You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 99 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499
  1. /**
  2. * \file src/gopt/test/inference.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/opr/dnn/local.h"
  12. #include "megbrain/test/helper.h"
  13. #include "megbrain/gopt/inference.h"
  14. #include "megbrain/gopt/basic_arith.h"
  15. #include "megbrain/gopt/gtrans.h"
  16. #include "megbrain/opr/io.h"
  17. #include "megbrain/opr/basic_arith_wrapper.h"
  18. #include "megbrain/opr/tensor_manip.h"
  19. #include "megbrain/opr/dnn/batch_norm.h"
  20. #include "megbrain/opr/dnn/convolution.h"
  21. #include "megbrain/opr/utility.h"
  22. #include "megbrain/opr/imgproc.h"
  23. #include "megbrain/opr/tensor_manip.h"
  24. #include "megbrain/opr/nn_int.h"
  25. #include "megbrain/opr/imgproc.h"
  26. #include "megbrain/opr/dnn/pooling.h"
  27. #include "megbrain/opr/tensor_gen.h"
  28. #include "megbrain/opr/blas.h"
  29. #include "megbrain/comp_node_env.h"
  30. #include "./helper.h"
  31. #include "megdnn/tensor_format.h"
  32. #include <random>
  33. using namespace mgb;
  34. namespace {
  35. //! find first the operator of specific type; raise exception if not found
  36. template <typename T>
  37. T& find_opr(SymbolVar endpoint) {
  38. T* found = nullptr;
  39. auto cb = [&found](cg::OperatorNodeBase* opr) {
  40. if (!found && opr->same_type<T>()) {
  41. found = &opr->cast_final_safe<T>();
  42. }
  43. };
  44. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  45. mgb_assert(found);
  46. return *found;
  47. }
  48. template <typename T>
  49. size_t find_opr_num(SymbolVar endpoint) {
  50. size_t opr_num = 0;
  51. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  52. if (opr->same_type<T>()) {
  53. opr_num++;
  54. }
  55. };
  56. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  57. return opr_num;
  58. }
  59. class NaiveMegDNNHandleScope {
  60. int m_orig_level;
  61. public:
  62. NaiveMegDNNHandleScope()
  63. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  64. CompNode::finalize();
  65. }
  66. ~NaiveMegDNNHandleScope() {
  67. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  68. mgb_assert(set == 2);
  69. CompNode::finalize();
  70. }
  71. };
  72. #if MGB_CUDA
  73. //! this function is only used in TestGoptInference.EnableCHWN4...
  74. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
  75. size_t INP_W) {
  76. static std::mt19937 rng(next_rand_seed());
  77. auto rand_real = [&](double lo, double hi) {
  78. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  79. };
  80. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  81. auto ptr = mat.ptr<float>();
  82. for (size_t i = 0; i < N; ++i) {
  83. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  84. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  85. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  86. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  87. ptr[0] = ptr[4] = cos(rot) * scale;
  88. ptr[1] = -(ptr[3] = sin(rot) * scale);
  89. ptr[3] *= sheer;
  90. ptr[4] *= sheer;
  91. ptr[2] = dx;
  92. ptr[5] = dy;
  93. ptr[6] = kx;
  94. ptr[7] = ky;
  95. ptr[8] = kb;
  96. ptr += 9;
  97. }
  98. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  99. }
  100. #endif
  101. } // namespace
  102. TEST(TestGoptInference, ParamFuse) {
  103. constexpr size_t SIZE = 23;
  104. HostTensorGenerator<> gen;
  105. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  106. auto graph = ComputingGraph::make();
  107. graph->options().graph_opt_level = 0;
  108. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  109. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  110. p = opr::Host2DeviceCopy::make(*graph, host_p),
  111. z = x + y, // endpoint
  112. q = x * y + p; // middle point
  113. SymbolVar z1, q1;
  114. unpack_vector(
  115. gopt::GraphOptimizer{}.
  116. add_pass<gopt::ParamFusePass>().
  117. apply({{z, q}}).endpoint_vars(),
  118. z1, q1);
  119. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  120. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  121. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  122. q.node()->owner_opr()->dyn_typeinfo());
  123. HostTensorND host_z, host_q;
  124. auto func = graph->compile(
  125. {make_callback_copy(z1, host_z),
  126. make_callback_copy(q1, host_q)});
  127. func->execute();
  128. int nr_opr = 0;
  129. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  130. ASSERT_EQ(6, nr_opr);
  131. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  132. pq = host_q.ptr<float>();
  133. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  134. for (size_t i = 0; i < SIZE; ++ i) {
  135. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  136. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  137. }
  138. }
  139. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  140. constexpr size_t SIZE = 23;
  141. HostTensorGenerator<> gen;
  142. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  143. auto graph = ComputingGraph::make();
  144. graph->options().graph_opt_level = 0;
  145. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  146. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  147. p = opr::Host2DeviceCopy::make(*graph, host_p),
  148. z = x + y, // endpoint
  149. q = x * y + p; // middle point
  150. SymbolVar z1, q1;
  151. unpack_vector(gopt::GraphOptimizer{}
  152. .add_pass<gopt::ParamMergePass>()
  153. .apply({{z}})
  154. .endpoint_vars(),
  155. z1);
  156. ASSERT_TRUE(z1.node()
  157. ->owner_opr()->input(0)->owner_opr()
  158. ->same_type<opr::MultipleDeviceTensorHolder>());
  159. unpack_vector(
  160. gopt::GraphOptimizer{}.
  161. add_pass<gopt::ParamMergePass>().
  162. add_pass<gopt::ParamFusePass>().
  163. apply({{z, q}}).endpoint_vars(),
  164. z1, q1);
  165. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  166. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  167. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  168. q.node()->owner_opr()->dyn_typeinfo());
  169. HostTensorND host_z, host_q;
  170. auto func = graph->compile(
  171. {make_callback_copy(z1, host_z),
  172. make_callback_copy(q1, host_q)});
  173. func->execute();
  174. int nr_opr = 0;
  175. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  176. ASSERT_EQ(6, nr_opr);
  177. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  178. pq = host_q.ptr<float>();
  179. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  180. for (size_t i = 0; i < SIZE; ++ i) {
  181. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  182. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  183. }
  184. }
  185. TEST(TestGoptInference, ParamFuseMultiRead) {
  186. HostTensorGenerator<> gen;
  187. auto graph = ComputingGraph::make();
  188. graph->options().graph_opt_level = 0;
  189. auto mkvar = [&](const char *name, const TensorShape &shp) {
  190. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  191. };
  192. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  193. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  194. };
  195. auto x = mkvar("x", {23}),
  196. p0 = mkcvar("p0", {1}),
  197. p1 = mkcvar("p1", {1}),
  198. z0 = x * (p0 + p1) + x / (p0 + p1);
  199. SymbolVar z1;
  200. unpack_vector(
  201. gopt::GraphOptimizer{}.
  202. add_pass<gopt::ParamFusePass>().
  203. apply({{z0}}).endpoint_vars(),
  204. z1);
  205. ASSERT_NE(z0.node(), z1.node());
  206. ASSERT_TRUE(z1.node()->owner_opr()->input(0)->owner_opr()
  207. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  208. ASSERT_TRUE(z1.node()->owner_opr()->input(1)->owner_opr()
  209. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  210. HostTensorND host_z0, host_z1;
  211. graph->compile({make_callback_copy(z0, host_z0),
  212. make_callback_copy(z1, host_z1)})->execute();
  213. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  214. }
  215. TEST(TestGoptInference, ParamFuseStaticInfer) {
  216. HostTensorGenerator<> gen;
  217. auto graph = ComputingGraph::make();
  218. auto mkvar = [&](const char *name, const TensorShape &shp) {
  219. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  220. };
  221. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  222. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  223. };
  224. auto a = mkvar("x", {4}),
  225. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  226. SymbolVar b1;
  227. unpack_vector(
  228. gopt::GraphOptimizer{}.
  229. add_pass<gopt::ParamFusePass>().
  230. apply({{b}}).endpoint_vars(),
  231. b1);
  232. ASSERT_EQ(b1, a.reshape({2, 2}));
  233. }
  234. TEST(TestGoptInference, ParamRedistributeConvMul) {
  235. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  236. HostTensorGenerator<> gen;
  237. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  238. host_w = gen({OC, IC, KH, KW});
  239. auto graph = ComputingGraph::make();
  240. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  241. k = opr::Dimshuffle::make(
  242. opr::SharedDeviceTensor::make(*graph, *host_k),
  243. {-1, 0, -1, -1}),
  244. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  245. y0 = opr::Convolution::make(x * k, w);
  246. SymbolVar y1;
  247. unpack_vector(
  248. gopt::GraphOptimizer{}.
  249. add_pass<gopt::ParamRedistributePass>().
  250. apply({{y0}}).endpoint_vars(),
  251. y1);
  252. ASSERT_NE(y0.node(), y1.node());
  253. HostTensorND host_y0, host_y1;
  254. auto func = graph->compile(
  255. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  256. func->execute();
  257. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  258. }
  259. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  260. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  261. HostTensorGenerator<> gen;
  262. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
  263. host_w = gen({C, C, KH, KW});
  264. auto graph = ComputingGraph::make();
  265. graph->options().graph_opt_level = 0;
  266. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  267. k = opr::Dimshuffle::make(
  268. opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
  269. {-1, 0, -1, -1}),
  270. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  271. // y0 should be replaced
  272. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
  273. y0k = (y0 * k).rename("y0k"),
  274. // y0k is accessed twice, so it should not be replaced
  275. y1 = opr::Convolution::make(y0k, w).rename("y1"),
  276. z0 = y1 / y0k;
  277. SymbolVar z1;
  278. unpack_vector(
  279. gopt::GraphOptimizer{}.
  280. add_pass<gopt::ParamRedistributePass>().
  281. apply({{z0}}).endpoint_vars(),
  282. z1);
  283. ASSERT_NE(z0.node(), z1.node());
  284. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  285. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  286. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  287. HostTensorND host_z0, host_z1;
  288. auto func = graph->compile(
  289. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  290. func->execute();
  291. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  292. }
  293. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  294. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  295. HostTensorGenerator<> gen;
  296. auto host_x = gen({N, IC, IH, IW}),
  297. host_k1 = gen({IC}),
  298. host_k2 = gen({1, OC, 1, 1}),
  299. host_w = gen({OC, IC, KH, KW});
  300. auto graph = ComputingGraph::make();
  301. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  302. k1 = opr::Dimshuffle::make(
  303. opr::SharedDeviceTensor::make(*graph, *host_k1),
  304. {-1, 0, -1, -1}),
  305. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  306. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  307. y0 = opr::Convolution::make(x * k1, w) * k2;
  308. SymbolVar y1;
  309. unpack_vector(
  310. gopt::GraphOptimizer{}.
  311. add_pass<gopt::ParamRedistributePass>().
  312. add_pass<gopt::ParamFusePass>().
  313. apply({{y0}}).endpoint_vars(),
  314. y1);
  315. auto y1opr = y1.node()->owner_opr();
  316. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  317. ASSERT_EQ(y1opr->input(0), x.node());
  318. HostTensorND host_y0, host_y1;
  319. auto func = graph->compile(
  320. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  321. func->execute();
  322. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  323. }
  324. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  325. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  326. HostTensorGenerator<> gen;
  327. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  328. host_w = gen({OC, IC, KH, KW});
  329. auto graph = ComputingGraph::make();
  330. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  331. b = opr::Dimshuffle::make(
  332. opr::SharedDeviceTensor::make(*graph, *host_b),
  333. {-1, 0, -1, -1}),
  334. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  335. y0 = opr::Convolution::make(x + b, w);
  336. SymbolVar y1;
  337. unpack_vector(
  338. gopt::GraphOptimizer{}.
  339. add_pass<gopt::ParamRedistributePass>().
  340. add_pass<gopt::ParamFusePass>().
  341. apply({{y0}}).endpoint_vars(),
  342. y1);
  343. ASSERT_NE(y0.node(), y1.node());
  344. HostTensorND host_y0, host_y1;
  345. auto func = graph->compile(
  346. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  347. func->execute();
  348. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  349. }
  350. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  351. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5,
  352. IW = 4, OC = 4, KH = 3, KW = 2;
  353. HostTensorGenerator<> gen;
  354. auto graph = ComputingGraph::make();
  355. auto mkvar = [&](const char *name, const TensorShape &shp) {
  356. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  357. };
  358. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  359. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  360. };
  361. auto x0 = mkvar("x0", {N, IC0, IH, IW}),
  362. x1 = mkvar("x1", {N, IC1, IH, IW}),
  363. k0 = opr::Dimshuffle::make(
  364. mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
  365. w0 = mkcvar("w0", {OC, IC0, KH, KW}),
  366. k1 = mkcvar("k1", {1, IC1, 1, 1}),
  367. w1 = mkcvar("w1", {OC, IC1, KH, KW}),
  368. b0 = mkvar("b0", {1, OC, 1, 1}),
  369. b1 = mkcvar("b1", {1}),
  370. k2 = mkcvar("k2", {1}),
  371. y0 = (
  372. opr::Convolution::make(x0 * k0, w0) +
  373. opr::Convolution::make(x1 + k1, w1) +
  374. b0 + b1) * k2;
  375. SymbolVar y1;
  376. unpack_vector(
  377. gopt::GraphOptimizer{}.
  378. add_pass<gopt::ParamRedistributePass>().
  379. add_pass<gopt::ReorderArithChainPass>(
  380. gopt::ConstVarType::IMMUTABLE_AND_PARAM).
  381. add_pass<gopt::ParamFusePass>().
  382. apply({{y0}}).endpoint_vars(),
  383. y1);
  384. ASSERT_NE(y0.node(), y1.node());
  385. HostTensorND host_y0, host_y1;
  386. auto func = graph->compile(
  387. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  388. func->execute();
  389. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  390. auto chain = gopt::extract_opr_leaves(y1.node(),
  391. [](cg::OperatorNodeBase*opr){
  392. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  393. });
  394. size_t nr_conv = 0;
  395. for (auto i: chain) {
  396. auto opr = i->owner_opr();
  397. if (opr->same_type<opr::Convolution>()) {
  398. ++ nr_conv;
  399. ASSERT_TRUE(opr->input(0)->owner_opr()
  400. ->same_type<opr::Host2DeviceCopy>());
  401. ASSERT_TRUE(opr->input(1)->owner_opr()
  402. ->same_type<opr::SharedDeviceTensor>());
  403. }
  404. }
  405. ASSERT_EQ(2u, nr_conv);
  406. ASSERT_EQ(4u, chain.size());
  407. }
  408. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  409. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  410. HostTensorGenerator<> gen;
  411. auto graph = ComputingGraph::make();
  412. graph->options().graph_opt_level = 0;
  413. auto mkvar = [&](const char *name, const TensorShape &shp) {
  414. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  415. };
  416. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  417. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  418. };
  419. auto x = mkvar("x", {N, IC, IH, IW}),
  420. k0 = mkcvar("k0", {1, IC, 1, 1}),
  421. b0 = mkcvar("b0", {1, IC, 1, 1}),
  422. k1 = mkcvar("k0", {1}),
  423. b1 = mkcvar("b0", {1}),
  424. w = mkcvar("w", {OC, IC, KH, KW}),
  425. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  426. SymbolVar y1;
  427. unpack_vector(
  428. gopt::GraphOptimizer{}.
  429. add_pass<gopt::ParamRedistributePass>().
  430. add_pass<gopt::ParamFusePass>().
  431. apply({{y0}}).endpoint_vars(),
  432. y1);
  433. ASSERT_NE(y0.node(), y1.node());
  434. HostTensorND host_y0, host_y1;
  435. auto func = graph->compile(
  436. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  437. func->execute();
  438. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  439. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  440. ASSERT_TRUE(y1elem);
  441. auto yconv = y1elem->input(0)->owner_opr();
  442. if (!yconv->same_type<opr::Convolution>())
  443. yconv = y1elem->input(1)->owner_opr();
  444. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  445. ASSERT_EQ(x.node(), yconv->input(0));
  446. }
  447. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  448. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  449. HostTensorGenerator<> gen;
  450. auto graph = ComputingGraph::make();
  451. graph->options().graph_opt_level = 0;
  452. auto mkvar = [&](const char *name, const TensorShape &shp) {
  453. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  454. };
  455. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  456. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  457. };
  458. auto x = mkvar("x", {N, IC, IH, IW}),
  459. k = mkcvar("k", {1, OC, 1, 1}),
  460. w = mkcvar("w", {OC, IC, KH, KW});
  461. auto conv = opr::Convolution::make(x, w);
  462. auto t = conv * k;
  463. auto y0 = t * 4.2f + t * 2.4f;
  464. SymbolVar y1;
  465. unpack_vector(
  466. gopt::GraphOptimizer{}.
  467. add_pass<gopt::ParamRedistributePass>().
  468. add_pass<gopt::ParamFusePass>().
  469. apply({{y0}}).endpoint_vars(),
  470. y1);
  471. ASSERT_NE(y0.node(), y1.node());
  472. HostTensorND host_y0, host_y1;
  473. auto func = graph->compile(
  474. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  475. func->execute();
  476. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  477. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  478. ASSERT_TRUE(y1elem);
  479. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  480. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  481. ASSERT_TRUE(ymul0);
  482. ASSERT_TRUE(ymul1);
  483. auto yconv = ymul0->input(0)->owner_opr();
  484. if (!yconv->same_type<opr::Convolution>())
  485. {
  486. yconv = ymul0->input(1)->owner_opr();
  487. }
  488. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  489. if (ymul1->input(0) != yconv->output(0))
  490. {
  491. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  492. }
  493. ASSERT_EQ(x.node(), yconv->input(0));
  494. }
  495. TEST(TestGoptInference, ParamFuseBiasMerge) {
  496. HostTensorGenerator<> gen;
  497. auto graph = ComputingGraph::make();
  498. graph->options().graph_opt_level = 0;
  499. auto mkvar = [&](const char* name, const TensorShape& shp) {
  500. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  501. };
  502. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  503. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  504. };
  505. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  506. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  507. b2 = mkcvar("b2", {1, 4, 1, 1}),
  508. y1 = opr::Convolution::make(x, w1) + b1,
  509. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  510. SymbolVar y_opt;
  511. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  512. HostTensorND host_y, host_y_opt;
  513. auto func = graph->compile({make_callback_copy(y, host_y),
  514. make_callback_copy(y_opt, host_y_opt)});
  515. func->execute();
  516. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  517. graph->compile({{y_opt, {}}})
  518. ->to_json()
  519. ->writeto_fpath(
  520. output_file("TestGoptInference.ParamFuseConvMerge.json"));
  521. auto chain = gopt::extract_opr_leaves(
  522. y_opt.node(), [](cg::OperatorNodeBase* opr) {
  523. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  524. });
  525. ASSERT_EQ(3u, chain.size());
  526. }
  527. TEST(TestGoptInference, Float16IOFloat32Compute) {
  528. constexpr size_t INP_H = 10, INP_W = 10;
  529. HostTensorGenerator<> gen;
  530. auto graph = ComputingGraph::make();
  531. auto mkvar = [&](const char* name, const TensorShape& shp) {
  532. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  533. };
  534. graph->options().graph_opt_level = 0;
  535. auto a = mkvar("a", {1, 4, INP_H, INP_W}),
  536. s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  537. s1 = mkvar("s1", {4, 3, 1, 1});
  538. auto b = opr::Convolution::make(s0, s1, {}, {});
  539. auto y = a + b;
  540. y = opr::Concat::make({y, -y}, 0);
  541. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  542. SymbolVar y_opt;
  543. auto options = gopt::OptimizeForInferenceOptions{};
  544. options.enable_f16_io_f32_comp();
  545. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  546. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  547. HostTensorND host_y, host_y_opt;
  548. auto func = graph->compile({make_callback_copy(y, host_y),
  549. make_callback_copy(y_opt, host_y_opt)});
  550. func->execute();
  551. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  552. }
  553. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  554. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  555. HostTensorGenerator<> gen;
  556. auto graph = ComputingGraph::make();
  557. auto mkvar = [&](const char* name, const TensorShape& shp) {
  558. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  559. };
  560. graph->options().graph_opt_level = 0;
  561. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  562. float value1 = M_PI, value2 = 0.6;
  563. auto gen_mat = [&](HostTensorND& mat) {
  564. auto ptr = mat.ptr<float>();
  565. for (size_t i = 0; i < N; ++i) {
  566. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  567. dx = value2, ky = value2, kx = value2, kb = value2;
  568. ptr[0] = ptr[4] = cos(rot) * scale;
  569. ptr[1] = -(ptr[3] = sin(rot) * scale);
  570. ptr[3] *= sheer;
  571. ptr[4] *= sheer;
  572. ptr[2] = dx;
  573. ptr[5] = dy;
  574. ptr[6] = kx;
  575. ptr[7] = ky;
  576. ptr[8] = kb;
  577. ptr += 9;
  578. }
  579. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  580. };
  581. auto mat_host = std::make_shared<HostTensorND>(
  582. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  583. gen_mat(*mat_host);
  584. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  585. TensorShape out_shp{20, 20};
  586. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  587. SymbolVar y_opt;
  588. auto options = gopt::OptimizeForInferenceOptions{};
  589. options.enable_f16_io_f32_comp();
  590. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  591. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  592. HostTensorND host_y, host_y_opt;
  593. auto func = graph->compile({make_callback_copy(y, host_y),
  594. make_callback_copy(y_opt, host_y_opt)});
  595. func->execute();
  596. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  597. }
  598. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  599. auto cn = CompNode::load("cpu1");
  600. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  601. HostTensorGenerator<> gen;
  602. auto graph = ComputingGraph::make();
  603. auto mkvar = [&](const char* name, const TensorShape& shp) {
  604. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  605. };
  606. graph->options().graph_opt_level = 0;
  607. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  608. auto gen_map = [&](HostTensorND& mat) {
  609. auto ptr = mat.ptr<float>();
  610. for(size_t n = 0; n < N; ++n){
  611. for(int h = 0; h < 5; ++h){
  612. for(int w = 0; w < 5; ++w){
  613. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  614. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  615. }
  616. }
  617. }
  618. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  619. };
  620. auto map_host = std::make_shared<HostTensorND>(
  621. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  622. gen_map(*map_host);
  623. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  624. auto y = opr::Remap::make(a, map);
  625. SymbolVar y_opt;
  626. auto options = gopt::OptimizeForInferenceOptions{};
  627. options.enable_f16_io_f32_comp();
  628. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  629. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  630. HostTensorND host_y, host_y_opt;
  631. auto func = graph->compile({make_callback_copy(y, host_y),
  632. make_callback_copy(y_opt, host_y_opt)});
  633. func->execute();
  634. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  635. }
  636. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  637. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  638. HostTensorGenerator<dtype::Uint8> gen_uint8;
  639. auto graph = ComputingGraph::make();
  640. auto mkvar = [&](const char* name, const TensorShape& shp) {
  641. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  642. };
  643. graph->options().graph_opt_level = 0;
  644. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  645. float value1 = M_PI, value2 = 0.6;
  646. auto gen_mat = [&](HostTensorND& mat) {
  647. auto ptr = mat.ptr<float>();
  648. for (size_t i = 0; i < N; ++i) {
  649. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  650. dx = value2, ky = value2, kx = value2, kb = value2;
  651. ptr[0] = ptr[4] = cos(rot) * scale;
  652. ptr[1] = -(ptr[3] = sin(rot) * scale);
  653. ptr[3] *= sheer;
  654. ptr[4] *= sheer;
  655. ptr[2] = dx;
  656. ptr[5] = dy;
  657. ptr[6] = kx;
  658. ptr[7] = ky;
  659. ptr[8] = kb;
  660. ptr += 9;
  661. }
  662. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  663. };
  664. auto mat_host = std::make_shared<HostTensorND>(
  665. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  666. gen_mat(*mat_host);
  667. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  668. TensorShape out_shp{20, 20};
  669. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  670. SymbolVar y_opt;
  671. auto options = gopt::OptimizeForInferenceOptions{};
  672. options.enable_f16_io_comp();
  673. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  674. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  675. HostTensorND host_y, host_y_opt;
  676. auto func = graph->compile({make_callback_copy(y, host_y),
  677. make_callback_copy(y_opt, host_y_opt)});
  678. func->execute();
  679. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  680. }
  681. TEST(TestGoptInference, Float32TOFloat16) {
  682. CompNode cn = CompNode::load("cpu0");
  683. HostTensorGenerator<> gen(0, 1, 0);
  684. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  685. host_x2 = gen({4, 3, 1, 1}, cn);
  686. auto graph = ComputingGraph::make();
  687. auto make_f32_to_f16_graph = [&]() {
  688. graph->options().graph_opt_level = 0;
  689. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  690. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  691. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  692. auto b = opr::Convolution::make(d1, d2, {}, {});
  693. auto y = d0 + b;
  694. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  695. SymbolVar y_opt;
  696. auto options = gopt::OptimizeForInferenceOptions{};
  697. options.enable_f16_io_comp();
  698. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  699. return y_opt;
  700. };
  701. auto make_f16_graph = [&]() {
  702. auto d0 = opr::TypeCvt::make(
  703. opr::Host2DeviceCopy::make(*graph, host_x0),
  704. dtype::Float16{}),
  705. d1 = opr::TypeCvt::make(
  706. opr::Host2DeviceCopy::make(*graph, host_x1),
  707. dtype::Float16{}),
  708. d2 = opr::TypeCvt::make(
  709. opr::SharedDeviceTensor::make(*graph, *host_x2),
  710. dtype::Float16{});
  711. auto b = opr::Convolution::make(d1, d2, {}, {});
  712. SymbolVar y = d0 + b;
  713. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  714. y = opr::TypeCvt::make(y, dtype::Float32{});
  715. return y;
  716. };
  717. auto y_opt = make_f32_to_f16_graph();
  718. auto y = make_f16_graph();
  719. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  720. ASSERT_EQ(y.dtype(), dtype::Float32{});
  721. HostTensorND host_y_opt, host_y;
  722. auto func = graph->compile({make_callback_copy(y, host_y),
  723. make_callback_copy(y_opt, host_y_opt)});
  724. func->execute();
  725. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  726. }
  727. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  728. CompNode cn = CompNode::load("cpu0");
  729. HostTensorGenerator<> gen(0, 1, 0);
  730. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  731. host_x2 = gen({4, 3, 1, 1}, cn);
  732. auto graph = ComputingGraph::make();
  733. auto make_f32_to_f16_graph = [&]() {
  734. graph->options().graph_opt_level = 0;
  735. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  736. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  737. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  738. auto b = opr::Convolution::make(d1, d2, {}, {});
  739. auto y = d0 + b;
  740. SymbolVar y_opt;
  741. auto options = gopt::OptimizeForInferenceOptions{};
  742. options.enable_f16_io_comp();
  743. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  744. return y_opt;
  745. };
  746. auto make_f16_graph = [&]() {
  747. auto d0 = opr::TypeCvt::make(
  748. opr::Host2DeviceCopy::make(*graph, host_x0),
  749. dtype::Float16{}),
  750. d1 = opr::TypeCvt::make(
  751. opr::Host2DeviceCopy::make(*graph, host_x1),
  752. dtype::Float16{}),
  753. d2 = opr::TypeCvt::make(
  754. opr::SharedDeviceTensor::make(*graph, *host_x2),
  755. dtype::Float16{});
  756. auto b = opr::Convolution::make(d1, d2, {}, {});
  757. SymbolVar y = d0 + b;
  758. y = opr::TypeCvt::make(y, dtype::Float32{});
  759. return y;
  760. };
  761. auto y_opt = make_f32_to_f16_graph();
  762. auto y = make_f16_graph();
  763. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  764. ASSERT_EQ(y.dtype(), dtype::Float32{});
  765. HostTensorND host_y_opt, host_y;
  766. auto func = graph->compile({make_callback_copy(y, host_y),
  767. make_callback_copy(y_opt, host_y_opt)});
  768. func->execute();
  769. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  770. }
  771. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  772. CompNode cn = CompNode::load("cpu0");
  773. HostTensorGenerator<> gen(0, 1, 0);
  774. auto host_x = gen({3, 1}, cn);
  775. auto graph = ComputingGraph::make();
  776. auto make_f32_to_f16_graph = [&]() {
  777. graph->options().graph_opt_level = 0;
  778. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  779. auto xshp = opr::GetVarShape::make(x);
  780. auto cv = [&x](int v) { return x.make_scalar(v); };
  781. auto sub = [&xshp, &cv](int idx) {
  782. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  783. };
  784. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  785. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  786. auto y = opr::Reshape::make(lin, shp);
  787. auto mm = opr::MatrixMul::make(x, y);
  788. SymbolVar mm_opt;
  789. auto options = gopt::OptimizeForInferenceOptions{};
  790. options.enable_f16_io_comp();
  791. unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
  792. return mm_opt;
  793. };
  794. auto make_f16_graph = [&]() {
  795. auto x = opr::TypeCvt::make(opr::Host2DeviceCopy::make(*graph, host_x),
  796. dtype::Float16());
  797. auto xshp = opr::GetVarShape::make(x);
  798. auto cv = [&x](int v) { return x.make_scalar(v); };
  799. auto sub = [&xshp, &cv](int idx) {
  800. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  801. };
  802. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  803. lin = opr::TypeCvt::make(lin, dtype::Float16());
  804. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  805. auto y = opr::Reshape::make(lin, shp);
  806. auto mm = opr::MatrixMul::make(x, y);
  807. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  808. return mm;
  809. };
  810. auto y_opt = make_f32_to_f16_graph();
  811. auto y = make_f16_graph();
  812. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  813. ASSERT_EQ(y.dtype(), dtype::Float32{});
  814. HostTensorND host_y_opt, host_y;
  815. auto func = graph->compile({make_callback_copy(y, host_y),
  816. make_callback_copy(y_opt, host_y_opt)});
  817. func->execute();
  818. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  819. }
  820. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  821. // hwcd4 is only supported in naive handle
  822. NaiveMegDNNHandleScope naive_megdnn_handle;
  823. HostTensorGenerator<> gen;
  824. auto cn = CompNode::load("cpu0");
  825. auto graph = ComputingGraph::make();
  826. graph->options().graph_opt_level = 0;
  827. auto mkvar = [&](const char* name, const TensorShape& shp) {
  828. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  829. };
  830. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  831. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  832. .rename(name);
  833. };
  834. auto host_x = gen({8, 8, 8, 8}, cn);
  835. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  836. opr::Convolution::Param param;
  837. param.pad_h = param.pad_w = 0;
  838. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  839. conv = opr::Convolution::make(x, w1, param);
  840. auto shape_of = opr::GetVarShape::make(conv);
  841. auto subtensor = opr::Subtensor::make(
  842. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  843. 0, x.make_scalar(2), None, x.make_scalar(1))});
  844. opr::Resize::Param param_resize;
  845. param_resize.format = opr::Resize::Param::Format::NCHW;
  846. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  847. auto mat = mkcvar("mat", {8, 3, 3}),
  848. warp = opr::WarpPerspectiveForward::make(
  849. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  850. auto b = mkvar("b", {1, 4, 1, 1}),
  851. elem = opr::Elemwise::make({warp + b},
  852. opr::Elemwise::Param::Mode::RELU);
  853. param.pad_h = param.pad_w = 1;
  854. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  855. y = opr::Convolution::make(elem, w2, param);
  856. SymbolVar y_opt;
  857. auto options = gopt::OptimizeForInferenceOptions{};
  858. options.enable_nchw2nhwcd4();
  859. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  860. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  861. find_opr<opr::Convolution>(y_opt).param().format);
  862. graph->compile({{y_opt, {}}})
  863. ->to_json()
  864. ->writeto_fpath(
  865. output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  866. HostTensorND host_y_opt, host_y;
  867. auto func = graph->compile({make_callback_copy(y, host_y),
  868. make_callback_copy(y_opt, host_y_opt)});
  869. func->execute();
  870. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  871. *host_x = *gen({8, 8, 16, 16}, cn);
  872. func->execute();
  873. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  874. }
  875. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  876. // hwcd4 is only supported in naive handle
  877. NaiveMegDNNHandleScope naive_megdnn_handle;
  878. HostTensorGenerator<> gen;
  879. auto cn = CompNode::load("cpu0");
  880. auto graph = ComputingGraph::make();
  881. graph->options().graph_opt_level = 0;
  882. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  883. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  884. .rename(name);
  885. };
  886. auto host_x = gen({2, 8, 8, 16}, cn);
  887. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  888. opr::Convolution::Param param;
  889. param.pad_h = param.pad_w = 1;
  890. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  891. conv1 = opr::Convolution::make(x, w1, param);
  892. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  893. local = opr::Local::make(conv1, w2, param);
  894. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  895. conv2 = opr::Convolution::make(local, w3, param);
  896. opr::GroupLocal::Param param_group_local;
  897. param_group_local.pad_h = param_group_local.pad_w = 1;
  898. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  899. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  900. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  901. y = opr::Convolution::make(group_local, w5, param);
  902. SymbolVar y_opt;
  903. auto options = gopt::OptimizeForInferenceOptions{};
  904. options.enable_nchw2nhwcd4();
  905. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  906. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  907. find_opr<opr::Convolution>(y_opt).param().format);
  908. ASSERT_EQ(opr::Local::Param::Format::NCHW,
  909. find_opr<opr::Local>(y_opt).param().format);
  910. ASSERT_EQ(opr::GroupLocal::Param::Format::NCHW,
  911. find_opr<opr::GroupLocal>(y_opt).param().format);
  912. graph->compile({{y_opt, {}}})
  913. ->to_json()
  914. ->writeto_fpath(output_file(
  915. "TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  916. HostTensorND host_y_opt, host_y;
  917. auto func = graph->compile({make_callback_copy(y, host_y),
  918. make_callback_copy(y_opt, host_y_opt)});
  919. func->execute();
  920. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  921. }
  922. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  923. // hwcd4 is only supported in naive handle
  924. NaiveMegDNNHandleScope naive_megdnn_handle;
  925. HostTensorGenerator<> gen;
  926. auto cn = CompNode::load("cpu0");
  927. auto graph = ComputingGraph::make();
  928. graph->options().graph_opt_level = 0;
  929. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  930. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  931. .rename(name);
  932. };
  933. auto host_x = gen({8, 8, 8, 8}, cn);
  934. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  935. opr::Convolution::Param param;
  936. param.pad_h = param.pad_w = 0;
  937. auto w0 = mkcvar("w1", {4, 8, 2, 2}),
  938. conv = opr::Convolution::make(x, w0, param);
  939. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  940. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  941. SymbolVar y_opt;
  942. auto options = gopt::OptimizeForInferenceOptions{};
  943. options.enable_nchw2nhwcd4();
  944. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  945. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  946. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  947. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  948. find_opr<opr::Convolution>(y_opt).param().format);
  949. HostTensorND host_y_opt, host_y;
  950. auto func = graph->compile({make_callback_copy(y, host_y),
  951. make_callback_copy(y_opt, host_y_opt)});
  952. func->execute();
  953. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  954. }
  955. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  956. // hwcd4 is only supported in naive handle
  957. NaiveMegDNNHandleScope naive_megdnn_handle;
  958. HostTensorGenerator<> gen;
  959. auto cn = CompNode::load("cpu0");
  960. auto graph = ComputingGraph::make();
  961. graph->options().graph_opt_level = 0;
  962. auto mkcvar = [&](const char* name, const TensorShape& shp,
  963. const DType& dtype) {
  964. return opr::TypeCvt::make(
  965. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  966. .rename(name),
  967. dtype);
  968. };
  969. auto host_x = gen({8, 8, 8, 8}, cn);
  970. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  971. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  972. opr::ConvBias::Param param;
  973. param.pad_h = param.pad_w = 0;
  974. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  975. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  976. y = opr::ConvBias::make(
  977. x, w, b, param, {},
  978. OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  979. SymbolVar y_opt;
  980. auto options = gopt::OptimizeForInferenceOptions{};
  981. options.enable_nchw2nhwcd4();
  982. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  983. ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
  984. find_opr<opr::ConvBias>(y_opt).param().format);
  985. graph->compile({{y_opt, {}}})
  986. ->to_json()
  987. ->writeto_fpath(output_file(
  988. "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  989. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  990. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  991. HostTensorND host_y_opt, host_y;
  992. auto func = graph->compile({make_callback_copy(float_y, host_y),
  993. make_callback_copy(float_y_opt, host_y_opt)});
  994. func->execute();
  995. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  996. }
  997. TEST(TestGoptInference, ConvertFormatPadIC) {
  998. // hwcd4 is only supported in naive handle
  999. NaiveMegDNNHandleScope naive_megdnn_handle;
  1000. HostTensorGenerator<> gen;
  1001. auto cn = CompNode::load("cpu0");
  1002. auto graph = ComputingGraph::make();
  1003. graph->options().graph_opt_level = 0;
  1004. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1005. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1006. .rename(name);
  1007. };
  1008. auto host_inp1 = gen({1, 6, 128, 128}, cn),
  1009. host_inp2 = gen({1, 6, 256, 256}, cn);
  1010. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1011. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1012. auto shape_tmp = mkcvar("tmp", {256, 256});
  1013. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1014. opr::Resize::Param param_resize;
  1015. param_resize.format = opr::Resize::Param::Format::NCHW;
  1016. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1017. auto concat = opr::Concat::make({inp2, resize}, 1);
  1018. opr::Convolution::Param param;
  1019. param.pad_h = param.pad_w = 1;
  1020. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1021. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1022. auto y = opr::Convolution::make(concat, w1, param);
  1023. SymbolVar y_opt;
  1024. auto options = gopt::OptimizeForInferenceOptions{};
  1025. options.enable_nchw2nhwcd4();
  1026. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1027. HostTensorND host_y_opt, host_y;
  1028. auto func = graph->compile({make_callback_copy(y, host_y),
  1029. make_callback_copy(y_opt, host_y_opt)});
  1030. func->execute();
  1031. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1032. }
  1033. TEST(TestGoptInference, ConvertBatchNormPass) {
  1034. auto cn = CompNode::load("cpu0");
  1035. HostTensorGenerator<> gen(0, 1, 0);
  1036. auto graph = ComputingGraph::make();
  1037. graph->options().graph_opt_level = 0;
  1038. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1039. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1040. };
  1041. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1042. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1043. .rename(name);
  1044. };
  1045. using Param = opr::BatchNorm::Param;
  1046. Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
  1047. TensorShape shp = {1, 3, 1, 1};
  1048. auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
  1049. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1050. auto host_variance = gen(shp, cn);
  1051. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1052. host_variance->ptr<float>()[i] =
  1053. std::abs(host_variance->ptr<float>()[i]);
  1054. }
  1055. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1056. .rename("variance");
  1057. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
  1058. SymbolVar y_opt;
  1059. unpack_vector(gopt::optimize_for_inference(
  1060. {y}, gopt::OptimizeForInferenceOptions{}),
  1061. y_opt);
  1062. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1063. graph->compile({{y_opt, {}}})
  1064. ->to_json()
  1065. ->writeto_fpath(
  1066. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1067. HostTensorND host_y, host_y_opt;
  1068. auto func = graph->compile({make_callback_copy(y, host_y),
  1069. make_callback_copy(y_opt, host_y_opt)});
  1070. func->execute();
  1071. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  1072. }
  1073. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1074. // hwcd4 is only supported in naive handle
  1075. NaiveMegDNNHandleScope naive_megdnn_handle;
  1076. auto cn = CompNode::load("cpu0");
  1077. HostTensorGenerator<> gen;
  1078. auto graph = ComputingGraph::make();
  1079. graph->options().graph_opt_level = 0;
  1080. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1081. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1082. };
  1083. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1084. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1085. .rename(name);
  1086. };
  1087. opr::Convolution::Param param;
  1088. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1089. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1090. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1091. y_cut = opr::Convolution::make(x, w1, param),
  1092. y1 = opr::Elemwise::make({y_cut + b1},
  1093. opr::Elemwise::Param::Mode::RELU);
  1094. param.pad_w = param.pad_h = 1;
  1095. auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
  1096. opr::Elemwise::Param::Mode::SIGMOID);
  1097. param.pad_w = param.pad_h = 0;
  1098. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1099. y_expand =
  1100. opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1101. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1102. SymbolVar y_opt;
  1103. auto options = gopt::OptimizeForInferenceOptions{};
  1104. options.enable_nchw2nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1105. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1106. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1107. graph->compile({{y_opt, {}}})
  1108. ->to_json()
  1109. ->writeto_fpath(output_file(
  1110. "TestGoptInference.FuseConvBiasNonlinPass.json"));
  1111. HostTensorND host_y, host_y_opt;
  1112. auto func = graph->compile({make_callback_copy(y, host_y),
  1113. make_callback_copy(y_opt, host_y_opt)});
  1114. func->execute();
  1115. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1116. }
  1117. TEST(TestGoptInference, ParamMerge) {
  1118. auto cns = load_multiple_xpus(2);
  1119. HostTensorGenerator<> gen;
  1120. auto graph = ComputingGraph::make();
  1121. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1122. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1123. y = var0 + opr::Copy::make(var1, {cns[0]});
  1124. HostTensorND y_expected_val;
  1125. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1126. SymbolVar y_opt;
  1127. unpack_vector(gopt::GraphOptimizer{}
  1128. .add_pass<gopt::ParamMergePass>()
  1129. .apply({{y}})
  1130. .endpoint_vars(),
  1131. y_opt);
  1132. auto opr = y_opt.node()->owner_opr();
  1133. ASSERT_EQ(2u, opr->input().size());
  1134. ASSERT_EQ(2u,
  1135. find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1136. HostTensorND y_got_val;
  1137. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1138. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1139. }
  1140. TEST(TestGoptInference, ParamMergeFormat) {
  1141. auto cns = load_multiple_xpus(2);
  1142. auto make_dv = [](const HostTensorND& hv) {
  1143. TensorLayout layout{hv.layout(), hv.layout().dtype,
  1144. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1145. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1146. ret->copy_from_fixlayout(hv).sync();
  1147. return ret;
  1148. };
  1149. HostTensorGenerator<> gen;
  1150. auto graph = ComputingGraph::make();
  1151. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1152. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1153. var1 = opr::SharedDeviceTensorWithFormat::make(
  1154. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1155. y = var0 + opr::Copy::make(var1, {cns[0]});
  1156. HostTensorND y_expected_val;
  1157. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1158. SymbolVar y_opt;
  1159. unpack_vector(gopt::GraphOptimizer{}
  1160. .add_pass<gopt::ParamMergePass>()
  1161. .apply({{y}})
  1162. .endpoint_vars(),
  1163. y_opt);
  1164. auto opr = y_opt.node()->owner_opr();
  1165. ASSERT_EQ(2u, opr->input().size());
  1166. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
  1167. .output()
  1168. .size());
  1169. HostTensorND y_got_val;
  1170. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1171. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1172. }
  1173. #if MGB_ENABLE_FASTRUN
  1174. TEST(TestGoptInference, AlgoProfile) {
  1175. HostTensorGenerator<> gen;
  1176. auto graph = ComputingGraph::make();
  1177. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1178. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1179. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1180. z = opr::Convolution::make(x, y);
  1181. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1182. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1183. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1184. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1185. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1186. }
  1187. #endif
  1188. TEST(TestGoptInference, ProfileCache) {
  1189. HostTensorGenerator<> gen;
  1190. auto graph = ComputingGraph::make();
  1191. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1192. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1193. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1194. z = opr::Convolution::make(x, y);
  1195. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1196. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1197. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1198. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1199. ASSERT_EQ(S::PROFILE_HEURISTIC, conv.execution_policy().strategy);
  1200. }
  1201. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1202. HostTensorGenerator<> gen;
  1203. auto graph = ComputingGraph::make();
  1204. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1205. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1206. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1207. z = opr::Convolution::make(x, y);
  1208. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1209. ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
  1210. conv.execution_policy_transient().workspace_limit);
  1211. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1212. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1213. }
  1214. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1215. auto cn = CompNode::load("xpux");
  1216. HostTensorGenerator<dtype::Int8> gen;
  1217. auto graph = ComputingGraph::make();
  1218. graph->options().graph_opt_level = 0;
  1219. auto mkvar = [&](const char* name, const TensorShape& shp,
  1220. const DType& dtype) {
  1221. return opr::TypeCvt::make(
  1222. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1223. dtype);
  1224. };
  1225. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1226. const DType& dtype) {
  1227. return opr::TypeCvt::make(
  1228. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1229. .rename(name),
  1230. dtype);
  1231. };
  1232. for (auto format : {
  1233. opr::Convolution::Param::Format::NCHW,
  1234. opr::Convolution::Param::Format::NHWC,
  1235. opr::Convolution::Param::Format::NCHW4
  1236. }) {
  1237. opr::Convolution::Param param;
  1238. param.format = format;
  1239. SymbolVar x, w, b;
  1240. if (format == opr::Convolution::Param::Format::NHWC) {
  1241. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1242. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1243. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1244. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1245. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1246. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1247. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1248. } else {
  1249. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1250. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1251. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1252. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1253. }
  1254. auto y = opr::Convolution::make(x, w, param);
  1255. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1256. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1257. opr::ConvBias::Param conv_bias_param;
  1258. conv_bias_param.format = format;
  1259. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1260. auto concret_y = opr::ConvBias::make(
  1261. x, w, b, conv_bias_param, {},
  1262. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1263. check(concret_y, y);
  1264. }
  1265. }
  1266. #if MGB_CUDA
  1267. TEST(TestEnableTensorCore, SmallInputShape) {
  1268. REQUIRE_GPU(1);
  1269. auto cn = CompNode::load("gpu0");
  1270. cn.activate();
  1271. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1272. auto sm_ver = prop.major * 10 + prop.minor;
  1273. if (sm_ver < 75) {
  1274. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1275. "expected: %d)\n",
  1276. sm_ver, 75);
  1277. return;
  1278. }
  1279. HostTensorGenerator<dtype::Int8> gen;
  1280. auto graph = ComputingGraph::make();
  1281. graph->options().graph_opt_level = 0;
  1282. auto mkvar = [&](const char* name, const TensorShape& shp,
  1283. const DType& dtype) {
  1284. return opr::TypeCvt::make(
  1285. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1286. dtype);
  1287. };
  1288. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1289. const DType& dtype) {
  1290. return opr::TypeCvt::make(
  1291. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1292. .rename(name),
  1293. dtype);
  1294. };
  1295. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  1296. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1297. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1298. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  1299. opr::ConvBias::Param param;
  1300. param.format = opr::ConvBias::Param::Format::NCHW4;
  1301. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1302. param.stride_h = param.stride_w = 2;
  1303. param.pad_h = param.pad_w = 1;
  1304. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1305. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1306. y = opr::ConvBias::make(y, w, b, param, {},
  1307. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1308. y = opr::TypeCvt::make(y, dtype::Float32());
  1309. SymbolVar y_opt;
  1310. SymbolVar y_no_tc;
  1311. {
  1312. auto options = gopt::OptimizeForInferenceOptions{};
  1313. options.enable_nchw2nchw32().enable_fuse_conv_bias_nonlinearity();
  1314. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1315. }
  1316. {
  1317. auto options = gopt::OptimizeForInferenceOptions{};
  1318. options.enable_fuse_conv_bias_nonlinearity();
  1319. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1320. }
  1321. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1322. ASSERT_EQ(2u, nr_dimshuffle);
  1323. HostTensorND host_y, host_y_opt;
  1324. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1325. make_callback_copy(y_opt, host_y_opt)});
  1326. func->execute();
  1327. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1328. }
  1329. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  1330. REQUIRE_GPU(1);
  1331. auto cn = CompNode::load("gpu0");
  1332. cn.activate();
  1333. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1334. auto sm_ver = prop.major * 10 + prop.minor;
  1335. if (sm_ver < 75) {
  1336. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1337. "expected: %d)\n",
  1338. sm_ver, 75);
  1339. return;
  1340. }
  1341. HostTensorGenerator<dtype::Int8> gen;
  1342. auto graph = ComputingGraph::make();
  1343. graph->options().graph_opt_level = 0;
  1344. auto mkvar = [&](const char* name, const TensorShape& shp,
  1345. const DType& dtype) {
  1346. return opr::TypeCvt::make(
  1347. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1348. dtype);
  1349. };
  1350. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1351. const DType& dtype) {
  1352. return opr::TypeCvt::make(
  1353. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1354. .rename(name),
  1355. dtype);
  1356. };
  1357. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1358. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1359. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1360. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1361. opr::ConvBias::Param param;
  1362. param.format = opr::ConvBias::Param::Format::NCHW4;
  1363. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1364. param.stride_h = param.stride_w = 1;
  1365. param.pad_h = param.pad_w = 1;
  1366. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1367. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1368. y = opr::TypeCvt::make(y, dtype::Float32());
  1369. SymbolVar y_opt;
  1370. SymbolVar y_no_tc;
  1371. {
  1372. auto options = gopt::OptimizeForInferenceOptions{};
  1373. options.enable_fuse_conv_bias_nonlinearity().enable_nchw2nchw32();
  1374. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1375. }
  1376. {
  1377. auto options = gopt::OptimizeForInferenceOptions{};
  1378. options.enable_fuse_conv_bias_nonlinearity();
  1379. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1380. }
  1381. HostTensorND host_y, host_y_opt;
  1382. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1383. make_callback_copy(y_opt, host_y_opt)});
  1384. func->execute();
  1385. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1386. }
  1387. TEST(TestGoptInference, EnableTensorCore) {
  1388. REQUIRE_GPU(1);
  1389. auto cn = CompNode::load("gpu0");
  1390. cn.activate();
  1391. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1392. auto sm_ver = prop.major * 10 + prop.minor;
  1393. if (sm_ver < 75) {
  1394. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1395. "expected: %d)\n",
  1396. sm_ver, 75);
  1397. return;
  1398. }
  1399. HostTensorGenerator<dtype::Int8> gen;
  1400. auto graph = ComputingGraph::make();
  1401. graph->options().graph_opt_level = 0;
  1402. auto mkvar = [&](const char* name, const TensorShape& shp,
  1403. const DType& dtype) {
  1404. return opr::TypeCvt::make(
  1405. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1406. dtype);
  1407. };
  1408. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1409. const DType& dtype) {
  1410. return opr::TypeCvt::make(
  1411. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1412. .rename(name),
  1413. dtype);
  1414. };
  1415. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1416. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1417. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1418. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1419. opr::Convolution::Param param;
  1420. param.format = opr::Convolution::Param::Format::NCHW4;
  1421. param.stride_h = param.stride_w = 1;
  1422. param.pad_h = param.pad_w = 1;
  1423. auto y = opr::Convolution::make(x, w, param);
  1424. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1425. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1426. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  1427. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  1428. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  1429. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  1430. auto y4 = y1 + y2 + y3;
  1431. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1432. SymbolVar y_opt;
  1433. SymbolVar y_no_tc;
  1434. {
  1435. auto options = gopt::OptimizeForInferenceOptions{};
  1436. options.enable_fuse_conv_bias_nonlinearity().enable_nchw2nchw32();
  1437. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  1438. }
  1439. {
  1440. auto options = gopt::OptimizeForInferenceOptions{};
  1441. options.enable_fuse_conv_bias_nonlinearity().enable_nchw2nchw32();
  1442. unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
  1443. }
  1444. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1445. ASSERT_EQ(3u, nr_dimshuffle);
  1446. graph->compile({{y_opt, {}}})
  1447. ->to_json()
  1448. ->writeto_fpath(
  1449. output_file("TestGoptInference.EnableTensorCorePass.json"));
  1450. HostTensorND host_y, host_y_opt;
  1451. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1452. make_callback_copy(y_opt, host_y_opt)});
  1453. func->execute();
  1454. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1455. }
  1456. TEST(FuseConvBiasZPass, BlockFuse) {
  1457. REQUIRE_GPU(1);
  1458. auto cn = CompNode::load("gpu0");
  1459. cn.activate();
  1460. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1461. auto sm_ver = prop.major * 10 + prop.minor;
  1462. if (sm_ver < 61) {
  1463. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1464. "expected: %d)\n",
  1465. sm_ver, 61);
  1466. return;
  1467. }
  1468. HostTensorGenerator<dtype::Int8> gen;
  1469. auto graph = ComputingGraph::make();
  1470. graph->options().graph_opt_level = 0;
  1471. auto mkvar = [&](const char* name, const TensorShape& shp,
  1472. const DType& dtype) {
  1473. return opr::TypeCvt::make(
  1474. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1475. dtype);
  1476. };
  1477. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1478. const DType& dtype) {
  1479. return opr::TypeCvt::make(
  1480. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1481. .rename(name),
  1482. dtype);
  1483. };
  1484. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1485. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1486. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1487. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1488. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1489. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1490. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  1491. opr::ConvBias::Param param;
  1492. param.format = opr::Convolution::Param::Format::NCHW4;
  1493. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1494. param.stride_h = param.stride_w = 1;
  1495. param.pad_h = param.pad_w = 1;
  1496. auto y1 = opr::ConvBias::make(x, w1, b1, param, {},
  1497. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1498. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  1499. auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
  1500. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1501. y3 = opr::ElemwiseMultiType::make(
  1502. {y1, y2},
  1503. {opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU},
  1504. OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  1505. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1506. auto y4 = opr::ConvBias::make(y3, w3, b3, param, {},
  1507. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1508. z = opr::ElemwiseMultiType::make(
  1509. {y3, y4},
  1510. {opr::ElemwiseMultiType::Param::Mode::QADD},
  1511. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1512. z = opr::TypeCvt::make(z, dtype::Float32());
  1513. //! fuse z mannually
  1514. auto z0 = opr::ConvBias::make(x, w1, b1, param, {},
  1515. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1516. auto z1 = opr::ConvBias::make(z0, w2, b2, z0, param, {},
  1517. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  1518. z2 = opr::ConvBias::make(z1, w3, b3, param, {},
  1519. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1520. z4 = opr::ElemwiseMultiType::make(
  1521. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  1522. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1523. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  1524. SymbolVar z_fuse;
  1525. SymbolVar z_nonfuse;
  1526. {
  1527. auto options = gopt::OptimizeForInferenceOptions{};
  1528. options.enable_fuse_conv_bias_nonlinearity()
  1529. .enable_fuse_conv_bias_with_z();
  1530. unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
  1531. }
  1532. {
  1533. auto options = gopt::OptimizeForInferenceOptions{};
  1534. options.enable_fuse_conv_bias_nonlinearity();
  1535. unpack_vector(gopt::optimize_for_inference({z4}, options), z_nonfuse);
  1536. }
  1537. auto nr_elem_multi_type = find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  1538. MGB_MARK_USED_VAR(nr_elem_multi_type);
  1539. ASSERT_EQ(1u, nr_elem_multi_type);
  1540. graph->compile({{z_fuse, {}}})
  1541. ->to_json()
  1542. ->writeto_fpath(
  1543. output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  1544. graph->compile({{z_nonfuse, {}}})
  1545. ->to_json()
  1546. ->writeto_fpath(
  1547. output_file("FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  1548. HostTensorND host_z_fuse, host_z_nonfuse;
  1549. auto func = graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
  1550. make_callback_copy(z_fuse, host_z_fuse)});
  1551. func->execute();
  1552. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  1553. }
  1554. TEST(TestEnableTensorCore, ShuffleMerge) {
  1555. REQUIRE_GPU(1);
  1556. auto cn = CompNode::load("gpu0");
  1557. cn.activate();
  1558. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1559. auto sm_ver = prop.major * 10 + prop.minor;
  1560. if (sm_ver < 75) {
  1561. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1562. "expected: %d)\n",
  1563. sm_ver, 75);
  1564. return;
  1565. }
  1566. HostTensorGenerator<dtype::Int8> gen;
  1567. auto graph = ComputingGraph::make();
  1568. graph->options().graph_opt_level = 0;
  1569. auto mkvar = [&](const char* name, const TensorShape& shp,
  1570. const DType& dtype) {
  1571. return opr::TypeCvt::make(
  1572. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1573. dtype);
  1574. };
  1575. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1576. const DType& dtype) {
  1577. return opr::TypeCvt::make(
  1578. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1579. .rename(name),
  1580. dtype);
  1581. };
  1582. auto nchw2nchw4 = [](SymbolVar x) {
  1583. auto xshp = opr::GetVarShape::make(x);
  1584. auto cv = [&x](int v) { return x.make_scalar(v); };
  1585. auto sub = [&xshp, &cv](int idx) {
  1586. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1587. };
  1588. auto tshp = opr::Concat::make(
  1589. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1590. auto y0 = opr::Reshape::make(x, tshp);
  1591. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1592. return y1;
  1593. };
  1594. auto nchw42nchw = [](SymbolVar x) {
  1595. auto xshp = opr::GetVarShape::make(x);
  1596. auto cv = [&x](int v) { return x.make_scalar(v); };
  1597. auto sub = [&xshp, &cv](int idx) {
  1598. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1599. };
  1600. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1601. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1602. auto y1 = opr::Reshape::make(y0, tshp);
  1603. return y1;
  1604. };
  1605. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  1606. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  1607. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  1608. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  1609. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z= nchw2nchw4(z);
  1610. opr::ConvBias::Param param;
  1611. param.format = opr::ConvBias::Param::Format::NCHW4;
  1612. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1613. param.stride_h = param.stride_w = 1;
  1614. param.pad_h = param.pad_w = 1;
  1615. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1616. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1617. y = nchw42nchw(y);
  1618. y = opr::TypeCvt::make(y, dtype::Float32());
  1619. SymbolVar y_opt;
  1620. SymbolVar y_no_tc;
  1621. {
  1622. auto options = gopt::OptimizeForInferenceOptions{};
  1623. options.enable_fuse_conv_bias_nonlinearity().enable_nchw2nchw32();
  1624. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1625. }
  1626. {
  1627. auto options = gopt::OptimizeForInferenceOptions{};
  1628. options.enable_fuse_conv_bias_nonlinearity();
  1629. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1630. }
  1631. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1632. ASSERT_EQ(3u, nr_dimshuffle);
  1633. HostTensorND host_y, host_y_opt;
  1634. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1635. make_callback_copy(y_opt, host_y_opt)});
  1636. func->execute();
  1637. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1638. }
  1639. #endif
  1640. TEST(FuseConvBiasZPass, Basic) {
  1641. REQUIRE_GPU(1);
  1642. auto cn = CompNode::load("gpu0");
  1643. HostTensorGenerator<dtype::Int8> gen;
  1644. auto graph = ComputingGraph::make();
  1645. graph->options().graph_opt_level = 0;
  1646. auto mkvar = [&](const char* name, const TensorShape& shp,
  1647. const DType& dtype) {
  1648. return opr::TypeCvt::make(
  1649. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1650. dtype);
  1651. };
  1652. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1653. const DType& dtype) {
  1654. return opr::TypeCvt::make(
  1655. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1656. .rename(name),
  1657. dtype);
  1658. };
  1659. auto format = opr::Convolution::Param::Format::NCHW4;
  1660. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1661. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1662. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1663. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1664. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1665. opr::ConvBias::Param conv_bias_param;
  1666. conv_bias_param.format = format;
  1667. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  1668. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  1669. auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
  1670. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1671. SymbolVar y_opt;
  1672. // check fuse mode
  1673. for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
  1674. opr::ElemwiseMultiType::Param::Mode::QMUL,
  1675. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  1676. auto y1 = opr::ElemwiseMultiType::make(
  1677. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1678. {
  1679. auto options = gopt::OptimizeForInferenceOptions{};
  1680. options.enable_fuse_conv_bias_nonlinearity()
  1681. .enable_fuse_conv_bias_with_z()
  1682. .enable_nchw2nchw32();
  1683. unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
  1684. }
  1685. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1686. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  1687. ASSERT_NE(0u, nr_elemwisemultitype);
  1688. } else
  1689. ASSERT_EQ(0u, nr_elemwisemultitype);
  1690. // fuse convbiasz and z
  1691. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  1692. auto y2 = opr::ElemwiseMultiType::make(
  1693. {y1, b2}, {mode},
  1694. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1695. {
  1696. auto options = gopt::OptimizeForInferenceOptions{};
  1697. options.enable_fuse_conv_bias_nonlinearity()
  1698. .enable_fuse_conv_bias_with_z()
  1699. .enable_nchw2nchw32();
  1700. unpack_vector(gopt::optimize_for_inference({y2}, options),
  1701. y_opt);
  1702. }
  1703. auto nr_elemwisemultitype =
  1704. find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1705. ASSERT_NE(0u, nr_elemwisemultitype);
  1706. }
  1707. }
  1708. }
  1709. #if MGB_CUDA
  1710. TEST(TestGoptInference, EnableCHWN4) {
  1711. REQUIRE_GPU(1);
  1712. auto cn = CompNode::load("gpu0");
  1713. cn.activate();
  1714. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1715. auto sm_ver = prop.major * 10 + prop.minor;
  1716. if (sm_ver < 61) {
  1717. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1718. "expected: %d)\n",
  1719. sm_ver, 61);
  1720. return;
  1721. }
  1722. HostTensorGenerator<dtype::Int8> gen;
  1723. auto graph = ComputingGraph::make();
  1724. graph->options().graph_opt_level = 0;
  1725. auto mkvar = [&](const char* name, const TensorShape& shp,
  1726. const DType& dtype) {
  1727. return opr::TypeCvt::make(
  1728. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1729. dtype);
  1730. };
  1731. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1732. const DType& dtype) {
  1733. return opr::TypeCvt::make(
  1734. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1735. .rename(name),
  1736. dtype);
  1737. };
  1738. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1739. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1740. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1741. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1742. opr::ConvBias::Param param;
  1743. param.format = opr::ConvBias::Param::Format::NCHW4;
  1744. param.stride_h = param.stride_w = 1;
  1745. param.pad_h = param.pad_w = 1;
  1746. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1747. auto y = opr::ConvBiasForward::make(
  1748. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1749. auto y1 = opr::ElemwiseMultiType::make(
  1750. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  1751. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1752. auto y2 = opr::ConvBiasForward::make(
  1753. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1754. auto y3 = opr::ElemwiseMultiType::make(
  1755. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  1756. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1757. auto y4 = opr::ElemwiseMultiType::make(
  1758. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1759. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1760. y4 = opr::ElemwiseMultiType::make(
  1761. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1762. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1763. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1764. SymbolVar y_opt;
  1765. SymbolVar y_cudnn;
  1766. unpack_vector(
  1767. gopt::GraphOptimizer{}
  1768. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1769. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1770. .add_pass<gopt::FuseConvBiasZPass>()
  1771. .apply({{y4}})
  1772. .endpoint_vars(),
  1773. y_opt);
  1774. unpack_vector(gopt::GraphOptimizer{}
  1775. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1776. .add_pass<gopt::FuseConvBiasZPass>()
  1777. .apply({{y4}})
  1778. .endpoint_vars(),
  1779. y_cudnn);
  1780. HostTensorND host_y, host_y_opt;
  1781. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1782. make_callback_copy(y_opt, host_y_opt)});
  1783. func->execute();
  1784. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1785. }
  1786. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  1787. REQUIRE_GPU(1);
  1788. auto cn = CompNode::load("gpu0");
  1789. cn.activate();
  1790. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1791. auto sm_ver = prop.major * 10 + prop.minor;
  1792. if (sm_ver < 61) {
  1793. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1794. "expected: %d)\n",
  1795. sm_ver, 61);
  1796. return;
  1797. }
  1798. HostTensorGenerator<dtype::Int8> gen;
  1799. auto graph = ComputingGraph::make();
  1800. graph->options().graph_opt_level = 0;
  1801. auto mkvar = [&](const char* name, const TensorShape& shp,
  1802. const DType& dtype) {
  1803. return opr::TypeCvt::make(
  1804. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1805. dtype);
  1806. };
  1807. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1808. const DType& dtype) {
  1809. return opr::TypeCvt::make(
  1810. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1811. .rename(name),
  1812. dtype);
  1813. };
  1814. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  1815. cn, TensorShape{32, 3, 3}, dtype::Float32());
  1816. warp_perspective_mat_gen(*mat, 32, 16, 16);
  1817. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  1818. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1819. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1820. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1821. opr::ConvBias::Param param;
  1822. param.format = opr::ConvBias::Param::Format::NCHW4;
  1823. param.stride_h = param.stride_w = 1;
  1824. param.pad_h = param.pad_w = 1;
  1825. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1826. auto y = opr::ConvBiasForward::make(
  1827. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1828. opr::WarpPerspective::Param warp_param;
  1829. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  1830. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
  1831. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  1832. auto nchw42nchw = [](SymbolVar x) {
  1833. auto xshp = opr::GetVarShape::make(x);
  1834. auto cv = [&x](int v) { return x.make_scalar(v); };
  1835. auto sub = [&xshp, &cv](int idx) {
  1836. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1837. };
  1838. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1839. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1840. auto y1 = opr::Reshape::make(y0, tshp);
  1841. return y1;
  1842. };
  1843. y1 = nchw42nchw(y1);
  1844. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  1845. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
  1846. SymbolVar y_opt;
  1847. SymbolVar y_cudnn;
  1848. unpack_vector(gopt::GraphOptimizer{}
  1849. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1850. .add_pass<gopt::FuseConvBiasZPass>()
  1851. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1852. .apply({{y2}})
  1853. .endpoint_vars(),
  1854. y_opt);
  1855. unpack_vector(gopt::GraphOptimizer{}
  1856. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1857. .add_pass<gopt::FuseConvBiasZPass>()
  1858. .apply({{y2}})
  1859. .endpoint_vars(),
  1860. y_cudnn);
  1861. HostTensorND host_y, host_y_opt;
  1862. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1863. make_callback_copy(y_opt, host_y_opt)});
  1864. func->execute();
  1865. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1866. }
  1867. TEST(TestGoptInference, EnableCHWN4Pooling) {
  1868. REQUIRE_GPU(1);
  1869. auto cn = CompNode::load("gpu0");
  1870. cn.activate();
  1871. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1872. auto sm_ver = prop.major * 10 + prop.minor;
  1873. if (sm_ver < 61) {
  1874. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1875. "expected: %d)\n",
  1876. sm_ver, 61);
  1877. return;
  1878. }
  1879. HostTensorGenerator<dtype::Int8> gen;
  1880. auto graph = ComputingGraph::make();
  1881. graph->options().graph_opt_level = 0;
  1882. auto mkvar = [&](const char* name, const TensorShape& shp,
  1883. const DType& dtype) {
  1884. return opr::TypeCvt::make(
  1885. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1886. dtype);
  1887. };
  1888. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1889. const DType& dtype) {
  1890. return opr::TypeCvt::make(
  1891. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1892. .rename(name),
  1893. dtype);
  1894. };
  1895. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1896. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1897. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1898. opr::ConvBias::Param param;
  1899. param.format = opr::ConvBias::Param::Format::NCHW4;
  1900. param.stride_h = param.stride_w = 1;
  1901. param.pad_h = param.pad_w = 1;
  1902. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1903. auto y = opr::ConvBiasForward::make(
  1904. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1905. opr::Pooling::Param pool_param;
  1906. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  1907. y = opr::Pooling::make(y, pool_param);
  1908. y = opr::TypeCvt::make(y, dtype::Float32());
  1909. auto nchw42nchw = [](SymbolVar x) {
  1910. auto xshp = opr::GetVarShape::make(x);
  1911. auto cv = [&x](int v) { return x.make_scalar(v); };
  1912. auto sub = [&xshp, &cv](int idx) {
  1913. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1914. };
  1915. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1916. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1917. auto y1 = opr::Reshape::make(y0, tshp);
  1918. return y1;
  1919. };
  1920. y = nchw42nchw(y);
  1921. pool_param.format = opr::Pooling::Param::Format::NCHW;
  1922. auto y1 = opr::Pooling::make(y, pool_param);
  1923. SymbolVar y_opt;
  1924. SymbolVar y_cudnn;
  1925. unpack_vector(
  1926. gopt::GraphOptimizer{}
  1927. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1928. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1929. .add_pass<gopt::FuseConvBiasZPass>()
  1930. .apply({{y1}})
  1931. .endpoint_vars(),
  1932. y_opt);
  1933. unpack_vector(gopt::GraphOptimizer{}
  1934. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1935. .add_pass<gopt::FuseConvBiasZPass>()
  1936. .apply({{y1}})
  1937. .endpoint_vars(),
  1938. y_cudnn);
  1939. HostTensorND host_y, host_y_opt;
  1940. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1941. make_callback_copy(y_opt, host_y_opt)});
  1942. func->execute();
  1943. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1944. }
  1945. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  1946. REQUIRE_GPU(1);
  1947. auto cn = CompNode::load("gpu0");
  1948. cn.activate();
  1949. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1950. auto sm_ver = prop.major * 10 + prop.minor;
  1951. if (sm_ver < 61) {
  1952. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1953. "expected: %d)\n",
  1954. sm_ver, 61);
  1955. return;
  1956. }
  1957. HostTensorGenerator<dtype::Int8> gen;
  1958. auto graph = ComputingGraph::make();
  1959. graph->options().graph_opt_level = 0;
  1960. auto mkvar = [&](const char* name, const TensorShape& shp,
  1961. const DType& dtype) {
  1962. return opr::TypeCvt::make(
  1963. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1964. dtype);
  1965. };
  1966. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1967. const DType& dtype) {
  1968. return opr::TypeCvt::make(
  1969. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1970. .rename(name),
  1971. dtype);
  1972. };
  1973. auto nchw2nchw4 = [](SymbolVar x) {
  1974. auto xshp = opr::GetVarShape::make(x);
  1975. auto cv = [&x](int v) { return x.make_scalar(v); };
  1976. auto sub = [&xshp, &cv](int idx) {
  1977. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1978. };
  1979. auto tshp = opr::Concat::make(
  1980. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1981. auto y0 = opr::Reshape::make(x, tshp);
  1982. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1983. return y1;
  1984. };
  1985. auto nchw42nchw = [](SymbolVar x) {
  1986. auto xshp = opr::GetVarShape::make(x);
  1987. auto cv = [&x](int v) { return x.make_scalar(v); };
  1988. auto sub = [&xshp, &cv](int idx) {
  1989. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1990. };
  1991. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1992. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1993. auto y1 = opr::Reshape::make(y0, tshp);
  1994. return y1;
  1995. };
  1996. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  1997. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1998. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1999. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2000. x = nchw2nchw4(x);
  2001. opr::ConvBias::Param param;
  2002. param.format = opr::ConvBias::Param::Format::NCHW4;
  2003. param.stride_h = param.stride_w = 1;
  2004. param.pad_h = param.pad_w = 1;
  2005. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2006. auto y = opr::ConvBiasForward::make(
  2007. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2008. auto y1 = opr::ElemwiseMultiType::make(
  2009. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2010. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2011. auto y2 = opr::ConvBiasForward::make(
  2012. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2013. auto y3 = opr::ElemwiseMultiType::make(
  2014. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2015. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2016. auto y4 = opr::ElemwiseMultiType::make(
  2017. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2018. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2019. y4 = opr::ElemwiseMultiType::make(
  2020. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2021. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2022. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2023. y4 = nchw42nchw(y4);
  2024. SymbolVar y_opt;
  2025. SymbolVar y_cudnn;
  2026. unpack_vector(
  2027. gopt::GraphOptimizer{}
  2028. .add_pass<gopt::ParamRedistributePass>()
  2029. .add_pass<gopt::ParamFusePass>()
  2030. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2031. .add_pass<gopt::FuseConvBiasZPass>()
  2032. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2033. .add_pass<gopt::ShuffleShuffleRemovePass>()
  2034. .add_pass<gopt::ParamFusePass>()
  2035. .apply({{y4}})
  2036. .endpoint_vars(),
  2037. y_opt);
  2038. graph->compile({{y_opt, {}}})
  2039. ->to_json()
  2040. ->writeto_fpath(output_file(
  2041. "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  2042. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2043. ASSERT_EQ(2u, nr_dimshuffle);
  2044. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  2045. ASSERT_EQ(0u, nr_reformat);
  2046. unpack_vector(gopt::GraphOptimizer{}
  2047. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2048. .add_pass<gopt::FuseConvBiasZPass>()
  2049. .apply({{y4}})
  2050. .endpoint_vars(),
  2051. y_cudnn);
  2052. HostTensorND host_y, host_y_opt;
  2053. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2054. make_callback_copy(y_opt, host_y_opt)});
  2055. func->execute();
  2056. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2057. }
  2058. #endif
  2059. TEST(TestGoptInference, ConvertFormatNCHW88) {
  2060. HostTensorGenerator<> gen;
  2061. auto cn = CompNode::load("cpu0");
  2062. auto graph = ComputingGraph::make();
  2063. graph->options().graph_opt_level = 0;
  2064. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2065. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2066. };
  2067. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2068. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2069. .rename(name);
  2070. };
  2071. auto host_x = gen({2, 3, 16, 16}, cn);
  2072. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2073. //!Hybrid nchw88 mode
  2074. opr::Convolution::Param param_conv;
  2075. param_conv.pad_h = param_conv.pad_w = 1;
  2076. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2077. conv1 = opr::Convolution::make(x, w1, param_conv);
  2078. //!channel wise
  2079. opr::ConvBias::Param param_conv_bias;
  2080. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2081. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2082. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2083. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2084. //! group
  2085. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2086. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2087. auto shape_of = opr::GetVarShape::make(conv3);
  2088. auto subtensor = opr::Subtensor::make(
  2089. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2090. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2091. opr::Resize::Param param_resize;
  2092. param_resize.format = opr::Resize::Param::Format::NCHW;
  2093. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2094. auto mat = mkcvar("mat", {2, 3, 3}),
  2095. warp = opr::WarpPerspectiveForward::make(
  2096. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2097. auto b = mkvar("b", {1, 8, 1, 1}),
  2098. elem = opr::Elemwise::make({warp + b},
  2099. opr::Elemwise::Param::Mode::RELU);
  2100. //! Dense
  2101. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2102. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  2103. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2104. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2105. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  2106. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2107. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  2108. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2109. SymbolVar y_opt;
  2110. {
  2111. auto options = gopt::OptimizeForInferenceOptions{};
  2112. options.enable_nchw2nchw88();
  2113. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2114. }
  2115. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  2116. find_opr<opr::ConvBias>(y_opt).param().format);
  2117. graph->compile({{y_opt, {}}})
  2118. ->to_json()
  2119. ->writeto_fpath(
  2120. output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  2121. HostTensorND host_y_opt, host_y;
  2122. auto func = graph->compile({make_callback_copy(y, host_y),
  2123. make_callback_copy(y_opt, host_y_opt)});
  2124. func->execute();
  2125. //! meybe go to winograd in x86-32, so set error 1e-1
  2126. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2127. *host_x = *gen({2, 3, 32, 32}, cn);
  2128. func->execute();
  2129. //! meybe go to winograd in x86-32, so set error 1e-1
  2130. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2131. }
  2132. TEST(TestGoptInference, ConvertFormatNCHW44) {
  2133. HostTensorGenerator<> gen;
  2134. auto cn = CompNode::load("cpu0");
  2135. auto graph = ComputingGraph::make();
  2136. graph->options().graph_opt_level = 0;
  2137. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2138. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2139. };
  2140. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2141. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2142. .rename(name);
  2143. };
  2144. auto host_x = gen({2, 3, 16, 16}, cn);
  2145. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2146. //!Hybrid nchw88 mode
  2147. opr::Convolution::Param param_conv;
  2148. param_conv.pad_h = param_conv.pad_w = 1;
  2149. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2150. conv1 = opr::Convolution::make(x, w1, param_conv);
  2151. //!channel wise
  2152. opr::ConvBias::Param param_conv_bias;
  2153. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2154. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2155. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2156. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2157. //! group
  2158. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2159. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2160. auto shape_of = opr::GetVarShape::make(conv3);
  2161. auto subtensor = opr::Subtensor::make(
  2162. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2163. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2164. opr::Resize::Param param_resize;
  2165. param_resize.format = opr::Resize::Param::Format::NCHW;
  2166. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2167. auto mat = mkcvar("mat", {2, 3, 3}),
  2168. warp = opr::WarpPerspectiveForward::make(
  2169. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2170. auto b = mkvar("b", {1, 8, 1, 1}),
  2171. elem = opr::Elemwise::make({warp + b},
  2172. opr::Elemwise::Param::Mode::RELU);
  2173. //! Dense
  2174. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2175. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2176. auto w4 = mkcvar("w4", {4, 8, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  2177. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2178. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  2179. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2180. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  2181. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2182. SymbolVar y_opt;
  2183. auto options = gopt::OptimizeForInferenceOptions{};
  2184. options.enable_nchw2nchw44();
  2185. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2186. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW44,
  2187. find_opr<opr::ConvBias>(y_opt).param().format);
  2188. graph->compile({{y_opt, {}}})
  2189. ->to_json()
  2190. ->writeto_fpath(
  2191. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  2192. HostTensorND host_y_opt, host_y;
  2193. auto func = graph->compile({make_callback_copy(y, host_y),
  2194. make_callback_copy(y_opt, host_y_opt)});
  2195. func->execute();
  2196. //! meybe go to winograd in x86-32, so set error 1e-1
  2197. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2198. *host_x = *gen({2, 3, 32, 32}, cn);
  2199. func->execute();
  2200. //! meybe go to winograd in x86-32, so set error 1e-1
  2201. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2202. }
  2203. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台