(Opr, 2, 1, false)
  121. INST_ARITY_2_1(megdnn::ConvolutionBackwardData);
  122. INST_ARITY_2_1(megdnn::ConvolutionBackwardFilter);
  123. INST_ARITY_2_1(megdnn::Convolution3DForward);
  124. INST_ARITY_2_1(megdnn::Convolution3DBackwardData);
  125. INST_ARITY_2_1(megdnn::Convolution3DBackwardFilter);
  126. INST_ARITY_2_1(megdnn::LocalShareForward);
  127. INST_ARITY_2_1(megdnn::LocalShareBackwardData);
  128. INST_ARITY_2_1(megdnn::LocalShareBackwardFilter);
  129. #undef TENSORS
  130. #define TENSORS(cb) cb(inp_val[0]), cb(inp_val[1]), cb(out_val[0]), nullptr
  131. INST_ARITY(megdnn::Convolution, 2, 1, true);
  132. #undef TENSORS
  133. #undef LAYOUTS
  134. #undef INST_ARITY_2_1
  135. #define TENSORS(cb) \
  136. cb(inp_val[0]), cb(inp_val[1]), cb(inp_val[2]), cb(inp_val[3]), \
  137. cb(out_val[0])
  138. #define LAYOUTS(cb) \
  139. cb(layouts[0]), cb(layouts[1]), cb(layouts[2]), cb(layouts[3]), \
  140. cb(layouts[4])
  141. #define INST_ARITY_4_1(Opr) INST_ARITY(Opr, 4, 1, false)
  142. INST_ARITY_4_1(megdnn::DeformableConvForward);
  143. INST_ARITY_4_1(megdnn::DeformableConvBackwardFilter);
  144. INST_ARITY_4_1(megdnn::BatchConvBiasForward);
  145. #undef TENSORS
  146. #define TENSORS(cb) \
  147. cb(inp_val[0]), cb(inp_val[1]), cb(inp_val[2]), cb(inp_val[3]), \
  148. cb(out_val[0]), nullptr
  149. INST_ARITY(megdnn::ConvBias, 4, 1, true);
  150. #undef TENSORS
  151. #undef LAYOUTS
  152. #undef INST_ARITY_4_1
  153. #define TENSORS(cb) cb(inp_val[0]), cb(inp_val[1]), cb(inp_val[2]), \
  154. cb(inp_val[3]), cb(inp_val[4]), cb(out_val[0]), \
  155. cb(out_val[1]), cb(out_val[2])
  156. #define LAYOUTS(cb) cb(layouts[0]), cb(layouts[1]), cb(layouts[2]), \
  157. cb(layouts[3]), cb(layouts[4]), cb(layouts[5]), \
  158. cb(layouts[6]), cb(layouts[7])
  159. #define INST_ARITY_5_3(Opr) INST_ARITY(Opr, 5, 3, false)
  160. INST_ARITY_5_3(megdnn::DeformableConvBackwardData);
  161. #undef TENSORS
  162. #undef LAYOUTS
  163. #undef INST_ARITY_5_3
  164. #undef cb
  165. #undef cb_ref
  166. #undef cb_dnn
  167. #undef INST_ARITY
  168. #undef WS_ARG_true
  169. #undef WS_ARG_false
  170. // timeout delta to be added with fastest known algorithm for new algos
  171. constexpr double TIMEOUT_TOLERANCE = 2;
  172. template <typename Opr>
  173. struct AlgoChooserFuncId {};
  174. #define DEF_FUNC_ID(func) \
  175. template <> \
  176. struct AlgoChooserFuncId<megdnn::func> { \
  177. __attribute__( \
  178. (unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \
  179. static_cast<sys::TimedFuncInvoker::FuncId>( \
  180. MGB_HASH_STR("megdnn::" #func)); \
  181. };
  182. MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID)
  183. #undef DEF_FUNC_ID
  184. /* =================== TimedProfiler =================== */
  185. /*!
  186. * \brief profile a megdnn opr conv with given param
  187. *
  188. * This class only provides static methods, and the entry point is
  189. * TimedProfiler::profile; it would run profiler in a timed environment by
  190. * sys::TimedFuncInvoker
  191. *
  192. * \tparam Opr megdnn opr impl
  193. */
  194. template <typename Opr>
  195. class TimedProfiler {
  196. static constexpr int arity_in = OprArityTrait<Opr>::arity_in;
  197. static constexpr int arity_out = OprArityTrait<Opr>::arity_out;
  198. static constexpr int arity = OprArityTrait<Opr>::arity;
  199. using ConvTensorShapes = std::array<TensorShape, arity>;
  200. public:
  201. struct Param {
  202. char algo_name[128];
  203. size_t workspace;
  204. DTypeEnum dtypes[arity];
  205. CompNode::Locator comp_node_loc;
  206. ConvTensorShapes shapes;
  207. typename Opr::Param opr_param;
  208. //! filled by profile()
  209. mutable double actual_timeout;
  210. };
  211. struct Result {
  212. double time;
  213. };
  214. static Maybe<Result> profile(const Param& param, double& timeout) {
  215. mgb_assert(timeout >= 0);
  216. if (!timeout) {
  217. timeout = timeout_setting;
  218. } else if (timeout_setting) {
  219. timeout = std::min(timeout, timeout_setting);
  220. }
  221. param.actual_timeout =
  222. timeout ? timeout : std::numeric_limits<double>::infinity();
  223. auto res = sys::TimedFuncInvoker::ins().invoke(
  224. AlgoChooserFuncId<Opr>::ID,
  225. TParam::from_pod(const_cast<Param&>(param)), timeout);
  226. if (res.valid())
  227. return res.val().template as_single_pod<Result>();
  228. return None;
  229. }
  230. private:
  231. using TParam = sys::TimedFuncInvoker::Param;
  232. using TResult = sys::TimedFuncInvoker::Result;
  233. static const double timeout_setting;
  234. static double init_timeout_setting();
  235. static TResult prof_impl(const TParam& raw_param);
  236. static void prof_init_device(const TParam& raw_param);
  237. };
  238. template <typename Opr>
  239. const double TimedProfiler<Opr>::timeout_setting =
  240. TimedProfiler<Opr>::init_timeout_setting();
  241. template <typename Opr>
  242. double TimedProfiler<Opr>::init_timeout_setting() {
  243. #if MGB_ENABLE_FASTRUN
  244. sys::TimedFuncInvoker::ins().register_func(
  245. AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl,
  246. &TimedProfiler<Opr>::prof_init_device);
  247. auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT");
  248. if (to_set)
  249. return std::stod(to_set);
  250. #endif
  251. return 0;
  252. }
  253. template <typename Opr>
  254. typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl(
  255. const TParam& raw_param) {
  256. auto&& param = raw_param.as_single_pod<Param>();
  257. CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
  258. auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn);
  259. std::array<TensorLayout, arity> layouts;
  260. auto from_enum = [&](DTypeEnum enumv) -> DType {
  261. switch (enumv) {
  262. #define cb(_dt) \
  263. case DTypeTrait<_dt>::enumv: \
  264. return _dt(1.0f, static_cast<uint8_t>(0))
  265. cb(dtype::Quantized8Asymm);
  266. #undef cb
  267. #define cb(_dt) \
  268. case DTypeTrait<_dt>::enumv: \
  269. return _dt(1.0f)
  270. cb(dtype::QuantizedS8);
  271. cb(dtype::QuantizedS16);
  272. cb(dtype::QuantizedS32);
  273. default:
  274. return DType::from_enum(enumv);
  275. #undef cb
  276. }
  277. };
  278. for (int i = 0; i < arity; ++i) {
  279. layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])};
  280. }
  281. megdnn_opr->param() = param.opr_param;
  282. {
  283. typename Opr::Algorithm* algo = nullptr;
  284. for (auto i : OprArityTrait<Opr>::get_all_algorithms(megdnn_opr.get(),
  285. layouts)) {
  286. if (!strcmp(i->name(), param.algo_name)) {
  287. algo = i;
  288. break;
  289. }
  290. }
  291. mgb_assert(algo, "algorithm %s not found", param.algo_name);
  292. megdnn_opr->execution_policy() = {algo};
  293. }
  294. {
  295. // first allocate a whole chunk to avoid memory fragmentation (here we
  296. // rely on memory allocator to reuse memory)
  297. auto align = cn.get_mem_addr_alignment();
  298. size_t tot_size = align;
  299. for (int i = 0; i < arity; ++i) {
  300. tot_size += layouts[i].span().high_byte + align;
  301. }
  302. tot_size += param.workspace;
  303. DeviceTensorStorage storage{cn};
  304. storage.ensure_size(tot_size);
  305. }
  306. // allocate input and output memory
  307. DeviceTensorND inp_val[arity_in], out_val[arity_out], workspace;
  308. for (int i = 0; i < arity_in; ++i) {
  309. inp_val[i]
  310. .comp_node(cn)
  311. .dtype(layouts[i].dtype)
  312. .resize(layouts[i]);
  313. }
  314. for (int i = 0; i < arity_out; ++i) {
  315. out_val[i]
  316. .comp_node(cn)
  317. .dtype(layouts[arity_in + i].dtype)
  318. .resize(layouts[arity_in + i]);
  319. }
  320. megdnn::Workspace mdn_workspace;
  321. // allocate workspace
  322. if (param.workspace) {
  323. workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace});
  324. mdn_workspace.size = param.workspace;
  325. mdn_workspace.raw_ptr = workspace.raw_ptr();
  326. }
  327. for (int i = 0; i < arity_in; ++i) {
  328. fill_zero_dev_tensor(inp_val[i]);
  329. }
  330. RealTimer timer;
  331. auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER),
  332. ev_end = cn.create_event(CompNode::Event::NEED_TIMER);
  333. ev_start->record();
  334. OprArityTrait<Opr>::exec(megdnn_opr.get(), inp_val, out_val, mdn_workspace);
  335. ev_end->record();
  336. double next_report_time = 0.5;
  337. while (!ev_end->finished()) {
  338. if (timer.get_secs() >= next_report_time) {
  339. mgb_log_warn(
  340. "profiling conv algo %s already took %.3f/%.3f secs"
  341. " (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ",
  342. param.algo_name, timer.get_secs(), param.actual_timeout);
  343. next_report_time = timer.get_secs() + 1;
  344. }
  345. using namespace std::literals;
  346. std::this_thread::sleep_for(1000us);
  347. }
  348. mgb_assert(ev_start->finished());
  349. return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)});
  350. };
  351. template <typename Opr>
  352. void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) {
  353. auto&& param = raw_param.as_single_pod<Param>();
  354. CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
  355. // wait for cuda init, so its time does not get accounted in timeout
  356. cn.sync();
  357. }
  358. /* =================== AlgoChooser =================== */
  359. /*!
  360. * \brief choose algorithm according to ExecutionPolicy
  361. *
  362. * This class only provides static methods, and the entry point is
  363. * AlgoChooser::setup_algo. When profiling is needed, it would first try to
  364. * retrive profiling stats from cache, and run TimedProfiler when necessary
  365. *
  366. * \tparam Opr megdnn operator impl
  367. */
  368. template <typename Opr>
  369. class AlgoChooser {
  370. static constexpr int arity_in = OprArityTrait<Opr>::arity_in;
  371. static constexpr int arity_out = OprArityTrait<Opr>::arity_out;
  372. static constexpr int arity = OprArityTrait<Opr>::arity;
  373. using ImplAlgo = typename Opr::Algorithm*;
  374. using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr;
  375. using ConvTensorLayouts = std::array<TensorLayout, arity>;
  376. class ExeContext {
  377. const ConvTensorLayouts& m_layouts;
  378. Opr* m_megdnn_opr;
  379. const MGBOpr* m_mgb_opr;
  380. public:
  381. ExeContext(const ConvTensorLayouts& layouts, Opr* megdnn_opr,
  382. const MGBOpr* mgb_opr)
  383. : m_layouts{layouts},
  384. m_megdnn_opr{megdnn_opr},
  385. m_mgb_opr{mgb_opr} {
  386. mgb_assert(m_layouts.size() == layouts.size());
  387. static_assert(
  388. std::tuple_size<ConvTensorLayouts>::value == 3 ||
  389. std::tuple_size<ConvTensorLayouts>::value == 5 ||
  390. std::tuple_size<ConvTensorLayouts>::value == 8,
  391. "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
  392. "deformable conv)");
  393. }
  394. Opr* megdnn_opr() const { return m_megdnn_opr; }
  395. const MGBOpr* mgb_opr() const { return m_mgb_opr; }
  396. const TensorLayout& inp_layout(size_t idx) const {
  397. return m_layouts[idx];
  398. }
  399. const ConvTensorLayouts& layouts() const { return m_layouts; }
  400. ImplAlgo choose_by_heuristic(bool reproducible = false) const {
  401. auto opr = m_mgb_opr;
  402. auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
  403. opr->owner_graph(), opr->comp_node(),
  404. opr->execution_policy().workspace_limit);
  405. return OprArityTrait<Opr>::get_algorithm_heuristic(
  406. m_megdnn_opr, m_layouts, workspace_limit, reproducible);
  407. }
  408. //! get all candidate algos, and the one choose_by_heuristic() is
  409. //! put first
  410. std::vector<ImplAlgo> get_all_candidates() const {
  411. auto heu = choose_by_heuristic();
  412. auto&& ret = OprArityTrait<Opr>::get_all_algorithms(
  413. m_megdnn_opr, m_layouts);
  414. bool found = false;
  415. for (size_t i = 0; i < ret.size(); ++i) {
  416. if (ret[i] == heu) {
  417. found = true;
  418. std::swap(ret[i], ret[0]);
  419. break;
  420. }
  421. }
  422. mgb_assert(found,
  423. "algo got by heuristic not found in "
  424. "candidate list");
  425. return std::move(ret);
  426. }
  427. //! get candidate algos with workspace limit.
  428. std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const {
  429. auto && all_algos = get_all_candidates();
  430. auto opr = m_mgb_opr;
  431. auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
  432. opr->owner_graph(), opr->comp_node(),
  433. opr->execution_policy().workspace_limit);
  434. std::vector<ImplAlgo> ret;
  435. for (auto&& algo : all_algos) {
  436. if (get_workspace_size_bytes(algo) <= workspace_limit) {
  437. ret.push_back(algo);
  438. }
  439. }
  440. return ret;
  441. }
  442. //! get workspace size required for specific algo
  443. size_t get_workspace_size_bytes(ImplAlgo algo) const {
  444. return OprArityTrait<Opr>::get_workspace_in_bytes(m_megdnn_opr,
  445. algo, m_layouts);
  446. }
  447. /*!
  448. * \brief profile a single algorithm
  449. *
  450. * This is actually a wrapper that constructs param and call
  451. * TimedProfiler<Opr>::profile for the actual profiling
  452. *
  453. * \param[in,out] timeout set the timeout, and return the actual
  454. * timeout used during profiling
  455. */
  456. Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo(
  457. ImplAlgo algo, double& timeout) const;
  458. private:
  459. /*!
  460. * \brief modify param passed to prof_impl by weights preprcess.
  461. *
  462. * \param param: param passed.
  463. *
  464. * \warning invoke when is_weights_persistent is true.
  465. */
  466. void modify_param_with_weights_preprocessed(
  467. typename TimedProfiler<Opr>::Param& param) const {}
  468. };
  469. //! entrance for getting algorithm according to execution strategy
  470. static ImplAlgo get_algo(ExeContext& ctx) {
  471. using S = mixin::Convolution::ExecutionPolicy::Strategy;
  472. MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE);
  473. switch (ctx.mgb_opr()->execution_policy().strategy) {
  474. case S::HEURISTIC:
  475. return ctx.choose_by_heuristic();
  476. case S::HEURISTIC_REPRODUCIBLE:
  477. return ctx.choose_by_heuristic(true);
  478. case S::PROFILE_HEURISTIC: {
  479. ImplAlgo algo = choose_by_profile(ctx, false, false);
  480. if (algo == nullptr)
  481. algo = ctx.choose_by_heuristic();
  482. return algo;
  483. }
  484. #if MGB_ENABLE_FASTRUN
  485. case S::PROFILE:
  486. return choose_by_profile(ctx, false);
  487. case S::PROFILE_REPRODUCIBLE:
  488. return choose_by_profile(ctx, true);
  489. #endif
  490. default:
  491. mgb_throw(GraphError,
  492. "bad convolution ExecutionPolicy strategy");
  493. }
  494. }
  495. //! get all profile result, either by retrieving cache or profiling
  496. static AlgoChooserProfileCache::Result get_profile_result(
  497. ExeContext& ctx, bool enable_update);
  498. static ImplAlgo choose_by_profile(ExeContext& ctx,
  499. bool require_reproducible,
  500. bool enable_update = true);
  501. public:
  502. /*!
  503. * \brief setup algorithm and return workspace size
  504. */
  505. static size_t setup_algo(const ConvTensorLayouts& layouts, Opr* megdnn_opr,
  506. const MGBOpr* mgb_opr) {
  507. if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
  508. return 0;
  509. }
  510. ExeContext ctx(layouts, megdnn_opr, mgb_opr);
  511. auto algo = get_algo(ctx);
  512. size_t workspace = ctx.get_workspace_size_bytes(algo);
  513. mgb_log_debug(
  514. "%s: input shapes (%s, %s): algo=%s "
  515. "workspace=%.2fMiB reproducible=%d",
  516. mgb_opr->dyn_typeinfo()->name,
  517. layouts[0].TensorShape::to_string().c_str(),
  518. layouts[1].TensorShape::to_string().c_str(), algo->name(),
  519. workspace / (1024 * 1024.0), algo->is_reproducible());
  520. megdnn_opr->execution_policy() = {algo};
  521. return workspace;
  522. }
  523. };
  524. template <typename Opr>
  525. AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result(
  526. ExeContext& ctx, bool enable_update) {
  527. AlgoChooserProfileCache& cache = ctx.mgb_opr()->profile_cache();
  528. auto param_blob = ctx.mgb_opr()->param_blob();
  529. AlgoChooserProfileCache::Key cache_key{ctx.layouts().data(),
  530. ctx.layouts().size(),
  531. param_blob.first, param_blob.second};
  532. {
  533. auto&& rst = cache.get(cache_key);
  534. if (rst.valid())
  535. return rst.val();
  536. }
  537. AlgoChooserProfileCache::Result prof_rst;
  538. if (!enable_update)
  539. return prof_rst;
  540. std::string str_on_inp_shape = ssprintf(
  541. "on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(),
  542. ctx.layouts()[1].to_string().c_str());
  543. double cur_timeout = 0;
  544. RealTimer timer;
  545. for (auto algo : ctx.get_all_candidates_with_workspace_limit()) {
  546. Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
  547. std::string msg = ssprintf("profiling %s algorithm %s %s",
  548. ctx.mgb_opr()->dyn_typeinfo()->name,
  549. algo->name(), str_on_inp_shape.c_str());
  550. timer.reset();
  551. MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); }
  552. MGB_CATCH(std::exception & exc,
  553. {
  554. mgb_log_warn("caught exception during %s: %s",
  555. msg.c_str(), exc.what());
  556. continue;
  557. })
  558. MGB_CATCH(..., {
  559. mgb_log_warn("caught exception during %s", msg.c_str());
  560. continue;
  561. }) if (!cur_rst.valid()) {
  562. mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
  563. msg.c_str(), cur_timeout);
  564. continue;
  565. }
  566. if (!cur_timeout) {
  567. cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
  568. } else {
  569. cur_timeout =
  570. std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
  571. }
  572. auto&& rst = cur_rst.val();
  573. mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
  574. rst.workspace, rst.time);
  575. prof_rst.push_back(rst);
  576. }
  577. mgb_assert(!prof_rst.empty(), "no usable convolution algorithm %s",
  578. str_on_inp_shape.c_str());
  579. cache.put(cache_key, prof_rst);
  580. return prof_rst;
  581. }
  582. template <typename Opr>
  583. typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile(
  584. ExeContext& ctx, bool require_reproducible, bool enable_update) {
  585. auto opr = ctx.mgb_opr();
  586. if (opr->owner_graph()->options().no_profiling_on_shape_change) {
  587. auto algo = ctx.megdnn_opr()->execution_policy().algorithm;
  588. if (algo)
  589. return algo;
  590. }
  591. std::unordered_map<std::string, ImplAlgo> algo_map;
  592. for (auto i : ctx.get_all_candidates()) {
  593. auto ins = algo_map.emplace(i->name(), i);
  594. mgb_assert(ins.second, "duplicated algo name: %s", i->name());
  595. }
  596. auto&& prof = get_profile_result(ctx, enable_update);
  597. if (prof.empty())
  598. return nullptr;
  599. for (auto&& i : prof) {
  600. if ((!require_reproducible || i.reproducible)) {
  601. auto iter = algo_map.find(i.algo);
  602. mgb_assert(
  603. iter != algo_map.end(),
  604. "algorithm %s exists in "
  605. "profiling result but not in algo_map; please report this "
  606. "bug; opr: %s{%s}, shapes: %s %s %s",
  607. ctx.mgb_opr()->cname(), ctx.mgb_opr()->dyn_typeinfo()->name,
  608. ctx.layouts()[0].TensorShape::to_string().c_str(),
  609. ctx.layouts()[1].TensorShape::to_string().c_str(),
  610. ctx.layouts()[2].TensorShape::to_string().c_str(),
  611. i.algo.c_str());
  612. return iter->second;
  613. }
  614. }
  615. mgb_log_error(
  616. "Workspace requirement (%zu) could not be satisfied. Abort now to "
  617. "avoid further problems",
  618. WorkspaceLimitGetter::get_workspace_limit(
  619. opr->owner_graph(), opr->comp_node(),
  620. opr->execution_policy().workspace_limit));
  621. mgb_trap();
  622. }
  623. template <>
  624. void AlgoChooser<megdnn::ConvBias>::ExeContext::
  625. modify_param_with_weights_preprocessed(
  626. typename TimedProfiler<megdnn::ConvBias>::Param& param) const {
  627. if (param.opr_param.format == megdnn::ConvBias::Param::Format::NCHW ||
  628. param.opr_param.format == megdnn::ConvBias::Param::Format::NCHW44 ||
  629. param.opr_param.format == megdnn::ConvBias::Param::Format::NCHW88) {
  630. auto winograd_param =
  631. megdnn::ConvBias::parse_winograd_name(param.algo_name);
  632. if (winograd_param == megdnn::ConvBias::INVALID_WINOGRAD_PARAM) {
  633. return;
  634. }
  635. ConvBiasForward::check_winograd_param_valid(winograd_param,
  636. m_layouts[1].dtype);
  637. auto winograd_preprocess_opr =
  638. intl::create_megdnn_opr<megdnn::WinogradFilterPreprocess>(
  639. m_mgb_opr->output(0)->comp_node());
  640. winograd_preprocess_opr->param().format =
  641. ConvBiasForward::get_matmul_format(winograd_param);
  642. winograd_preprocess_opr->param().output_block_size =
  643. winograd_param.output_block_size;
  644. TensorLayout filter_transform_layout;
  645. winograd_preprocess_opr->deduce_layout(m_layouts[1],
  646. filter_transform_layout);
  647. param.shapes[1] = filter_transform_layout;
  648. param.dtypes[1] = filter_transform_layout.dtype.enumv();
  649. if (param.opr_param.format == megdnn::ConvBias::Param::Format::NCHW) {
  650. param.opr_param.format =
  651. megdnn::ConvBias::Param::Format::NCHW_WINOGRAD;
  652. } else if (param.opr_param.format ==
  653. megdnn::ConvBias::Param::Format::NCHW44) {
  654. param.opr_param.format =
  655. megdnn::ConvBias::Param::Format::NCHW44_WINOGRAD;
  656. } else if (param.opr_param.format ==
  657. megdnn::ConvBias::Param::Format::NCHW) {
  658. param.opr_param.format =
  659. megdnn::ConvBias::Param::Format::NCHW88_WINOGRAD;
  660. }
  661. param.opr_param.output_block_size = winograd_param.output_block_size;
  662. }
  663. }
  664. template <typename Opr>
  665. Maybe<AlgoChooserProfileCache::ResultEntry>
  666. AlgoChooser<Opr>::ExeContext::profile_single_algo(ImplAlgo algo,
  667. double& timeout) const {
  668. typename TimedProfiler<Opr>::Param param;
  669. bool is_weights_persistent =
  670. OprAttributeTrait<typename MegDNNOpr2MGBOpr<Opr>::MGBOpr>::
  671. is_weights_persistent(m_mgb_opr);
  672. auto name = algo->name();
  673. // force check copy size <= dest len-1 from gcc8 for safe
  674. auto len = sizeof(param.algo_name);
  675. strncpy(param.algo_name, name, len - 1);
  676. param.algo_name[len - 1] = '\0';
  677. mgb_assert(!param.algo_name[sizeof(param.algo_name) - 2],
  678. "algo name too long: %s; len=%zu", name, strlen(name));
  679. param.workspace = get_workspace_size_bytes(algo);
  680. for (int i = 0; i < arity; ++i) {
  681. auto&& src = m_layouts[i];
  682. mgb_assert(src.format.is_default() &&
  683. (src.dtype.category() == DTypeCategory::FLOAT ||
  684. src.dtype.category() == DTypeCategory::INT ||
  685. src.dtype.category() == DTypeCategory::QUANTIZED),
  686. "unsupported layout in profiling: %s",
  687. src.to_string().c_str());
  688. param.dtypes[i] = src.dtype.enumv();
  689. }
  690. param.comp_node_loc = m_mgb_opr->output(0)->comp_node().locator();
  691. mgb_assert(param.shapes.size() == m_layouts.size());
  692. for (size_t i = 0; i < param.shapes.size(); ++i)
  693. param.shapes[i] = m_layouts[i];
  694. param.opr_param = m_megdnn_opr->param();
  695. if (is_weights_persistent) {
  696. modify_param_with_weights_preprocessed(param);
  697. }
  698. auto rst = TimedProfiler<Opr>::profile(param, timeout);
  699. // MIOpen conv profiles all available algos when a specfic shape is
  700. // provided for the first time, which probably adds to the result time.
  701. // Therefore, a second profile execution is needed.
  702. if (strncmp(name, "MIOpen", 6) == 0)
  703. rst = TimedProfiler<Opr>::profile(param, timeout);
  704. if (!rst.valid())
  705. return None;
  706. return AlgoChooserProfileCache::ResultEntry{
  707. algo->name(), algo->is_reproducible(), rst.val().time,
  708. param.workspace};
  709. }
  710. } // anonymous namespace
  711. /* ==================== misc impl ==================== */
  712. mixin::Convolution::~Convolution() = default;
  713. void mixin::Convolution::set_execution_policy(const ExecutionPolicy& policy) {
  714. mgb_throw_if(
  715. m_policy_accessed, InternalError,
  716. "attempt to modify ExecutionPolicy after it has been accessed");
  717. m_policy = policy;
  718. }
  719. template <class MgbOpr, class MegDNNOpr>
  720. void mixin::Convolution::init_output_static_infer_desc_for_bwd_data(
  721. cg::OperatorNodeBase* self) {
  722. using namespace cg::static_infer;
  723. auto&& mgr = self->owner_graph()->static_infer_manager();
  724. DepVal inp_deps;
  725. inp_deps.reserve(4);
  726. for (int i = 0; i < 2; ++i) {
  727. inp_deps.push_back({self->input(i), DepType::SHAPE});
  728. }
  729. // output shape
  730. if (self->input().size() == 3) {
  731. mgr.register_shape_infer(self->output(0),
  732. ShapeInferDesc::make_identity(self->input(2)));
  733. } else {
  734. auto infer_shp = [self](TensorShape& dest, const InpVal& inp) {
  735. TensorLayout ol{self->output(0)->dtype()};
  736. static_cast<MgbOpr*>(self)->megdnn_opr()->deduce_layout(
  737. {inp.val.at(0).shape(), self->input(0)->dtype()},
  738. {inp.val.at(1).shape(), self->input(1)->dtype()}, ol);
  739. dest = ol;
  740. return true;
  741. };
  742. mgr.register_shape_infer(self->output(0),
  743. {SourceType::DEP, inp_deps, infer_shp});
  744. }
  745. // workspace size
  746. auto infer_wk = [self](TensorShape& dest, const InpVal& inp) {
  747. auto&& iv = inp.val;
  748. dest.ndim = 1;
  749. dest.shape[0] = AlgoChooser<MegDNNOpr>::setup_algo(
  750. {TensorLayout{iv[0].shape(), self->input(0)->dtype(),
  751. self->input(0)->format()},
  752. {iv[1].shape(), self->input(1)->dtype(),
  753. self->input(1)->format()},
  754. {iv.at(2).shape(), self->output(0)->dtype(),
  755. self->output(0)->format()}},
  756. static_cast<MgbOpr*>(self)->megdnn_opr(),
  757. static_cast<MgbOpr*>(self));
  758. return true;
  759. };
  760. inp_deps.push_back({self->output(0), DepType::SHAPE});
  761. auto workspace_dep_var =
  762. WorkspaceLimitGetter::register_to_graph(self->owner_graph());
  763. if (workspace_dep_var) {
  764. inp_deps.push_back({workspace_dep_var, DepType::VALUE});
  765. }
  766. mgr.register_shape_infer(self->output(1),
  767. {SourceType::DEP, inp_deps, infer_wk});
  768. }
  769. #define IMPL_CONV(_cls, _prof_name) \
  770. void _cls::init_profile_cache() { \
  771. std::string name(_prof_name CACHE_KEY_VERSION); \
  772. name.append(megdnn_opr()->get_algorithm_set_name()); \
  773. m_profile_cache = std::make_unique<AlgoChooserProfileCache>( \
  774. comp_node(), name.c_str()); \
  775. } \
  776. std::pair<const void*, size_t> _cls::param_blob() const { \
  777. return {&param(), sizeof(Param)}; \
  778. } \
  779. MGB_DYN_TYPE_OBJ_FINAL_IMPL(_cls)
  780. AlgoChooserProfileCache& mixin::Convolution::profile_cache() const {
  781. if (!m_profile_cache) {
  782. const_cast<Convolution*>(this)->init_profile_cache();
  783. mgb_assert(m_profile_cache);
  784. }
  785. return *m_profile_cache;
  786. }
  787. /* ==================== ConvolutionForward ==================== */
  788. IMPL_CONV(ConvolutionForward, "conv_fwd");
  789. ConvolutionForward::ConvolutionForward(VarNode* src, VarNode* filter,
  790. const Param& param,
  791. const ExecutionPolicy& policy,
  792. const OperatorNodeConfig& config)
  793. : Super{src->owner_graph(), config, "conv", {src, filter}} {
  794. init_megdnn_opr(*this, param);
  795. m_policy = policy;
  796. add_input({src, filter});
  797. }
  798. SymbolVar ConvolutionForward::make(SymbolVar src, SymbolVar filter,
  799. const Param& param,
  800. const ExecutionPolicy& policy,
  801. const OperatorNodeConfig& config) {
  802. return src.insert_single_output_opr<ConvolutionForward>(
  803. src.node(), filter.node(), param, policy, config);
  804. }
  805. void ConvolutionForward::init_output_dtype() {
  806. DType output_dtype = config().output_dtype();
  807. megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
  808. output_dtype);
  809. output(0)->dtype(output_dtype);
  810. }
  811. MGB_IMPL_OPR_GRAD(ConvolutionForward) {
  812. mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
  813. "only float data type supported for grad");
  814. mgb_assert(wrt_idx == 0 || wrt_idx == 1);
  815. mgb_assert(out_grad.size() == 2);
  816. if (wrt_idx == 0) {
  817. // data
  818. SymbolVar grad = ConvolutionBackwardData::make(
  819. opr.input(1), out_grad[0], opr.input(0), opr.param(),
  820. opr.execution_policy());
  821. return grad.node();
  822. } else {
  823. // filter
  824. SymbolVar grad = ConvolutionBackwardFilter::make(
  825. opr.input(0), out_grad[0], opr.input(1), opr.param(),
  826. opr.execution_policy());
  827. return grad.node();
  828. }
  829. }
  830. size_t ConvolutionForward::get_workspace_size_bytes(
  831. const TensorShapeArray& input_shapes,
  832. const TensorShapeArray& output_shapes) const {
  833. mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
  834. return AlgoChooser<megdnn::ConvolutionForward>::setup_algo(
  835. {TensorLayout{input_shapes[0], input(0)->dtype(),
  836. input(0)->format()},
  837. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  838. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  839. megdnn_opr(), this);
  840. }
  841. void ConvolutionForward::init_output_format() {
  842. mgb_assert(output().size() == 2);
  843. output(0)->format(input(0)->format());
  844. }
  845. void ConvolutionForward::scn_do_execute() {
  846. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  847. input(1)->dev_tensor().as_megdnn(),
  848. output(0)->dev_tensor().as_megdnn(), nullptr,
  849. intl::get_megdnn_workspace_from_var(output().back()));
  850. }
  851. void ConvolutionForward::add_input_layout_constraint() {
  852. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  853. }
  854. void ConvolutionForward::init_output_static_infer_desc() {
  855. Super::set_nr_managed_outputs(this->output().size() - 1);
  856. Super::init_output_static_infer_desc();
  857. init_output_static_infer_desc_workspace(
  858. intl::AutoAddWorkspaceNeedLimitGetter<
  859. megdnn::ConvolutionForward>::val);
  860. }
  861. void ConvolutionForward::get_output_var_shape(
  862. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  863. TensorLayout input_layout{inp_shape[0], input(0)->dtype(),
  864. input(0)->format()};
  865. TensorLayout filter_layout{inp_shape[1], input(1)->dtype(),
  866. input(1)->format()};
  867. TensorLayout dst_layout{output(0)->dtype(), output(0)->format()};
  868. megdnn_opr()->deduce_layout(input_layout, filter_layout, dst_layout);
  869. out_shape[0] = dst_layout;
  870. }
  871. void ConvolutionForward::record_execute_deps(
  872. cg::GraphExecutable::ExecDependencyArray& deps) {
  873. record_megdnn_opr(deps);
  874. }
  875. /* ==================== ConvolutionBackwardData ==================== */
  876. IMPL_CONV(ConvolutionBackwardData, "conv_bwd_data");
  877. ConvolutionBackwardData::ConvolutionBackwardData(
  878. VarNode* filter, VarNode* diff, VarNode* src_for_shp,
  879. const Param& param, const ExecutionPolicy& policy,
  880. const OperatorNodeConfig& config)
  881. : Super{filter->owner_graph(),
  882. config,
  883. "conv_bwd_data",
  884. {filter, diff}} {
  885. init_megdnn_opr(*this, param);
  886. m_policy = policy;
  887. add_input({filter, diff});
  888. if (src_for_shp) {
  889. add_input({src_for_shp});
  890. }
  891. }
  892. SymbolVar ConvolutionBackwardData::make(SymbolVar filter, SymbolVar diff,
  893. SymbolVar src, const Param& param,
  894. const ExecutionPolicy& policy,
  895. const OperatorNodeConfig& config) {
  896. return filter.insert_single_output_opr<ConvolutionBackwardData>(
  897. filter.node(), diff.node(), src.node(), param, policy, config);
  898. }
  899. SymbolVar ConvolutionBackwardData::make(SymbolVar filter, SymbolVar data,
  900. const Param& param,
  901. const ExecutionPolicy& policy,
  902. const OperatorNodeConfig& config) {
  903. return make(filter, data, {}, param, policy, config);
  904. }
  905. void ConvolutionBackwardData::add_input_layout_constraint() {
  906. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  907. }
  908. void ConvolutionBackwardData::init_output_static_infer_desc() {
  909. init_output_static_infer_desc_for_bwd_data<ConvolutionBackwardData,
  910. megdnn::ConvolutionBackwardData>(
  911. this);
  912. }
  913. void ConvolutionBackwardData::init_output_dtype() {
  914. DType output_dtype = config().output_dtype();
  915. megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
  916. output_dtype);
  917. output(0)->dtype(output_dtype);
  918. }
  919. void ConvolutionBackwardData::init_output_format() {
  920. mgb_assert(output().size() == 2);
  921. output(0)->format(input(1)->format());
  922. }
  923. cg::OperatorNodeBase::NodeProp* ConvolutionBackwardData::do_make_node_prop()
  924. const {
  925. auto prop = Super::Super::do_make_node_prop();
  926. if (input().size() == 3) {
  927. using D = NodeProp::DepType;
  928. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
  929. }
  930. return prop;
  931. }
  932. void ConvolutionBackwardData::scn_do_execute() {
  933. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  934. input(1)->dev_tensor().as_megdnn(),
  935. output(0)->dev_tensor().as_megdnn(),
  936. intl::get_megdnn_workspace_from_var(output(1)));
  937. }
  938. MGB_IMPL_OPR_GRAD(ConvolutionBackwardData) {
  939. mgb_assert(!out_grad[1]);
  940. if (wrt_idx == 0) {
  941. return ConvolutionBackwardFilter::make(out_grad[0], opr.input(1),
  942. opr.input(0), opr.param(),
  943. opr.execution_policy())
  944. .node();
  945. }
  946. if (wrt_idx == 1) {
  947. return Convolution::make(out_grad[0], opr.input(0), opr.param(),
  948. opr.execution_policy())
  949. .node();
  950. }
  951. return nullptr;
  952. }
  953. /* ==================== ConvolutionBackwardFilter ==================== */
  954. IMPL_CONV(ConvolutionBackwardFilter, "conv_bwd_filter");
  955. ConvolutionBackwardFilter::ConvolutionBackwardFilter(
  956. VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
  957. const ExecutionPolicy& policy, const OperatorNodeConfig& config)
  958. : Super({src->owner_graph(),
  959. config,
  960. "conv_bwd_filter",
  961. {src, diff, filter}},
  962. 2, false) {
  963. init_megdnn_opr(*this, param);
  964. m_policy = policy;
  965. add_input({src, diff, filter});
  966. }
  967. SymbolVar ConvolutionBackwardFilter::make(SymbolVar src, SymbolVar diff,
  968. SymbolVar filter, const Param& param,
  969. const ExecutionPolicy& policy,
  970. const OperatorNodeConfig& config) {
  971. return src.insert_single_output_opr<ConvolutionBackwardFilter>(
  972. src.node(), diff.node(), filter.node(), param, policy, config);
  973. }
  974. size_t ConvolutionBackwardFilter::get_workspace_size_bytes(
  975. const TensorShapeArray& input_shapes,
  976. const TensorShapeArray& output_shapes) const {
  977. mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
  978. return AlgoChooser<megdnn::ConvolutionBackwardFilter>::setup_algo(
  979. {TensorLayout{input_shapes[0], input(0)->dtype(),
  980. input(0)->format()},
  981. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  982. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  983. megdnn_opr(), this);
  984. }
  985. MGB_IMPL_OPR_GRAD(ConvolutionBackwardFilter) {
  986. mgb_assert(!out_grad[1]);
  987. if (wrt_idx == 0) {
  988. return ConvolutionBackwardData::make(out_grad[0], opr.input(1),
  989. opr.input(0), opr.param(),
  990. opr.execution_policy())
  991. .node();
  992. }
  993. if (wrt_idx == 1) {
  994. return Convolution::make(opr.input(0), out_grad[0], opr.param(),
  995. opr.execution_policy())
  996. .node();
  997. }
  998. return nullptr;
  999. }
  1000. /* ==================== Convolution3DForward ==================== */
  1001. IMPL_CONV(Convolution3DForward, "conv3d_fwd");
  1002. Convolution3DForward::Convolution3DForward(VarNode* src, VarNode* filter,
  1003. const Param& param,
  1004. const ExecutionPolicy& policy,
  1005. const OperatorNodeConfig& config)
  1006. : Super{src->owner_graph(), config, "conv3d", {src, filter}} {
  1007. init_megdnn_opr(*this, param);
  1008. m_policy = policy;
  1009. add_input({src, filter});
  1010. }
  1011. SymbolVar Convolution3DForward::make(SymbolVar src, SymbolVar filter,
  1012. const Param& param,
  1013. const ExecutionPolicy& policy,
  1014. const OperatorNodeConfig& config) {
  1015. return src.insert_single_output_opr<Convolution3DForward>(
  1016. src.node(), filter.node(), param, policy, config);
  1017. }
  1018. void Convolution3DForward::init_output_dtype() {
  1019. switch (param().data_type) {
  1020. case Param::DataType::FLOAT:
  1021. output(0)->dtype(input(0)->dtype());
  1022. break;
  1023. #if !MEGDNN_DISABLE_FLOAT16
  1024. case Param::DataType::FLOAT_IO16xC32:
  1025. mgb_assert(input(0)->dtype() == dtype::Float16(),
  1026. "invalid input dtype %s", input(0)->name().c_str());
  1027. output(0)->dtype(input(0)->dtype());
  1028. break;
  1029. #endif
  1030. default:
  1031. mgb_throw(MegBrainError, "bad data_type enum");
  1032. }
  1033. }
  1034. MGB_IMPL_OPR_GRAD(Convolution3DForward) {
  1035. mgb_assert(opr.param().data_type ==
  1036. Convolution3DForward::Param::DataType::FLOAT,
  1037. "only float data type supported for grad");
  1038. mgb_assert(wrt_idx == 0 || wrt_idx == 1);
  1039. mgb_assert(out_grad.size() == 2);
  1040. if (wrt_idx == 0) {
  1041. // data
  1042. SymbolVar grad = Convolution3DBackwardData::make(
  1043. opr.input(1), out_grad[0], opr.input(0), opr.param(),
  1044. opr.execution_policy());
  1045. return grad.node();
  1046. } else {
  1047. // filter
  1048. SymbolVar grad = Convolution3DBackwardFilter::make(
  1049. opr.input(0), out_grad[0], opr.input(1), opr.param(),
  1050. opr.execution_policy());
  1051. return grad.node();
  1052. }
  1053. }
  1054. size_t Convolution3DForward::get_workspace_size_bytes(
  1055. const TensorShapeArray& input_shapes,
  1056. const TensorShapeArray& output_shapes) const {
  1057. mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
  1058. return AlgoChooser<megdnn::Convolution3DForward>::setup_algo(
  1059. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1060. input(0)->format()},
  1061. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1062. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1063. megdnn_opr(), this);
  1064. }
  1065. /* ==================== Convolution3DBackwardData ==================== */
  1066. IMPL_CONV(Convolution3DBackwardData, "conv3d_bwd_data");
  1067. Convolution3DBackwardData::Convolution3DBackwardData(
  1068. VarNode* filter, VarNode* diff, VarNode* src_for_shp,
  1069. const Param& param, const ExecutionPolicy& policy,
  1070. const OperatorNodeConfig& config)
  1071. : Super{filter->owner_graph(),
  1072. config,
  1073. "conv3d_bwd_data",
  1074. {filter, diff}} {
  1075. init_megdnn_opr(*this, param);
  1076. m_policy = policy;
  1077. add_input({filter, diff});
  1078. if (src_for_shp) {
  1079. add_input({src_for_shp});
  1080. }
  1081. }
  1082. SymbolVar Convolution3DBackwardData::make(SymbolVar filter, SymbolVar diff,
  1083. SymbolVar src, const Param& param,
  1084. const ExecutionPolicy& policy,
  1085. const OperatorNodeConfig& config) {
  1086. return filter.insert_single_output_opr<Convolution3DBackwardData>(
  1087. filter.node(), diff.node(), src.node(), param, policy, config);
  1088. }
  1089. SymbolVar Convolution3DBackwardData::make(SymbolVar filter, SymbolVar data,
  1090. const Param& param,
  1091. const ExecutionPolicy& policy,
  1092. const OperatorNodeConfig& config) {
  1093. return make(filter, data, {}, param, policy, config);
  1094. }
  1095. void Convolution3DBackwardData::add_input_layout_constraint() {
  1096. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1097. }
  1098. void Convolution3DBackwardData::init_output_static_infer_desc() {
  1099. init_output_static_infer_desc_for_bwd_data<
  1100. Convolution3DBackwardData, megdnn::Convolution3DBackwardData>(this);
  1101. }
  1102. cg::OperatorNodeBase::NodeProp* Convolution3DBackwardData::do_make_node_prop()
  1103. const {
  1104. auto prop = Super::Super::do_make_node_prop();
  1105. if (input().size() == 3) {
  1106. using D = NodeProp::DepType;
  1107. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
  1108. }
  1109. return prop;
  1110. }
  1111. void Convolution3DBackwardData::scn_do_execute() {
  1112. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  1113. input(1)->dev_tensor().as_megdnn(),
  1114. output(0)->dev_tensor().as_megdnn(),
  1115. intl::get_megdnn_workspace_from_var(output(1)));
  1116. }
  1117. MGB_IMPL_OPR_GRAD(Convolution3DBackwardData) {
  1118. mgb_assert(!out_grad[1]);
  1119. if (wrt_idx == 0) {
  1120. return Convolution3DBackwardFilter::make(out_grad[0], opr.input(1),
  1121. opr.input(0), opr.param(),
  1122. opr.execution_policy())
  1123. .node();
  1124. }
  1125. if (wrt_idx == 1) {
  1126. return Convolution3D::make(out_grad[0], opr.input(0), opr.param(),
  1127. opr.execution_policy())
  1128. .node();
  1129. }
  1130. return nullptr;
  1131. }
  1132. /* ==================== Convolution3DBackwardFilter ==================== */
  1133. IMPL_CONV(Convolution3DBackwardFilter, "conv3d_bwd_filter");
  1134. Convolution3DBackwardFilter::Convolution3DBackwardFilter(
  1135. VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
  1136. const ExecutionPolicy& policy, const OperatorNodeConfig& config)
  1137. : Super({src->owner_graph(),
  1138. config,
  1139. "conv3d_bwd_filter",
  1140. {src, diff, filter}},
  1141. 2, false) {
  1142. init_megdnn_opr(*this, param);
  1143. m_policy = policy;
  1144. add_input({src, diff, filter});
  1145. }
  1146. SymbolVar Convolution3DBackwardFilter::make(SymbolVar src, SymbolVar diff,
  1147. SymbolVar filter,
  1148. const Param& param,
  1149. const ExecutionPolicy& policy,
  1150. const OperatorNodeConfig& config) {
  1151. return src.insert_single_output_opr<Convolution3DBackwardFilter>(
  1152. src.node(), diff.node(), filter.node(), param, policy, config);
  1153. }
  1154. size_t Convolution3DBackwardFilter::get_workspace_size_bytes(
  1155. const TensorShapeArray& input_shapes,
  1156. const TensorShapeArray& output_shapes) const {
  1157. mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
  1158. return AlgoChooser<megdnn::Convolution3DBackwardFilter>::setup_algo(
  1159. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1160. input(0)->format()},
  1161. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1162. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1163. megdnn_opr(), this);
  1164. }
  1165. /* ========================== MaskConvolution ========================== */
  1166. MGB_DYN_TYPE_OBJ_FINAL_IMPL(MaskConvolution);
  1167. MaskConvolution::MaskConvolution(VarNode* src, VarNode* filter, VarNode* mask,
  1168. const Param& param,
  1169. const OperatorNodeConfig& config)
  1170. : Super(src->owner_graph(), config, "mask_conv_fwd",
  1171. {src, filter, mask}) {
  1172. init_megdnn_opr(*this, param);
  1173. add_input({src, filter, mask});
  1174. }
  1175. SymbolVar MaskConvolution::make(SymbolVar src, SymbolVar filter, SymbolVar mask,
  1176. const Param& param,
  1177. const OperatorNodeConfig& config) {
  1178. return src.insert_single_output_opr<MaskConvolution>(
  1179. src.node(), filter.node(), mask.node(), param, config);
  1180. }
  1181. void MaskConvolution::init_output_dtype() {
  1182. auto dtype = input(2)->dtype();
  1183. mgb_assert(dtype == dtype::Int32() || dtype == dtype::Int16() ||
  1184. dtype == dtype::Int8(),
  1185. "dtype must be int8, int16 or int32, while get %s",
  1186. dtype.name());
  1187. output(0)->dtype(input(0)->dtype());
  1188. }
  1189. MGB_DYN_TYPE_OBJ_FINAL_IMPL(MaskPropagate);
  1190. MaskPropagate::MaskPropagate(VarNode* src, const Param& param,
  1191. const OperatorNodeConfig& config)
  1192. : Super(src->owner_graph(), config, "mask_propagate", {src}) {
  1193. init_megdnn_opr(*this, param);
  1194. add_input({src});
  1195. }
  1196. void MaskPropagate::init_output_dtype() {
  1197. auto dtype = input(0)->dtype();
  1198. mgb_assert(dtype == dtype::Int32() || dtype == dtype::Int16() ||
  1199. dtype == dtype::Int8());
  1200. output(0)->dtype(dtype);
  1201. }
  1202. SymbolVar MaskPropagate::make(SymbolVar src, const Param& param,
  1203. const OperatorNodeConfig& config) {
  1204. return src.insert_single_output_opr<MaskPropagate>(src.node(), param,
  1205. config);
  1206. }
  1207. /* ==================== ConvBiasForward ==================== */
  1208. IMPL_CONV(ConvBiasForward, "conv_bias_fwd");
  1209. ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter,
  1210. const Param& param,
  1211. const ExecutionPolicy& policy,
  1212. const OperatorNodeConfig& config)
  1213. : Super{src->owner_graph(), config, "conv_bias", {src, filter}} {
  1214. init_megdnn_opr(*this, param);
  1215. m_policy = policy;
  1216. add_input({src, filter});
  1217. }
  1218. ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter, VarNode* bias,
  1219. const Param& param,
  1220. const ExecutionPolicy& policy,
  1221. const OperatorNodeConfig& config)
  1222. : Super{src->owner_graph(), config, "conv_bias", {src, filter, bias}} {
  1223. m_policy = policy;
  1224. init_megdnn_opr(*this, param);
  1225. add_input({src, filter, bias});
  1226. }
  1227. ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter, VarNode* bias,
  1228. VarNode* z, const Param& param,
  1229. const ExecutionPolicy& policy,
  1230. const OperatorNodeConfig& config)
  1231. : Super{src->owner_graph(),
  1232. config,
  1233. "conv_bias",
  1234. {src, filter, bias, z}} {
  1235. m_policy = policy;
  1236. init_megdnn_opr(*this, param);
  1237. add_input({src, filter, bias, z});
  1238. }
  1239. void ConvBiasForward::add_input_layout_constraint() {
  1240. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1241. }
  1242. SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1243. const Param& param,
  1244. const ExecutionPolicy& policy,
  1245. const OperatorNodeConfig& config) {
  1246. return src.insert_single_output_opr<ConvBiasForward>(
  1247. src.node(), filter.node(), param, policy, config);
  1248. }
  1249. SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter, SymbolVar bias,
  1250. const Param& param,
  1251. const ExecutionPolicy& policy,
  1252. const OperatorNodeConfig& config) {
  1253. return src.insert_single_output_opr<ConvBiasForward>(
  1254. src.node(), filter.node(), bias.node(), param, policy, config);
  1255. }
  1256. SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter, SymbolVar bias,
  1257. SymbolVar z, const Param& param,
  1258. const ExecutionPolicy& policy,
  1259. const OperatorNodeConfig& config) {
  1260. return src.insert_single_output_opr<ConvBiasForward>(
  1261. src.node(), filter.node(), bias.node(), z.node(), param, policy,
  1262. config);
  1263. }
  1264. void ConvBiasForward::init_output_dtype() {
  1265. DType output_dtype = config().output_dtype();
  1266. DType i0, i1, i2, i3;
  1267. mgb_assert(input().size() >= 2 && input().size() <= 4);
  1268. i0 = input(0)->dtype();
  1269. i1 = input(1)->dtype();
  1270. if (input().size() >= 3)
  1271. i2 = input(2)->dtype();
  1272. if (input().size() == 4)
  1273. i3 = input(3)->dtype();
  1274. megdnn_opr()->deduce_dtype(i0, i1, i2, i3, output_dtype);
  1275. output(0)->dtype(output_dtype);
  1276. }
  1277. size_t ConvBiasForward::get_workspace_size_bytes(
  1278. const TensorShapeArray& input_shapes,
  1279. const TensorShapeArray& output_shapes) const {
  1280. auto mo = megdnn_opr();
  1281. TensorLayout i0, i1, i2, i3;
  1282. mgb_assert(input_shapes.size() >= 2 && input_shapes.size() <= 4);
  1283. i0 = {input_shapes[0], input(0)->dtype(), input(0)->format()};
  1284. i1 = {input_shapes[1], input(1)->dtype(), input(1)->format()};
  1285. if (input_shapes.size() >= 3)
  1286. i2 = {input_shapes[2], input(2)->dtype(), input(2)->format()};
  1287. else {
  1288. DType dtype;
  1289. mo->deduce_dtype(input(0)->dtype(), input(1)->dtype(), DType{}, DType{},
  1290. dtype);
  1291. i2 = {{}, dtype};
  1292. }
  1293. if (input_shapes.size() == 4)
  1294. i3 = {input_shapes[3], input(3)->dtype(), input(3)->format()};
  1295. else
  1296. i3 = {{}, output(0)->dtype(), output(0)->format()};
  1297. return AlgoChooser<megdnn::ConvBias>::setup_algo(
  1298. {i0,
  1299. i1,
  1300. i2,
  1301. i3,
  1302. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1303. mo, this);
  1304. }
  1305. void ConvBiasForward::scn_do_execute() {
  1306. auto&& inp = input();
  1307. auto mo = megdnn_opr();
  1308. if (inp.size() == 2) {
  1309. TensorLayout bias_layout;
  1310. bias_layout.ndim = 0;
  1311. if (output(0)->dtype().enumv() == DTypeEnum::QuantizedS8) {
  1312. bias_layout.dtype = dtype::QuantizedS32(
  1313. output(0)->dtype().param<dtype::QuantizedS8>().scale);
  1314. } else {
  1315. bias_layout.dtype = output(0)->dtype();
  1316. }
  1317. TensorLayout z_layout;
  1318. z_layout.ndim = 0;
  1319. z_layout.dtype = output(0)->dtype();
  1320. megdnn::TensorND bias_tensor{nullptr, bias_layout};
  1321. megdnn::TensorND z_tensor{nullptr, z_layout};
  1322. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1323. inp[1]->dev_tensor().as_megdnn(), bias_tensor, z_tensor,
  1324. output(0)->dev_tensor().as_megdnn(),
  1325. nullptr,
  1326. intl::get_megdnn_workspace_from_var(output().back()));
  1327. } else if (inp.size() == 3) {
  1328. TensorLayout z_layout;
  1329. z_layout.ndim = 0;
  1330. z_layout.dtype = output(0)->dtype();
  1331. megdnn::TensorND z_tensor{nullptr, z_layout};
  1332. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1333. inp[1]->dev_tensor().as_megdnn(),
  1334. inp[2]->dev_tensor().as_megdnn(), z_tensor,
  1335. output(0)->dev_tensor().as_megdnn(),
  1336. nullptr,
  1337. intl::get_megdnn_workspace_from_var(output().back()));
  1338. } else {
  1339. mgb_assert(inp.size() == 4);
  1340. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1341. inp[1]->dev_tensor().as_megdnn(),
  1342. inp[2]->dev_tensor().as_megdnn(),
  1343. inp[3]->dev_tensor().as_megdnn(),
  1344. output(0)->dev_tensor().as_megdnn(),
  1345. nullptr,
  1346. intl::get_megdnn_workspace_from_var(output().back()));
  1347. }
  1348. }
  1349. void ConvBiasForward::get_output_var_shape(const TensorShapeArray& inp_shape,
  1350. TensorShapeArray& out_shape) const {
  1351. auto mo = megdnn_opr();
  1352. TensorLayout dst;
  1353. mo->deduce_layout({inp_shape[0], input(0)->dtype(), input(0)->format()},
  1354. {inp_shape[1], input(1)->dtype(), input(0)->format()}, {},
  1355. {}, dst);
  1356. out_shape[0] = dst;
  1357. }
  1358. void ConvBiasForward::init_output_static_infer_desc() {
  1359. Super::set_nr_managed_outputs(this->output().size() - 1);
  1360. Super::init_output_static_infer_desc();
  1361. this->init_output_static_infer_desc_workspace(
  1362. intl::AutoAddWorkspaceNeedLimitGetter<
  1363. megdnn::ConvBiasForward>::val);
  1364. }
  1365. void ConvBiasForward::init_output_format() {
  1366. mgb_assert(output().size() == 2);
  1367. output(0)->format(input(0)->format());
  1368. }
  1369. void ConvBiasForward::check_winograd_param_valid(
  1370. const megdnn::ConvBias::WinogradParam& param,
  1371. const DType& dtype) {
  1372. if (dtype.enumv() == DTypeEnum::Float32) {
  1373. mgb_assert(param.channel_block_size == 1 ||
  1374. param.channel_block_size == 4 ||
  1375. param.channel_block_size == 8,
  1376. "only support 1/4/8 for the channel_block_size of "
  1377. "winograd param, got %u",
  1378. param.channel_block_size);
  1379. } else {
  1380. mgb_assert((MEGDNN_FLOAT16_SELECT(dtype.enumv() == DTypeEnum::Float16,
  1381. false) ||
  1382. dtype.enumv() == DTypeEnum::QuantizedS8 ||
  1383. dtype.enumv() == DTypeEnum::Quantized8Asymm) &&
  1384. (param.channel_block_size == 1 ||
  1385. param.channel_block_size == 4 ||
  1386. param.channel_block_size == 8),
  1387. "only support 1/4/8 for the channel_block_size of "
  1388. "winograd param, got %u",
  1389. param.channel_block_size);
  1390. }
  1391. }
  1392. megdnn::param::MatrixMul::Format ConvBiasForward::get_matmul_format(
  1393. const megdnn::ConvBias::WinogradParam& param) {
  1394. switch (param.channel_block_size) {
  1395. case 1:
  1396. return megdnn::param::MatrixMul::Format::DEFAULT;
  1397. break;
  1398. case 4:
  1399. return megdnn::param::MatrixMul::Format::MK4;
  1400. break;
  1401. case 8:
  1402. return megdnn::param::MatrixMul::Format::MK8;
  1403. break;
  1404. default:
  1405. mgb_throw(InternalError,
  1406. "Only Support 1/4/8 for "
  1407. "channel_block_size, got: %u",
  1408. param.channel_block_size);
  1409. }
  1410. }
  1411. /* ===================== LocalShareForward ==================== */
  1412. IMPL_CONV(LocalShareForward, "local_share");
  1413. LocalShareForward::LocalShareForward(VarNode* src, VarNode* filter,
  1414. const Param& param,
  1415. const ExecutionPolicy& policy,
  1416. const OperatorNodeConfig& config)
  1417. : Super{src->owner_graph(), config, "local_share", {src, filter}} {
  1418. init_megdnn_opr(*this, param);
  1419. m_policy = policy;
  1420. add_input({src, filter});
  1421. }
  1422. SymbolVar LocalShareForward::make(SymbolVar src, SymbolVar filter,
  1423. const Param& param,
  1424. const ExecutionPolicy& policy,
  1425. const OperatorNodeConfig& config) {
  1426. return src.insert_single_output_opr<LocalShareForward>(
  1427. src.node(), filter.node(), param, policy, config);
  1428. }
  1429. void LocalShareForward::init_output_dtype() {
  1430. DType output_dtype = config().output_dtype();
  1431. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1432. output_dtype = dtype::Float32();
  1433. output(0)->dtype(output_dtype);
  1434. }
  1435. void LocalShareForward::init_output_format() {
  1436. mgb_assert(output().size() == 2);
  1437. output(0)->format(input(0)->format());
  1438. }
  1439. size_t LocalShareForward::get_workspace_size_bytes(
  1440. const TensorShapeArray& input_shapes,
  1441. const TensorShapeArray& output_shapes) const {
  1442. mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
  1443. return AlgoChooser<megdnn::LocalShareForward>::setup_algo(
  1444. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1445. input(0)->format()},
  1446. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1447. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1448. megdnn_opr(), this);
  1449. }
  1450. MGB_IMPL_OPR_GRAD(LocalShareForward) {
  1451. mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
  1452. "only float data type supported for grad");
  1453. mgb_assert(wrt_idx == 0 || wrt_idx == 1);
  1454. mgb_assert(out_grad.size() == 2);
  1455. if (wrt_idx == 0) {
  1456. // data
  1457. SymbolVar grad = LocalShareBackwardData::make(
  1458. opr.input(1), out_grad[0], opr.input(0),
  1459. opr.param(), opr.execution_policy());
  1460. return grad.node();
  1461. } else {
  1462. // filter
  1463. SymbolVar grad = LocalShareBackwardFilter::make(
  1464. opr.input(0), out_grad[0], opr.input(1),
  1465. opr.param(), opr.execution_policy());
  1466. return grad.node();
  1467. }
  1468. }
  1469. /* ===================== LocalShareBackwardData ==================== */
  1470. IMPL_CONV(LocalShareBackwardData, "local_share_bwd_data");
  1471. LocalShareBackwardData::LocalShareBackwardData(VarNode* filter, VarNode* diff,
  1472. VarNode* src_for_shp,
  1473. const Param& param,
  1474. const ExecutionPolicy& policy,
  1475. const OperatorNodeConfig& config)
  1476. : Super{filter->owner_graph(), config, "local_share_bwd_data", {filter, diff}} {
  1477. init_megdnn_opr(*this, param);
  1478. m_policy = policy;
  1479. add_input({filter, diff});
  1480. if (src_for_shp) {
  1481. add_input({src_for_shp});
  1482. }
  1483. }
  1484. SymbolVar LocalShareBackwardData::make(SymbolVar filter, SymbolVar diff,
  1485. SymbolVar src, const Param& param,
  1486. const ExecutionPolicy& policy,
  1487. const OperatorNodeConfig& config) {
  1488. return filter.insert_single_output_opr<LocalShareBackwardData>(
  1489. filter.node(), diff.node(), src.node(), param, policy, config);
  1490. }
  1491. void LocalShareBackwardData::init_output_static_infer_desc() {
  1492. init_output_static_infer_desc_for_bwd_data<LocalShareBackwardData,
  1493. megdnn::LocalShareBackwardData>(
  1494. this);
  1495. }
  1496. void LocalShareBackwardData::init_output_dtype() {
  1497. DType output_dtype = config().output_dtype();
  1498. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1499. output_dtype = dtype::Float32();
  1500. output(0)->dtype(output_dtype);
  1501. }
  1502. void LocalShareBackwardData::add_input_layout_constraint() {
  1503. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1504. }
  1505. cg::OperatorNodeBase::NodeProp* LocalShareBackwardData::do_make_node_prop()
  1506. const {
  1507. auto prop = Super::Super::do_make_node_prop();
  1508. mgb_assert(input().size() == 3);
  1509. using D = NodeProp::DepType;
  1510. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
  1511. return prop;
  1512. }
  1513. void LocalShareBackwardData::scn_do_execute() {
  1514. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
  1515. input(1)->dev_tensor().as_megdnn(),
  1516. output(0)->dev_tensor().as_megdnn(),
  1517. intl::get_megdnn_workspace_from_var(output(1)));
  1518. }
  1519. MGB_IMPL_OPR_GRAD(LocalShareBackwardData) {
  1520. mgb_assert(!out_grad[1]);
  1521. if (wrt_idx == 0) {
  1522. return LocalShareBackwardFilter::make(out_grad[0], opr.input(1),
  1523. opr.input(0), opr.param(),
  1524. opr.execution_policy())
  1525. .node();
  1526. }
  1527. if (wrt_idx == 1) {
  1528. return LocalShare::make(out_grad[0], opr.input(0), opr.param(),
  1529. opr.execution_policy())
  1530. .node();
  1531. }
  1532. return nullptr;
  1533. }
  1534. /* ==================== LocalShareBackwardFilter ==================== */
  1535. IMPL_CONV(LocalShareBackwardFilter, "local_share_bwd_filter");
  1536. LocalShareBackwardFilter::LocalShareBackwardFilter(
  1537. VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
  1538. const ExecutionPolicy& policy, const OperatorNodeConfig& config)
  1539. : Super({src->owner_graph(),
  1540. config,
  1541. "local_share_bwd_filter",
  1542. {src, diff, filter}},
  1543. 2, false) {
  1544. init_megdnn_opr(*this, param);
  1545. m_policy = policy;
  1546. add_input({src, diff, filter});
  1547. }
  1548. SymbolVar LocalShareBackwardFilter::make(
  1549. SymbolVar src, SymbolVar diff, SymbolVar filter,
  1550. const Param &param,
  1551. const ExecutionPolicy &policy,
  1552. const OperatorNodeConfig &config) {
  1553. return src.insert_single_output_opr<LocalShareBackwardFilter>(
  1554. src.node(), diff.node(), filter.node(), param, policy, config);
  1555. }
  1556. size_t LocalShareBackwardFilter::get_workspace_size_bytes(
  1557. const TensorShapeArray &input_shapes,
  1558. const TensorShapeArray &output_shapes) const {
  1559. mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
  1560. return AlgoChooser<megdnn::LocalShareBackwardFilter>::setup_algo(
  1561. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1562. input(0)->format()},
  1563. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1564. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1565. megdnn_opr(), this);
  1566. }
  1567. MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) {
  1568. mgb_assert(!out_grad[1]);
  1569. if (wrt_idx == 0) {
  1570. return LocalShareBackwardData::make(out_grad[0], opr.input(1),
  1571. opr.input(0), opr.param(), opr.execution_policy()).node();
  1572. }
  1573. if (wrt_idx == 1) {
  1574. return LocalShare::make(
  1575. opr.input(0), out_grad[0], opr.param(), opr.execution_policy()).
  1576. node();
  1577. }
  1578. return nullptr;
  1579. }
  1580. /* ===================== DeformableConvForward ==================== */
  1581. IMPL_CONV(DeformableConvForward, "deformable_conv");
  1582. DeformableConvForward::DeformableConvForward(VarNode* src, VarNode* filter,
  1583. VarNode* offset, VarNode* mask,
  1584. const Param& param,
  1585. const ExecutionPolicy& policy,
  1586. const OperatorNodeConfig& config)
  1587. : Super{src->owner_graph(),
  1588. config,
  1589. "deformable_conv",
  1590. {src, filter, offset, mask}} {
  1591. mgb_assert(src->dtype() == dtype::Float32() &&
  1592. filter->dtype() == dtype::Float32() &&
  1593. offset->dtype() == dtype::Float32() &&
  1594. mask->dtype() == dtype::Float32(),
  1595. "input should be float32, got %s, %s, %s, %s",
  1596. src->dtype().name(), filter->dtype().name(),
  1597. offset->dtype().name(), mask->dtype().name());
  1598. init_megdnn_opr(*this, param);
  1599. m_policy = policy;
  1600. add_input({src, filter, offset, mask});
  1601. }
  1602. SymbolVar DeformableConvForward::make(SymbolVar src, SymbolVar filter,
  1603. SymbolVar offset, SymbolVar mask,
  1604. const Param& param,
  1605. const ExecutionPolicy& policy,
  1606. const OperatorNodeConfig& config) {
  1607. return src.insert_single_output_opr<DeformableConvForward>(
  1608. src.node(), filter.node(), offset.node(), mask.node(), param,
  1609. policy, config);
  1610. }
  1611. void DeformableConvForward::init_output_dtype() {
  1612. DType output_dtype = config().output_dtype();
  1613. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1614. output_dtype = dtype::Float32();
  1615. output(0)->dtype(output_dtype);
  1616. }
  1617. void DeformableConvForward::init_output_format() {
  1618. mgb_assert(output().size() == 2);
  1619. output(0)->format(input(0)->format());
  1620. }
  1621. size_t DeformableConvForward::get_workspace_size_bytes(
  1622. const TensorShapeArray& input_shapes,
  1623. const TensorShapeArray& output_shapes) const {
  1624. mgb_assert(input_shapes.size() == 4 && output_shapes.size() == 1);
  1625. return AlgoChooser<megdnn::DeformableConvForward>::setup_algo(
  1626. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1627. input(0)->format()},
  1628. {input_shapes[1], input(1)->dtype(), input(1)->format()},
  1629. {input_shapes[2], input(2)->dtype(), input(2)->format()},
  1630. {input_shapes[3], input(3)->dtype(), input(3)->format()},
  1631. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1632. megdnn_opr(), this);
  1633. }
  1634. MGB_IMPL_OPR_GRAD(DeformableConvForward) {
  1635. mgb_assert(opr.input(0)->dtype() == dtype::Float32(),
  1636. "only float data type supported for grad");
  1637. mgb_assert(wrt_idx < 4);
  1638. mgb_assert(!out_grad[1]);
  1639. mgb_assert(out_grad.size() == 2);
  1640. // data, offset and mask
  1641. auto grad_arr = DeformableConvBackwardData::make_all(
  1642. opr.input(0), opr.input(1), opr.input(2), opr.input(3), out_grad[0],
  1643. opr.param(), opr.execution_policy(), opr.config());
  1644. // filter
  1645. auto filter_grad = DeformableConvBackwardFilter::make(
  1646. opr.input(0), opr.input(1), opr.input(2), opr.input(3), out_grad[0],
  1647. opr.param(), opr.execution_policy(), opr.config());
  1648. SymbolVarArray grads = {grad_arr[0], filter_grad, grad_arr[1], grad_arr[2]};
  1649. return grads[wrt_idx].node();
  1650. }
  1651. /* ==================== DeformableConvBackwardData ==================== */
  1652. IMPL_CONV(DeformableConvBackwardData, "deformalbe_conv_backward_data");
  1653. DeformableConvBackwardData::DeformableConvBackwardData(
  1654. VarNode* src, VarNode* filter, VarNode* offset, VarNode* mask,
  1655. VarNode* diff, const Param& param, const ExecutionPolicy& policy,
  1656. const OperatorNodeConfig& config)
  1657. : Super{filter->owner_graph(),
  1658. config,
  1659. "deformable_conv_backward_data",
  1660. {src, filter, offset, mask, diff}} {
  1661. mgb_assert(src->dtype() == dtype::Float32() and
  1662. filter->dtype() == dtype::Float32() and
  1663. offset->dtype() == dtype::Float32() and
  1664. mask->dtype() == dtype::Float32() and
  1665. diff->dtype() == dtype::Float32(),
  1666. "input should be float32, got %s, %s, %s, %s %s",
  1667. src->dtype().name(), filter->dtype().name(),
  1668. offset->dtype().name(), mask->dtype().name(),
  1669. diff->dtype().name());
  1670. init_megdnn_opr(*this, param);
  1671. m_policy = policy;
  1672. add_input({src, filter, offset, mask, diff});
  1673. }
  1674. SymbolVarArray DeformableConvBackwardData::make_all(
  1675. SymbolVar src, SymbolVar filter, SymbolVar offset, SymbolVar mask,
  1676. SymbolVar diff, const Param& param, const ExecutionPolicy& policy,
  1677. const OperatorNodeConfig& config) {
  1678. auto graph = src.node()->owner_graph();
  1679. auto back_node =
  1680. graph->insert_opr(std::make_unique<DeformableConvBackwardData>(
  1681. src.node(), filter.node(), offset.node(), mask.node(),
  1682. diff.node(), param, policy, config));
  1683. return {back_node->output(0), back_node->output(1), back_node->output(2)};
  1684. }
  1685. SymbolVar DeformableConvBackwardData::make(SymbolVar src, SymbolVar filter,
  1686. SymbolVar offset, SymbolVar mask,
  1687. SymbolVar diff, const Param& param,
  1688. const ExecutionPolicy& policy,
  1689. const OperatorNodeConfig& config) {
  1690. auto&& all =
  1691. make_all(src, filter, offset, mask, diff, param, policy, config);
  1692. return all[0];
  1693. }
  1694. void DeformableConvBackwardData::scn_do_execute() {
  1695. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), // src
  1696. input(1)->dev_tensor().as_megdnn(), // filter
  1697. input(2)->dev_tensor().as_megdnn(), // offset
  1698. input(3)->dev_tensor().as_megdnn(), // mask
  1699. input(4)->dev_tensor().as_megdnn(), // diff
  1700. output(0)->dev_tensor().as_megdnn(), // src_grad
  1701. output(1)->dev_tensor().as_megdnn(), // offset_grad
  1702. output(2)->dev_tensor().as_megdnn(), // mask_grad
  1703. intl::get_megdnn_workspace_from_var(output(3)));
  1704. }
  1705. void DeformableConvBackwardData::get_output_var_shape(
  1706. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  1707. TensorShape im_shp = inp_shape[0];
  1708. TensorShape offset_shp = inp_shape[2];
  1709. TensorShape mask_shp = inp_shape[3];
  1710. mgb_assert(im_shp.ndim == 4, "invalid src shape: %s",
  1711. im_shp.to_string().c_str());
  1712. mgb_assert(offset_shp.ndim == 4, "invalid offset shape: %s",
  1713. offset_shp.to_string().c_str());
  1714. mgb_assert(mask_shp.ndim == 4, "invalid mask shape: %s",
  1715. mask_shp.to_string().c_str());
  1716. mgb_assert(out_shape.size() == 3);
  1717. out_shape[0] = im_shp;
  1718. out_shape[1] = offset_shp;
  1719. out_shape[2] = mask_shp;
  1720. }
  1721. size_t DeformableConvBackwardData::get_workspace_size_bytes(
  1722. const TensorShapeArray& inp_shape,
  1723. const TensorShapeArray& out_shape) const {
  1724. size_t ws = AlgoChooser<megdnn::DeformableConvBackwardData>::setup_algo(
  1725. {TensorLayout{inp_shape[0], input(0)->dtype(), input(0)->format()},
  1726. {inp_shape[1], input(1)->dtype(), input(1)->format()},
  1727. {inp_shape[2], input(2)->dtype(), input(2)->format()},
  1728. {inp_shape[3], input(3)->dtype(), input(3)->format()},
  1729. {inp_shape[4], input(4)->dtype(), input(4)->format()},
  1730. {out_shape[0], output(0)->dtype(), output(0)->format()},
  1731. {out_shape[1], output(1)->dtype(), output(1)->format()},
  1732. {out_shape[2], output(2)->dtype(), output(2)->format()}},
  1733. megdnn_opr(), this);
  1734. return ws;
  1735. }
  1736. void DeformableConvBackwardData::init_output_dtype() {
  1737. DType output_dtype = config().output_dtype();
  1738. mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
  1739. output_dtype = dtype::Float32();
  1740. output(0)->dtype(output_dtype);
  1741. output(1)->dtype(output_dtype);
  1742. output(2)->dtype(output_dtype);
  1743. }
  1744. void DeformableConvBackwardData::init_output_format() {
  1745. mgb_assert(output().size() == 4);
  1746. output(0)->format(input(0)->format());
  1747. output(1)->format(input(2)->format());
  1748. output(2)->format(input(3)->format());
  1749. }
  1750. cg::OperatorNodeBase::NodeProp* DeformableConvBackwardData::do_make_node_prop()
  1751. const {
  1752. auto prop = Super::Super::do_make_node_prop();
  1753. using D = NodeProp::DepType;
  1754. mgb_assert(input().size() == 5);
  1755. prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::DEV_VALUE,
  1756. D::DEV_VALUE, D::DEV_VALUE});
  1757. return prop;
  1758. }
  1759. void DeformableConvBackwardData::init_output_static_infer_desc() {
  1760. Super::set_nr_managed_outputs(this->output().size() - 1);
  1761. Super::init_output_static_infer_desc();
  1762. this->init_output_static_infer_desc_workspace(
  1763. intl::AutoAddWorkspaceNeedLimitGetter<
  1764. megdnn::DeformableConvBackwardData>::val);
  1765. }
  1766. /* ==================== DeformableConvBackwardFilter ==================== */
  1767. IMPL_CONV(DeformableConvBackwardFilter, "deformalbe_conv_backward_filter");
  1768. DeformableConvBackwardFilter::DeformableConvBackwardFilter(
  1769. VarNode* src, VarNode* filter, VarNode* offset, VarNode* mask,
  1770. VarNode* diff, const Param& param, const ExecutionPolicy& policy,
  1771. const OperatorNodeConfig& config)
  1772. : Super({src->owner_graph(),
  1773. config,
  1774. "deformable_conv_backward_filter",
  1775. {src, filter, offset, mask, diff}},
  1776. 1, false) {
  1777. mgb_assert(src->dtype() == dtype::Float32() and
  1778. filter->dtype() == dtype::Float32() and
  1779. offset->dtype() == dtype::Float32() and
  1780. mask->dtype() == dtype::Float32() and
  1781. diff->dtype() == dtype::Float32(),
  1782. "input should be float32, got %s, %s, %s, %s %s",
  1783. src->dtype().name(), filter->dtype().name(),
  1784. offset->dtype().name(), mask->dtype().name(),
  1785. diff->dtype().name());
  1786. init_megdnn_opr(*this, param);
  1787. m_policy = policy;
  1788. add_input({src, filter, offset, mask, diff});
  1789. }
  1790. SymbolVar DeformableConvBackwardFilter::make(SymbolVar src, SymbolVar filter,
  1791. SymbolVar offset, SymbolVar mask,
  1792. SymbolVar diff, const Param& param,
  1793. const ExecutionPolicy& policy,
  1794. const OperatorNodeConfig& config) {
  1795. return src.insert_single_output_opr<DeformableConvBackwardFilter>(
  1796. src.node(), filter.node(), offset.node(), mask.node(), diff.node(),
  1797. param, policy, config);
  1798. }
  1799. void DeformableConvBackwardFilter::scn_do_execute() {
  1800. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), // src
  1801. input(2)->dev_tensor().as_megdnn(), // offset
  1802. input(3)->dev_tensor().as_megdnn(), // mask
  1803. input(4)->dev_tensor().as_megdnn(), // diff
  1804. output(0)->dev_tensor().as_megdnn(), // filter_diff
  1805. intl::get_megdnn_workspace_from_var(output(1)));
  1806. }
  1807. size_t DeformableConvBackwardFilter::get_workspace_size_bytes(
  1808. const TensorShapeArray& input_shapes,
  1809. const TensorShapeArray& output_shapes) const {
  1810. mgb_assert(input_shapes.size() == 5 && output_shapes.size() == 1);
  1811. return AlgoChooser<megdnn::DeformableConvBackwardFilter>::setup_algo(
  1812. {TensorLayout{input_shapes[0], input(0)->dtype(),
  1813. input(0)->format()},
  1814. {input_shapes[2], input(2)->dtype(), input(2)->format()},
  1815. {input_shapes[3], input(3)->dtype(), input(3)->format()},
  1816. {input_shapes[4], input(4)->dtype(), input(4)->format()},
  1817. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1818. megdnn_opr(), this);
  1819. }
  1820. /* ==================== BatchConvBiasForward ==================== */
  1821. IMPL_CONV(BatchConvBiasForward, "batch_conv_bias_fwd");
  1822. BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
  1823. const Param& param,
  1824. const ExecutionPolicy& policy,
  1825. const OperatorNodeConfig& config)
  1826. : Super{src->owner_graph(), config, "batch_conv_bias", {src, filter}} {
  1827. init_megdnn_opr(*this, param);
  1828. m_policy = policy;
  1829. add_input({src, filter});
  1830. }
  1831. BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
  1832. VarNode* bias, const Param& param,
  1833. const ExecutionPolicy& policy,
  1834. const OperatorNodeConfig& config)
  1835. : Super{src->owner_graph(),
  1836. config,
  1837. "batch_conv_bias",
  1838. {src, filter, bias}} {
  1839. m_policy = policy;
  1840. init_megdnn_opr(*this, param);
  1841. add_input({src, filter, bias});
  1842. }
  1843. BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
  1844. VarNode* bias, VarNode* z,
  1845. const Param& param,
  1846. const ExecutionPolicy& policy,
  1847. const OperatorNodeConfig& config)
  1848. : Super{src->owner_graph(),
  1849. config,
  1850. "batch_conv_bias",
  1851. {src, filter, bias, z}} {
  1852. m_policy = policy;
  1853. init_megdnn_opr(*this, param);
  1854. add_input({src, filter, bias, z});
  1855. }
  1856. void BatchConvBiasForward::add_input_layout_constraint() {
  1857. mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
  1858. }
  1859. SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1860. const Param& param,
  1861. const ExecutionPolicy& policy,
  1862. const OperatorNodeConfig& config) {
  1863. return src.insert_single_output_opr<BatchConvBiasForward>(
  1864. src.node(), filter.node(), param, policy, config);
  1865. }
  1866. SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1867. SymbolVar bias, const Param& param,
  1868. const ExecutionPolicy& policy,
  1869. const OperatorNodeConfig& config) {
  1870. return src.insert_single_output_opr<BatchConvBiasForward>(
  1871. src.node(), filter.node(), bias.node(), param, policy, config);
  1872. }
  1873. SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
  1874. SymbolVar bias, SymbolVar z,
  1875. const Param& param,
  1876. const ExecutionPolicy& policy,
  1877. const OperatorNodeConfig& config) {
  1878. return src.insert_single_output_opr<BatchConvBiasForward>(
  1879. src.node(), filter.node(), bias.node(), z.node(), param, policy,
  1880. config);
  1881. }
  1882. void BatchConvBiasForward::init_output_dtype() {
  1883. DType output_dtype = config().output_dtype();
  1884. DType i0, i1, i2, i3;
  1885. mgb_assert(input().size() >= 2 && input().size() <= 4);
  1886. i0 = input(0)->dtype();
  1887. i1 = input(1)->dtype();
  1888. if (input().size() >= 3)
  1889. i2 = input(2)->dtype();
  1890. if (input().size() == 4)
  1891. i3 = input(3)->dtype();
  1892. megdnn_opr()->deduce_dtype(i0, i1, i2, i3, output_dtype);
  1893. output(0)->dtype(output_dtype);
  1894. }
  1895. size_t BatchConvBiasForward::get_workspace_size_bytes(
  1896. const TensorShapeArray& input_shapes,
  1897. const TensorShapeArray& output_shapes) const {
  1898. auto mo = megdnn_opr();
  1899. TensorLayout i0, i1, i2, i3;
  1900. mgb_assert(input_shapes.size() >= 2 && input_shapes.size() <= 4);
  1901. i0 = {input_shapes[0], input(0)->dtype(), input(0)->format()};
  1902. i1 = {input_shapes[1], input(1)->dtype(), input(1)->format()};
  1903. if (input_shapes.size() >= 3)
  1904. i2 = {input_shapes[2], input(2)->dtype(), input(2)->format()};
  1905. else {
  1906. DType dtype;
  1907. mo->deduce_dtype(input(0)->dtype(), input(1)->dtype(), DType{}, DType{},
  1908. dtype);
  1909. i2 = {{}, dtype};
  1910. }
  1911. if (input_shapes.size() == 4)
  1912. i3 = {input_shapes[3], input(3)->dtype(), input(3)->format()};
  1913. else
  1914. i3 = {{}, output(0)->dtype(), output(0)->format()};
  1915. return AlgoChooser<megdnn::BatchConvBias>::setup_algo(
  1916. {i0,
  1917. i1,
  1918. i2,
  1919. i3,
  1920. {output_shapes[0], output(0)->dtype(), output(0)->format()}},
  1921. mo, this);
  1922. }
  1923. void BatchConvBiasForward::scn_do_execute() {
  1924. auto&& inp = input();
  1925. auto mo = megdnn_opr();
  1926. if (inp.size() == 2) {
  1927. TensorLayout bias_layout;
  1928. bias_layout.ndim = 0;
  1929. if (output(0)->dtype().enumv() == DTypeEnum::QuantizedS8) {
  1930. bias_layout.dtype = dtype::QuantizedS32(
  1931. output(0)->dtype().param<dtype::QuantizedS8>().scale);
  1932. } else {
  1933. bias_layout.dtype = output(0)->dtype();
  1934. }
  1935. TensorLayout z_layout;
  1936. z_layout.ndim = 0;
  1937. z_layout.dtype = output(0)->dtype();
  1938. megdnn::TensorND bias_tensor{nullptr, bias_layout};
  1939. megdnn::TensorND z_tensor{nullptr, z_layout};
  1940. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1941. inp[1]->dev_tensor().as_megdnn(), bias_tensor, z_tensor,
  1942. output(0)->dev_tensor().as_megdnn(),
  1943. intl::get_megdnn_workspace_from_var(output().back()));
  1944. } else if (inp.size() == 3) {
  1945. TensorLayout z_layout;
  1946. z_layout.ndim = 0;
  1947. z_layout.dtype = output(0)->dtype();
  1948. megdnn::TensorND z_tensor{nullptr, z_layout};
  1949. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1950. inp[1]->dev_tensor().as_megdnn(),
  1951. inp[2]->dev_tensor().as_megdnn(), z_tensor,
  1952. output(0)->dev_tensor().as_megdnn(),
  1953. intl::get_megdnn_workspace_from_var(output().back()));
  1954. } else {
  1955. mgb_assert(inp.size() == 4);
  1956. mo->exec(inp[0]->dev_tensor().as_megdnn(),
  1957. inp[1]->dev_tensor().as_megdnn(),
  1958. inp[2]->dev_tensor().as_megdnn(),
  1959. inp[3]->dev_tensor().as_megdnn(),
  1960. output(0)->dev_tensor().as_megdnn(),
  1961. intl::get_megdnn_workspace_from_var(output().back()));
  1962. }
  1963. }
  1964. void BatchConvBiasForward::get_output_var_shape(
  1965. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  1966. auto mo = megdnn_opr();
  1967. TensorLayout dst;
  1968. mo->deduce_layout({inp_shape[0], input(0)->dtype(), input(0)->format()},
  1969. {inp_shape[1], input(1)->dtype(), input(0)->format()}, {},
  1970. {}, dst);
  1971. out_shape[0] = dst;
  1972. }
  1973. void BatchConvBiasForward::init_output_static_infer_desc() {
  1974. Super::set_nr_managed_outputs(this->output().size() - 1);
  1975. Super::init_output_static_infer_desc();
  1976. this->init_output_static_infer_desc_workspace(
  1977. intl::AutoAddWorkspaceNeedLimitGetter<
  1978. megdnn::BatchConvBiasForward>::val);
  1979. }
  1980. void BatchConvBiasForward::init_output_format() {
  1981. mgb_assert(output().size() == 2);
  1982. output(0)->format(input(0)->format());
  1983. }
  1984. #undef IMPL_CONV
  1985. #undef MGB_FOREACH_FASTRUN_OPR
  1986. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台