|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- /**
- * \file dnn/test/cuda/rng.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "test/naive/rng.h"
- #include "megdnn/oprs.h"
- #include "test/common/tensor.h"
- #include "test/cuda/fixture.h"
-
- namespace megdnn {
-
- namespace test {
-
- namespace {
-
- template <typename T>
- void run_gamma(Handle* handle) {
- using ctype = typename DTypeTrait<T>::ctype;
- auto opr = handle->create_operator<GammaRNG>();
-
- TensorLayout ly{TensorShape{2000000 * 5}, T()};
-
- SyncedTensor<ctype> out(handle, ly);
- SyncedTensor<ctype> shape(handle, ly);
- SyncedTensor<ctype> scale(handle, ly);
- auto shape_ptr = shape.ptr_mutable_host();
- auto scale_ptr = scale.ptr_mutable_host();
- for (int i = 0; i < 5; ++i) {
- for (int j = 0; j < 2000000; ++j) {
- shape_ptr[i * 2000000 + j] = 2 * 0.3 * i + 0.3;
- scale_ptr[i * 2000000 + j] = i * 0.2 + 0.1;
- }
- }
-
- opr->exec(shape.tensornd_dev(), scale.tensornd_dev(), out.tensornd_dev(), {});
-
- auto ptr = out.ptr_mutable_host();
- for (int i = 0; i < 5; ++i) {
- float a = 2 * 0.3 * i + 0.3, b = i * 0.2 + 0.1;
- float mean = a * b;
- float std = a * (b * b);
- auto stat = get_mean_var(ptr + i * 2000000, 2000000, ctype(mean));
- ASSERT_LE(std::abs(stat.first - mean), 0.01);
- ASSERT_LE(std::abs(stat.second - std), 0.01);
- }
- }
-
- template <typename T>
- void run_poisson(Handle* handle) {
- using ctype = typename DTypeTrait<T>::ctype;
- auto opr = handle->create_operator<PoissonRNG>();
-
- TensorLayout ly{TensorShape{200000 * 5}, T()};
-
- SyncedTensor<ctype> out(handle, ly);
- SyncedTensor<ctype> lam(handle, ly);
- auto lam_ptr = lam.ptr_mutable_host();
- for (int i = 0; i < 5; ++i) {
- for (int j = 0; j < 200000; ++j) {
- lam_ptr[i * 200000 + j] = ctype(i + 1);
- }
- }
- opr->exec(lam.tensornd_dev(), out.tensornd_dev(), {});
-
- auto ptr = out.ptr_mutable_host();
- for (int i = 0; i < 5; ++i) {
- auto stat = get_mean_var(ptr + i * 200000, 200000, ctype(i + 1));
- ASSERT_LE(std::abs(stat.first - ctype(i + 1)), 0.01);
- ASSERT_LE(std::abs(stat.second - ctype(i + 1)), 0.01);
- }
- }
-
- template <typename T>
- void run_beta(Handle* handle) {
- using ctype = typename DTypeTrait<T>::ctype;
- auto opr = handle->create_operator<BetaRNG>();
-
- TensorLayout ly{TensorShape{200000 * 5}, T()};
-
- SyncedTensor<ctype> out(handle, ly);
- SyncedTensor<ctype> alpha(handle, ly);
- SyncedTensor<ctype> beta(handle, ly);
- auto alpha_ptr = alpha.ptr_mutable_host();
- auto beta_ptr = beta.ptr_mutable_host();
- for (int i = 0; i < 5; ++i) {
- for (int j = 0; j < 200000; ++j) {
- alpha_ptr[i * 200000 + j] = 0.3 * i + 0.1;
- beta_ptr[i * 200000 + j] = 2 * i * 0.3 + 0.1;
- }
- }
-
- opr->exec(alpha.tensornd_dev(), beta.tensornd_dev(), out.tensornd_dev(), {});
-
- auto ptr = out.ptr_mutable_host();
- for (int i = 0; i < 5; ++i) {
- float a = 0.3 * i + 0.1, b = 2 * i * 0.3 + 0.1;
- float mean = a / (a + b);
- float std = a * b / ((a + b) * (a + b) * (a + b + 1));
- auto stat = get_mean_var(ptr + i * 200000, 200000, ctype(mean));
- ASSERT_LE(std::abs(stat.first - mean), 0.01);
- ASSERT_LE(std::abs(stat.second - std), 0.01);
- }
- }
-
- template <typename T>
- void run_permutation(Handle* handle) {
- using ctype = typename DTypeTrait<T>::ctype;
- size_t sample_num = std::min(200000, static_cast<int>(DTypeTrait<T>::max()) - 10);
-
- auto opr = handle->create_operator<PermutationRNG>();
- opr->param().dtype = DTypeTrait<T>::enumv;
- TensorLayout ly{TensorShape{sample_num}, T()};
- Tensor<dt_byte> workspace(
- handle, {TensorShape{opr->get_workspace_in_bytes(ly)}, dtype::Byte()});
- SyncedTensor<ctype> t(handle, ly);
-
- opr->exec(t.tensornd_dev(), {workspace.ptr(), workspace.layout().total_nr_elems()});
-
- auto ptr = t.ptr_mutable_host();
- auto size = t.layout().total_nr_elems();
-
- std::vector<ctype> res(size);
- int not_same = 0;
- for (size_t i = 0; i < size; ++i) {
- if ((ptr[i] - ctype(i)) >= ctype(1))
- not_same++;
- res[i] = ptr[i];
- }
- ASSERT_GT(not_same, 5000);
- std::sort(res.begin(), res.end());
- for (size_t i = 0; i < size; ++i) {
- ASSERT_LE(std::abs(res[i] - ctype(i)), 1e-8);
- }
- }
-
- template <typename T>
- void run_shuffle(Handle* handle, bool bwd_flag) {
- using ctype = typename DTypeTrait<T>::ctype;
- auto run = [&](TensorShape shape) {
- auto opr = handle->create_operator<ShuffleRNGForward>();
- TensorLayout srclay{shape, T()};
- TensorLayout dstlay{shape, T()};
- TensorLayout indexlay{TensorShape{shape[0]}, dtype::Int32()};
- Tensor<dt_byte> workspace(
- handle,
- {TensorShape{opr->get_workspace_in_bytes(srclay, dstlay, indexlay)},
- dtype::Byte()});
- SyncedTensor<ctype> src(handle, srclay);
- SyncedTensor<ctype> dst(handle, dstlay);
- SyncedTensor<DTypeTrait<dt_int32>::ctype> index(handle, indexlay);
- auto sptr = src.ptr_mutable_host();
- size_t size = src.layout().total_nr_elems();
- for (size_t j = 0; j < size; ++j) {
- sptr[j] = j;
- }
- opr->exec(
- src.tensornd_dev(), dst.tensornd_dev(), index.tensornd_dev(),
- {workspace.ptr(), workspace.layout().total_nr_elems()});
-
- auto dptr = dst.ptr_mutable_host();
- auto iptr = index.ptr_mutable_host();
- size_t len = index.layout().total_nr_elems();
- size_t step = size / len;
- for (size_t i = 0; i < len; ++i) {
- for (size_t j = 0; j < step; ++j) {
- ASSERT_EQ(dptr[i * step + j], sptr[iptr[i] * step + j]);
- }
- }
- if (bwd_flag) {
- for (size_t j = 0; j < size; ++j) {
- sptr[j] = 0;
- }
- auto oprbwd = handle->create_operator<ShuffleRNGBackward>();
- oprbwd->exec(
- dst.tensornd_dev(), index.tensornd_dev(), src.tensornd_dev(),
- {workspace.ptr(), workspace.layout().total_nr_elems()});
- auto sptr_bwd = src.ptr_mutable_host();
- for (size_t i = 0; i < len; ++i) {
- for (size_t j = 0; j < step; ++j) {
- ASSERT_EQ(dptr[i * step + j], sptr_bwd[iptr[i] * step + j]);
- }
- }
- }
- };
-
- run({10});
- run({6, 3});
- }
-
- template <typename T>
- void run_dropout(Handle* handle) {
- using ctype = typename DTypeTrait<T>::ctype;
- auto run = [&](TensorShape shape, float drop_prob) {
- auto fwd = handle->create_operator<DropoutForward>();
- auto bwd = handle->create_operator<DropoutBackward>();
- fwd->param().drop_prob = drop_prob;
- bwd->param().drop_prob = drop_prob;
- double scale = 1.0 / (1.0 - drop_prob);
-
- TensorLayout inp_lay{shape, T()};
- TensorLayout oup_lay{shape, T()};
- TensorLayout mask_lay{{fwd->get_mask_size_in_bytes(inp_lay)}, dtype::Byte()};
- TensorLayout doup_lay{shape, T()};
- TensorLayout dinp_lay{shape, T()};
- TensorLayout fwd_ws_lay{
- {fwd->get_workspace_in_bytes(inp_lay, oup_lay, mask_lay)},
- dtype::Byte()};
- TensorLayout bwd_ws_lay{
- {bwd->get_workspace_in_bytes(doup_lay, mask_lay, dinp_lay)},
- dtype::Byte()};
-
- SyncedTensor<ctype> inp(handle, inp_lay);
- SyncedTensor<ctype> oup(handle, oup_lay);
- SyncedTensor<DTypeTrait<dt_byte>::ctype> mask(handle, mask_lay);
- SyncedTensor<ctype> doup(handle, doup_lay);
- SyncedTensor<ctype> dinp(handle, dinp_lay);
- SyncedTensor<DTypeTrait<dt_byte>::ctype> fwd_ws(handle, fwd_ws_lay);
- SyncedTensor<DTypeTrait<dt_byte>::ctype> bwd_ws(handle, bwd_ws_lay);
-
- for (size_t i = 0; i < inp.layout().total_nr_elems(); ++i) {
- inp.ptr_mutable_host()[i] = 1;
- doup.ptr_mutable_host()[i] = 1;
- }
-
- fwd->exec(
- inp.tensornd_dev(), oup.tensornd_dev(), mask.tensornd_dev(),
- {fwd_ws.ptr_mutable_dev(), fwd_ws.layout().total_nr_elems()});
- size_t droped_cnt = 0;
- for (size_t i = 0; i < inp.layout().total_nr_elems(); ++i) {
- ASSERT_TRUE(
- oup.ptr_host()[i] == 0 ||
- oup.ptr_host()[i] == static_cast<ctype>(scale));
- if (oup.ptr_host()[i] == 0) {
- droped_cnt++;
- }
- }
- float real_drop = droped_cnt * 1.0 / inp.layout().total_nr_elems();
- ASSERT_LT(abs(drop_prob - real_drop), 1e-2);
-
- #if CUDNN_VERSION >= 7000
- bwd->exec(
- doup.tensornd_dev(), mask.tensornd_dev(), dinp.tensornd_dev(),
- {bwd_ws.ptr_mutable_dev(), bwd_ws.layout().total_nr_elems()});
- for (size_t i = 0; i < inp.layout().total_nr_elems(); ++i) {
- ASSERT_TRUE(oup.ptr_host()[i] == dinp.ptr_host()[i]);
- }
- #endif
- };
-
- run({32, 32, 32, 32}, 0.2);
- run({100000}, 0.3);
- }
-
- } // anonymous namespace
-
- TEST_F(CUDA, UNIFORM_RNG_F32) {
- auto opr = handle_cuda()->create_operator<UniformRNG>();
- opr->param().dtype = DTypeTrait<dtype::Float32>::enumv;
- SyncedTensor<> t(handle_cuda(), {TensorShape{200000}, dtype::Float32()});
- opr->exec(t.tensornd_dev(), {});
-
- assert_uniform_correct(t.ptr_mutable_host(), t.layout().total_nr_elems());
- }
-
- TEST_F(CUDA, GAUSSIAN_RNG_F32) {
- auto opr = handle_cuda()->create_operator<GaussianRNG>();
- opr->param().mean = 0.8;
- opr->param().std = 2.3;
- opr->param().dtype = DTypeTrait<dtype::Float32>::enumv;
- for (size_t size : {1, 200000, 200001}) {
- TensorLayout ly{{size}, dtype::Float32()};
- Tensor<dt_byte> workspace(
- handle_cuda(),
- {TensorShape{opr->get_workspace_in_bytes(ly)}, dtype::Byte()});
- SyncedTensor<> t(handle_cuda(), ly);
- opr->exec(
- t.tensornd_dev(),
- {workspace.ptr(), workspace.layout().total_nr_elems()});
-
- auto ptr = t.ptr_mutable_host();
- ASSERT_LE(std::abs(ptr[0] - 0.8), 2.3);
-
- if (size >= 1000) {
- auto stat = get_mean_var(ptr, size, 0.8f);
- ASSERT_LE(std::abs(stat.first - 0.8), 5e-3);
- ASSERT_LE(std::abs(stat.second - 2.3 * 2.3), 5e-2);
- }
- }
- }
-
- TEST_F(CUDA, GAMMA_RNG_F32) {
- run_gamma<dtype::Float32>(handle_cuda());
- }
-
- TEST_F(CUDA, GAMMA_RNG_F16) {
- run_gamma<dtype::Float16>(handle_cuda());
- }
-
- TEST_F(CUDA, POISSON_RNG_F32) {
- run_poisson<dtype::Float32>(handle_cuda());
- }
-
- TEST_F(CUDA, POISSON_RNG_F16) {
- run_poisson<dtype::Float16>(handle_cuda());
- }
-
- TEST_F(CUDA, BETA_RNG_F32) {
- run_beta<dtype::Float32>(handle_cuda());
- }
-
- TEST_F(CUDA, BETA_RNG_F16) {
- run_beta<dtype::Float16>(handle_cuda());
- }
-
- TEST_F(CUDA, PERMUTATION_RNG_F32) {
- run_permutation<dtype::Float32>(handle_cuda());
- }
-
- TEST_F(CUDA, PERMUTATION_RNG_INT32) {
- run_permutation<dtype::Int32>(handle_cuda());
- }
-
- TEST_F(CUDA, PERMUTATION_RNG_INT16) {
- run_permutation<dtype::Int16>(handle_cuda());
- }
-
- TEST_F(CUDA, SHUFFLE_RNG_F32) {
- run_shuffle<dtype::Float32>(handle_cuda(), false);
- }
-
- TEST_F(CUDA, SHUFFLE_RNG_INT32) {
- run_shuffle<dtype::Int32>(handle_cuda(), false);
- }
-
- TEST_F(CUDA, SHUFFLE_RNG_F16) {
- run_shuffle<dtype::Float16>(handle_cuda(), false);
- }
-
- TEST_F(CUDA, SHUFFLE_RNG_BWD_F32) {
- run_shuffle<dtype::Float32>(handle_cuda(), true);
- }
-
- TEST_F(CUDA, SHUFFLE_RNG_BWD_INT32) {
- run_shuffle<dtype::Int32>(handle_cuda(), true);
- }
-
- TEST_F(CUDA, SHUFFLE_RNG_BWD_F16) {
- run_shuffle<dtype::Float16>(handle_cuda(), true);
- }
-
- TEST_F(CUDA, DROPOUT_F32) {
- run_dropout<dtype::Float32>(handle_cuda());
- }
-
- TEST_F(CUDA, DROPOUT_F16) {
- run_dropout<dtype::Float16>(handle_cuda());
- }
-
- } // namespace test
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|