You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

base.h 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. /**
  2. * \file dnn/include/megdnn/oprs/base.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include <type_traits>
  14. #include "megdnn/basic_types.h"
  15. #include "megdnn/handle.h"
  16. #include "megdnn/internal/visibility_prologue.h"
  17. namespace megdnn {
  18. class Handle;
  19. /**
  20. * \brief base class for all operators
  21. *
  22. * This is an helper class. Users should not use OperatorBase directly.
  23. * Operators should be created by handle->create_opr<>().
  24. *
  25. * Each operator must provides the following constexpr values:
  26. *
  27. * * NR_INPUTS: number of input vars
  28. * * NR_OUTPUTS: number of output vars
  29. * * OPERATOR_TYPE: operator type as an enum
  30. *
  31. * If the operator has dynamic inputs or in_out param, the corresponding
  32. * NR_INPUTS is -1.
  33. *
  34. * For an operator whose NR_INPUTS >= 0 and NR_OUTPUTS >= 0, the operator must
  35. * also provide following methods:
  36. *
  37. * * void exec(_megdnn_in inputs..., _megdnn_tensor_out outputs...,
  38. * _megdnn_workspace workspace)
  39. * * void deduce_layout(const TensorLayout& inputs...,
  40. * TensorLayout& outputs...)
  41. * * size_t get_workspace_in_bytes(const TensorLayout &inputs...,
  42. * const TensorLayout &outputs)
  43. */
  44. class OperatorBase {
  45. public:
  46. explicit OperatorBase(Handle* handle) : m_handle(handle) {}
  47. virtual ~OperatorBase();
  48. //! get the handle from which this operator is created
  49. Handle* handle() const { return m_handle; }
  50. //! whether this opr guarantees that its exec() is thread-safe
  51. virtual bool is_thread_safe() const { return false; }
  52. /*!
  53. * \brief set the tracker to be used with MegcoreAsyncErrorInfo
  54. *
  55. * Most operators do not have async errors so this function has a
  56. * default empty implementation.
  57. */
  58. virtual void set_error_tracker(void*) {}
  59. private:
  60. Handle* m_handle;
  61. };
  62. namespace detail {
  63. /**
  64. * \brief AlgoSelectionStrategy is the advance information for selecting
  65. * algo
  66. */
  67. enum class AlgoSelectionStrategy {
  68. HEURISTIC = 0, //!< heristic to select the algos
  69. FAST_RUN = 1,
  70. FULL_RUN = 2,
  71. };
  72. /**
  73. * \brief separate algo by datatype for Matmul and conv
  74. */
  75. enum class AlgoDataType : uint32_t {
  76. FLOAT32 = 1 << 0,
  77. FLOAT16 = 1 << 1,
  78. QINT8X8X32 = 1 << 2,
  79. QUINT8X8X32 = 1 << 3,
  80. INT8X8X16 = 1 << 4,
  81. INT16X16X32 = 1 << 5,
  82. INT4X4X16 = 1 << 6,
  83. };
  84. /*!
  85. * \brief Abstract representation of an algorithm for implementing
  86. * the operator
  87. */
  88. class Algorithm {
  89. public:
  90. static constexpr uint32_t INVALID_ALGO_TYPE = static_cast<uint32_t>(-1);
  91. /**
  92. * \brief the attribe of the algo, such as REPRODUCIBLE, NAIVE
  93. *
  94. */
  95. enum class Attribute : uint32_t {
  96. /**
  97. * \brief general algo.
  98. */
  99. DEFAULT = 0,
  100. /**
  101. * \brief whether the execution result is
  102. * reproducible across multiple runs.
  103. */
  104. REPRODUCIBLE = 1 << 0,
  105. /**
  106. * \brief whether the algo is naive
  107. * Mark algorithms with simple implementation as NAIVE, so we can filter
  108. * these algorithms to speed up fastrun.
  109. * */
  110. NAIVE = 1 << 1,
  111. /**
  112. * \brief whether the algo is usable once shape changed.
  113. * */
  114. USABLE_DEPEND_ON_SHAPE = 1 << 2,
  115. };
  116. /**
  117. * \brief Algorithm information, we can get real algo from
  118. * AlgorithmInfo::Info::Desc
  119. */
  120. struct Info {
  121. struct Desc {
  122. //! backend of the algo belonging to
  123. Handle::HandleType handle_type;
  124. //! indicate the real algo implementation
  125. uint32_t type = INVALID_ALGO_TYPE;
  126. //! serialized param of the algo type
  127. std::string param;
  128. //! algorithm name
  129. std::string name;
  130. bool valid() const { return type != INVALID_ALGO_TYPE; }
  131. void reset() { type = INVALID_ALGO_TYPE; }
  132. bool operator==(const Desc& rhs) const {
  133. return handle_type == rhs.handle_type && type == rhs.type &&
  134. param == rhs.param && name == rhs.name;
  135. }
  136. } desc;
  137. Attribute attribute;
  138. bool valid() const { return desc.valid(); }
  139. void reset() { desc.reset(); }
  140. //! desc donate the algo
  141. bool operator==(const Info& rhs) const { return desc == rhs.desc; }
  142. };
  143. virtual ~Algorithm() = default;
  144. /**
  145. * \brief get the attribute of the algo
  146. */
  147. virtual Attribute attribute() const = 0;
  148. virtual const char* name() const = 0;
  149. //! serialized param
  150. virtual std::string param() const { return {}; }
  151. virtual uint32_t type() const = 0;
  152. //! if algo contain all of the attribute in attr
  153. bool contain_attribute_all(const Attribute& attr) const;
  154. //! if algo contain any attribute in attr
  155. bool contain_attribute_any(const Attribute& attr) const;
  156. void check_attribute(
  157. const Attribute& positive_attr = Attribute::DEFAULT,
  158. const Attribute& negative_attr = Attribute::DEFAULT) const;
  159. static std::string attribute_str(const Attribute& attr);
  160. Handle::HandleType handle_type() const { return m_handle_type; }
  161. Info::Desc desc() const { return {handle_type(), type(), param(), name()}; }
  162. Info info() const {
  163. return {desc(), attribute()};
  164. }
  165. template <typename T>
  166. static void serialize_write_pod(const T& val, std::string& result) {
  167. static_assert(std::is_trivially_copyable<T>::value,
  168. "type should be trivially copyable");
  169. static_assert(!std::is_pointer<T>::value,
  170. "serialize pointer is unsafe in eager execution mode");
  171. result.append(reinterpret_cast<const char*>(&val), sizeof(T));
  172. }
  173. static void serialize_write_pod(const char* val, std::string& result) {
  174. result.append(val, strlen(val));
  175. }
  176. template <typename T>
  177. static T deserialize_read_pod(const std::string& data, size_t offset = 0) {
  178. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  179. T ret;
  180. //! A pointer to an object or incomplete type may be converted to a
  181. //! pointer to a different object or incomplete type. If the resulting
  182. //! pointer is not correctly aligned for the pointed-to type, the
  183. //! behavior is undefined.
  184. //!
  185. //! so here we should use memcpy instead of
  186. //! *reinterpret_cast<const T*>(&data[offset]);
  187. memcpy(&ret, data.data() + offset, sizeof(T));
  188. return ret;
  189. }
  190. template <typename T>
  191. static T deserialize_read_pod(const char* data, size_t offset = 0) {
  192. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  193. T ret;
  194. //! A pointer to an object or incomplete type may be converted to a
  195. //! pointer to a different object or incomplete type. If the resulting
  196. //! pointer is not correctly aligned for the pointed-to type, the
  197. //! behavior is undefined.
  198. //!
  199. //! so here we should use memcpy instead of
  200. //! *reinterpret_cast<const T*>(&data[offset]);
  201. memcpy(&ret, data + offset, sizeof(T));
  202. return ret;
  203. }
  204. enum class OprType : uint32_t {
  205. MATRIX_MUL_FORWARD,
  206. BATCHED_MATRIX_MUL_FORWARD,
  207. CONVOLUTION_FORWARD,
  208. CONVOLUTION_BACKWARD_DATA,
  209. CONVOLUTION_BACKWARD_FILTER,
  210. CONVOLUTION3D_FORWARD,
  211. CONVOLUTION3D_BACKWARD_DATA,
  212. CONVOLUTION3D_BACKWARD_FILTER,
  213. LOCAL_SHARE_FORWARD,
  214. LOCAL_SHARE_BACKWARD_DATA,
  215. LOCAL_SHARE_BACKWARD_FILTER,
  216. DEFORMABLE_CONV_FORWARD,
  217. DEFORMABLE_CONV_BACKWARD_DATA,
  218. DEFORMABLE_CONV_BACKWARD_FILTER,
  219. CONVBIAS_FORWARD,
  220. BATCH_CONV_FORWARD,
  221. };
  222. struct SearchItem {
  223. OprType opr_type;
  224. //! serialized param
  225. std::string param;
  226. TensorLayoutArray layouts;
  227. };
  228. /**
  229. * \brief get subopr list of the algo
  230. *
  231. * \param layouts origin layouts of the parent opr
  232. * \param opr parent opr
  233. */
  234. virtual std::vector<SearchItem> get_subopr_list(const TensorLayoutArray&,
  235. const OperatorBase*) const {
  236. return {};
  237. }
  238. protected:
  239. Handle::HandleType m_handle_type = Handle::HandleType::NAIVE;
  240. };
  241. MEGDNN_DEF_ENUM_CLASS_BIT_OPR(Algorithm::Attribute)
  242. //! policy for executing the operator
  243. struct ExecutionPolicy {
  244. //! INVALID_ALGO_TYPE algo_type means using heuristic
  245. Algorithm::Info::Desc algo;
  246. std::vector<ExecutionPolicy> sub_policy;
  247. };
  248. /*!
  249. * \brief define Algorithm and ExecutionPolicy for oprs that have
  250. * multiple impl algos
  251. *
  252. * \tparam Opr the operator class
  253. * \tparam nargs number of arguments
  254. */
  255. template <class Opr, int nargs>
  256. class MultiAlgoOpr;
  257. //! base def
  258. template <class Opr>
  259. class MultiAlgoOpr<Opr, -1> {
  260. public:
  261. using AlgorithmInfo = detail::Algorithm::Info;
  262. using AlgorithmDesc = detail::Algorithm::Info::Desc;
  263. using Algorithm = detail::Algorithm;
  264. /*!
  265. * \brief get a string representation for current algorithm set;
  266. *
  267. * get_all_algorithms() may return different algorithms only if
  268. * algorithm set name differs. This is used for checking cache
  269. * validity.
  270. */
  271. virtual const char* get_algorithm_set_name() const = 0;
  272. ExecutionPolicy& execution_policy() { return m_execution_policy; }
  273. const ExecutionPolicy& execution_policy() const {
  274. return m_execution_policy;
  275. }
  276. virtual Algorithm* get_algorithm_from_desc(const AlgorithmDesc&) = 0;
  277. protected:
  278. ~MultiAlgoOpr() = default;
  279. private:
  280. ExecutionPolicy m_execution_policy;
  281. };
  282. //! specialize for nargs == 3
  283. template <class Opr>
  284. class MultiAlgoOpr<Opr, 3> : public MultiAlgoOpr<Opr, -1> {
  285. public:
  286. using Algorithm = detail::Algorithm;
  287. using AlgorithmInfo = detail::Algorithm::Info;
  288. using AlgoAttribute = detail::Algorithm::Attribute;
  289. //! get all possible algorithm decriptions for the specified layouts
  290. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  291. const TensorLayout& p1,
  292. const TensorLayout& p2) {
  293. std::vector<AlgorithmInfo> ret;
  294. for (auto&& algo : get_all_algorithms(p0, p1, p2)) {
  295. ret.emplace_back(algo->info());
  296. }
  297. return ret;
  298. }
  299. /**
  300. * \brief Returns the best algorithm information which indicate the
  301. * algorithm by heuristic.
  302. *
  303. * The selected algorithm should not use workspace more than
  304. * \p workspace_limit_in_bytes.
  305. */
  306. AlgorithmInfo get_algorithm_info_heuristic(
  307. const TensorLayout& p0, const TensorLayout& p1,
  308. const TensorLayout& p2,
  309. size_t workspace_limit_in_bytes =
  310. std::numeric_limits<size_t>::max(),
  311. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  312. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  313. return get_algorithm_heuristic(p0, p1, p2, workspace_limit_in_bytes,
  314. positive_attr, negative_attr)
  315. ->info();
  316. }
  317. protected:
  318. ~MultiAlgoOpr() = default;
  319. //! get all possible algorithms for the specified layouts
  320. virtual std::vector<Algorithm*> get_all_algorithms(
  321. const TensorLayout& p0, const TensorLayout& p1,
  322. const TensorLayout& p2) = 0;
  323. /**
  324. * \brief Returns the best algorithm by heuristic.
  325. *
  326. * The selected algorithm should not use workspace more than
  327. * \p workspace_limit_in_bytes.
  328. */
  329. virtual Algorithm* get_algorithm_heuristic(
  330. const TensorLayout& p0, const TensorLayout& p1,
  331. const TensorLayout& p2,
  332. size_t workspace_limit_in_bytes =
  333. std::numeric_limits<size_t>::max(),
  334. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  335. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  336. };
  337. //! specializae for nargs == 4
  338. template <class Opr>
  339. class MultiAlgoOpr<Opr, 4> : public MultiAlgoOpr<Opr, -1> {
  340. public:
  341. using Algorithm = detail::Algorithm;
  342. using AlgorithmInfo = detail::Algorithm::Info;
  343. using AlgoAttribute = detail::Algorithm::Attribute;
  344. //! get all possible algorithm decriptions for the specified layouts
  345. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  346. const TensorLayout& p1,
  347. const TensorLayout& p2,
  348. const TensorLayout& p3) {
  349. std::vector<AlgorithmInfo> ret;
  350. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3)) {
  351. ret.emplace_back(algo->info());
  352. }
  353. return ret;
  354. }
  355. /**
  356. * \brief Returns the best algorithm information which indicate the
  357. * algorithm by heuristic.
  358. *
  359. * The selected algorithm should not use workspace more than
  360. * \p workspace_limit_in_bytes.
  361. */
  362. AlgorithmInfo get_algorithm_info_heuristic(
  363. const TensorLayout& p0, const TensorLayout& p1,
  364. const TensorLayout& p2, const TensorLayout& p3,
  365. size_t workspace_limit_in_bytes =
  366. std::numeric_limits<size_t>::max(),
  367. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  368. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  369. return get_algorithm_heuristic(p0, p1, p2, p3, workspace_limit_in_bytes,
  370. positive_attr, negative_attr)
  371. ->info();
  372. }
  373. protected:
  374. ~MultiAlgoOpr() = default;
  375. //! get all possible algorithms for the specified layouts
  376. virtual std::vector<Algorithm*> get_all_algorithms(
  377. const TensorLayout& p0, const TensorLayout& p1,
  378. const TensorLayout& p2, const TensorLayout& p3) = 0;
  379. /**
  380. * \brief Returns the best algorithm by heuristic.
  381. *
  382. * The selected algorithm should not use workspace more than
  383. * \p workspace_limit_in_bytes.
  384. */
  385. virtual Algorithm* get_algorithm_heuristic(
  386. const TensorLayout& p0, const TensorLayout& p1,
  387. const TensorLayout& p2, const TensorLayout& p3,
  388. size_t workspace_limit_in_bytes =
  389. std::numeric_limits<size_t>::max(),
  390. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  391. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  392. };
  393. //! specializae for nargs == 5
  394. template <class Opr>
  395. class MultiAlgoOpr<Opr, 5> : public MultiAlgoOpr<Opr, -1> {
  396. public:
  397. using Algorithm = detail::Algorithm;
  398. using AlgorithmInfo = detail::Algorithm::Info;
  399. using AlgoAttribute = detail::Algorithm::Attribute;
  400. //! get all possible algorithm decriptions for the specified layouts
  401. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  402. const TensorLayout& p1,
  403. const TensorLayout& p2,
  404. const TensorLayout& p3,
  405. const TensorLayout& p4) {
  406. std::vector<AlgorithmInfo> ret;
  407. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4)) {
  408. ret.emplace_back(algo->info());
  409. }
  410. return ret;
  411. }
  412. /**
  413. * \brief Returns the best algorithm information which indicate the
  414. * algorithm by heuristic.
  415. *
  416. * The selected algorithm should not use workspace more than
  417. * \p workspace_limit_in_bytes.
  418. */
  419. AlgorithmInfo get_algorithm_info_heuristic(
  420. const TensorLayout& p0, const TensorLayout& p1,
  421. const TensorLayout& p2, const TensorLayout& p3,
  422. const TensorLayout& p4,
  423. size_t workspace_limit_in_bytes =
  424. std::numeric_limits<size_t>::max(),
  425. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  426. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  427. return get_algorithm_heuristic(p0, p1, p2, p3, p4,
  428. workspace_limit_in_bytes, positive_attr,
  429. negative_attr)
  430. ->info();
  431. }
  432. protected:
  433. ~MultiAlgoOpr() = default;
  434. //! get all possible algorithms for the specified layouts
  435. virtual std::vector<Algorithm*> get_all_algorithms(
  436. const TensorLayout& p0, const TensorLayout& p1,
  437. const TensorLayout& p2, const TensorLayout& p3,
  438. const TensorLayout& p4) = 0;
  439. /**
  440. * \brief Returns the best algorithm by heuristic.
  441. *
  442. * The selected algorithm should not use workspace more than
  443. * \p workspace_limit_in_bytes.
  444. */
  445. virtual Algorithm* get_algorithm_heuristic(
  446. const TensorLayout& p0, const TensorLayout& p1,
  447. const TensorLayout& p2, const TensorLayout& p3,
  448. const TensorLayout& p4,
  449. size_t workspace_limit_in_bytes =
  450. std::numeric_limits<size_t>::max(),
  451. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  452. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  453. };
  454. //! specializae for nargs == 8
  455. template <class Opr>
  456. class MultiAlgoOpr<Opr, 8> : public MultiAlgoOpr<Opr, -1> {
  457. public:
  458. using Algorithm = detail::Algorithm;
  459. using AlgorithmInfo = detail::Algorithm::Info;
  460. using AlgoAttribute = detail::Algorithm::Attribute;
  461. //! get all possible algorithm decriptions for the specified layouts
  462. std::vector<AlgorithmInfo> get_all_algorithms_info(
  463. const TensorLayout& p0, const TensorLayout& p1,
  464. const TensorLayout& p2, const TensorLayout& p3,
  465. const TensorLayout& p4, const TensorLayout& p5,
  466. const TensorLayout& p6, const TensorLayout& p7) {
  467. std::vector<AlgorithmInfo> ret;
  468. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4, p5, p6, p7)) {
  469. ret.emplace_back(algo->info());
  470. }
  471. return ret;
  472. }
  473. /**
  474. * \brief Returns the best algorithm information which indicate the
  475. * algorithm by heuristic.
  476. *
  477. * The selected algorithm should not use workspace more than
  478. */
  479. AlgorithmInfo get_algorithm_info_heuristic(
  480. const TensorLayout& p0, const TensorLayout& p1,
  481. const TensorLayout& p2, const TensorLayout& p3,
  482. const TensorLayout& p4, const TensorLayout& p5,
  483. const TensorLayout& p6, const TensorLayout& p7,
  484. size_t workspace_limit_in_bytes =
  485. std::numeric_limits<size_t>::max(),
  486. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  487. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  488. return get_algorithm_heuristic(p0, p1, p2, p3, p4, p5, p6, p7,
  489. workspace_limit_in_bytes, positive_attr,
  490. negative_attr)
  491. ->info();
  492. }
  493. protected:
  494. ~MultiAlgoOpr() = default;
  495. //! get all possible algorithms for the specified layouts
  496. virtual std::vector<Algorithm*> get_all_algorithms(
  497. const TensorLayout& p0, const TensorLayout& p1,
  498. const TensorLayout& p2, const TensorLayout& p3,
  499. const TensorLayout& p4, const TensorLayout& p5,
  500. const TensorLayout& p6, const TensorLayout& p7) = 0;
  501. /**
  502. * \brief Returns the best algorithm by heuristic.
  503. *
  504. * The selected algorithm should not use workspace more than
  505. * \p workspace_limit_in_bytes.
  506. */
  507. virtual Algorithm* get_algorithm_heuristic(
  508. const TensorLayout& p0, const TensorLayout& p1,
  509. const TensorLayout& p2, const TensorLayout& p3,
  510. const TensorLayout& p4, const TensorLayout& p5,
  511. const TensorLayout& p6, const TensorLayout& p7,
  512. size_t workspace_limit_in_bytes =
  513. std::numeric_limits<size_t>::max(),
  514. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  515. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  516. };
  517. } // namespace detail
  518. using Algorithm = detail::Algorithm;
  519. using AlgoAttribute = Algorithm::Attribute;
  520. using ExecutionPolicy = detail::ExecutionPolicy;
  521. } // namespace megdnn
  522. #include "megdnn/internal/visibility_epilogue.h"
  523. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台