- # Load and Run
-
- Load a model and run, for testing/debugging/profiling.
-
- ## Build
-
- <!--
- -->
-
- ### Build with cmake
-
- Build MegEngine from source following [README.md](../../README.md). It will also produce the executable, `load_and_run`, which loads a model and runs the test cases attached to the model.
-
-
- <!--
- -->
-
- ## Dump Model with Test Cases Using [dump_with_testcase_mge.py](dump_with_testcase_mge.py)
-
- ### Step 1
-
- Dump the model by calling the python API `megengine.jit.trace.dump()`.
-
- ### Step 2
-
- Append the test cases to the dumped model using [dump_with_testcase_mge.py](dump_with_testcase_mge.py).
-
- The basic usage of [dump_with_testcase_mge.py](dump_with_testcase_mge.py) is
-
- ```
- python3 dump_with_testcase_mge.py model -d input_description -o model_with_testcases
-
- ```
-
- where `model` is the file dumped at step 1, `input_description` describes the input data of the test cases, and `model_with_testcases` is the saved model with test cases.
-
- `input_description` can be provided in the following ways:
-
- 1. In the format `var0:file0;var1:file1...` meaning that `var0` should use
- image file `file0`, `var1` should use image `file1` and so on. If there
- is only one input var, the var name can be omitted. This can be combined
- with `--resize-input` option.
- 2. In the format `var0:#rand(min, max, shape...);var1:#rand(min, max)...`
- meaning to fill the corresponding input vars with uniform random numbers
- in the range `[min, max)`, optionally overriding its shape.
-
- For more usages, run
-
- ```
- python3 dump_with_testcase_mge.py --help
- ```
-
- ### Example
-
- 1. Obtain the model file by running [xornet.py](../xor-deploy/xornet.py).
-
- 2. Dump the file with test cases attached to the model.
-
- ```
- python3 dump_with_testcase_mge.py xornet_deploy.mge -o xornet.mge -d "#rand(0.1, 0.8, 4, 2)"
- ```
-
- 3. Verify the correctness by running `load_and_run` at the target platform.
-
- ```
- load_and_run xornet.mge
- ```
|