You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensor.py 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import os
  10. import platform
  11. import numpy as np
  12. import pytest
  13. from utils import get_var_value, make_tensor, opr_test
  14. import megengine.functional as F
  15. from megengine import tensor
  16. from megengine.core._trace_option import use_symbolic_shape
  17. from megengine.core.tensor import megbrain_graph as G
  18. from megengine.core.tensor.utils import astensor1d
  19. from megengine.jit import trace
  20. from megengine.utils.network import Network, set_symbolic_shape
  21. from megengine.utils.network_node import VarNode
  22. def test_eye():
  23. dtype = np.float32
  24. cases = [{"input": [10, 20]}, {"input": [30]}]
  25. for case in cases:
  26. np.testing.assert_allclose(
  27. F.eye(case["input"], dtype=dtype).numpy(),
  28. np.eye(*case["input"]).astype(dtype),
  29. )
  30. np.testing.assert_allclose(
  31. F.eye(*case["input"], dtype=dtype).numpy(),
  32. np.eye(*case["input"]).astype(dtype),
  33. )
  34. np.testing.assert_allclose(
  35. F.eye(tensor(case["input"]), dtype=dtype).numpy(),
  36. np.eye(*case["input"]).astype(dtype),
  37. )
  38. @pytest.mark.parametrize("is_varnode", [True, False])
  39. def test_concat(is_varnode):
  40. if is_varnode:
  41. network = Network()
  42. else:
  43. network = None
  44. def get_data_shape(length: int):
  45. return (length, 2, 3)
  46. data1 = np.random.random(get_data_shape(5)).astype("float32")
  47. data2 = np.random.random(get_data_shape(6)).astype("float32")
  48. data3 = np.random.random(get_data_shape(7)).astype("float32")
  49. def run(data1, data2):
  50. return F.concat([data1, data2])
  51. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  52. opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
  53. @pytest.mark.parametrize("is_varnode", [True, False])
  54. def test_condtake(is_varnode):
  55. if is_varnode:
  56. network = Network()
  57. else:
  58. network = None
  59. x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
  60. y = np.array([[True, False, True], [False, True, True]])
  61. xx = make_tensor(x, network)
  62. yy = make_tensor(y, network)
  63. val, idx = F.cond_take(yy, xx)
  64. if is_varnode:
  65. np.testing.assert_equal(get_var_value(val), x[y])
  66. np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
  67. else:
  68. np.testing.assert_equal(val.numpy(), x[y])
  69. np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
  70. @pytest.mark.parametrize("is_varnode", [True, False])
  71. def test_concat_device(is_varnode):
  72. if is_varnode:
  73. network = Network()
  74. else:
  75. network = None
  76. data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
  77. data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
  78. out = F.concat([data1, data2], device="cpu0")
  79. assert str(out.device).split(":")[0] == "cpu0"
  80. @pytest.mark.parametrize("is_varnode", [True, False])
  81. def test_stack(is_varnode):
  82. if is_varnode:
  83. network = Network()
  84. else:
  85. network = None
  86. data1 = np.random.random((3, 2, 2)).astype("float32")
  87. data2 = np.random.random((3, 2, 2)).astype("float32")
  88. data3 = np.random.random((3, 2, 2)).astype("float32")
  89. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  90. for ai in range(3):
  91. def run(data1, data2):
  92. return F.stack([data1, data2], axis=ai)
  93. opr_test(
  94. cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
  95. )
  96. @pytest.mark.parametrize("is_varnode", [True, False])
  97. def test_split(is_varnode):
  98. if is_varnode:
  99. network = Network()
  100. saved_symbolic_shape = set_symbolic_shape(False)
  101. else:
  102. network = None
  103. data = np.random.random((2, 3, 4, 5)).astype(np.float32)
  104. inp = make_tensor(data, network)
  105. mge_out0 = F.split(inp, 2, axis=3)
  106. mge_out1 = F.split(inp, [3], axis=3)
  107. np_out = np.split(data, [3, 5], axis=3)
  108. assert len(mge_out0) == 2
  109. assert len(mge_out1) == 2
  110. np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
  111. np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])
  112. np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
  113. np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])
  114. try:
  115. F.split(inp, 4)
  116. assert False
  117. except ValueError as e:
  118. pass
  119. try:
  120. F.split(inp, [3, 3, 5], axis=3)
  121. assert False
  122. except ValueError as e:
  123. assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]"
  124. if is_varnode:
  125. set_symbolic_shape(saved_symbolic_shape)
  126. @pytest.mark.parametrize("is_varnode", [True, False])
  127. def test_reshape(is_varnode):
  128. if is_varnode:
  129. network = Network()
  130. else:
  131. network = None
  132. x = np.arange(6, dtype="float32")
  133. xx = make_tensor(x, network)
  134. y = x.reshape(1, 2, 3)
  135. for shape in [
  136. (1, 2, 3),
  137. (1, -1, 3),
  138. (1, make_tensor(-1, network), 3),
  139. np.array([1, -1, 3], dtype="int32"),
  140. make_tensor([1, -1, 3], network),
  141. ]:
  142. yy = F.reshape(xx, shape)
  143. np.testing.assert_equal(yy.numpy(), y)
  144. @pytest.mark.parametrize("is_trace", [True, False])
  145. def test_reshape_on_empty_tensor(is_trace):
  146. input1_shape = (100, 0, 1)
  147. output1_shape = (100, 0, 10)
  148. data1 = tensor(np.random.random(input1_shape).astype(np.float32))
  149. input2_shape = (10, 0)
  150. output2_shape = (0,)
  151. data2 = tensor(np.random.random(input2_shape).astype(np.float32))
  152. input3_shape = (10, 0, 10)
  153. output3_shape = (0, 1, 2, 3)
  154. data3 = tensor(np.random.random(input3_shape).astype(np.float32))
  155. def comp(out, target_shp):
  156. assert out._tuple_shape == target_shp
  157. def func(x, shp):
  158. return F.reshape(x, shp)
  159. cases = [
  160. [data1, output1_shape],
  161. [data2, output2_shape],
  162. [data3, output3_shape],
  163. ]
  164. def test(func, inp, comp, target_shp):
  165. out = func(inp, target_shp)
  166. comp(out, target_shp)
  167. if is_trace:
  168. for symbolic in [False, True]:
  169. for inp, target_shp in cases:
  170. func_traced = trace(symbolic=symbolic)(func)
  171. test(func_traced, inp, comp, target_shp)
  172. test(func_traced, inp, comp, target_shp)
  173. test(func_traced, inp, comp, target_shp)
  174. else:
  175. for inp, target_shp in cases:
  176. test(func, inp, comp, target_shp)
  177. @pytest.mark.parametrize("is_varnode", [True, False])
  178. def test_reshape_shape_inference(is_varnode):
  179. if is_varnode:
  180. network = Network()
  181. saved_symbolic_shape = set_symbolic_shape(False)
  182. else:
  183. network = None
  184. x_shape_known = make_tensor([1, 2, 3, 4], network)
  185. x_shape_unknown = F.broadcast_to(
  186. make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
  187. )
  188. tshp_unknown = astensor1d(
  189. (make_tensor([2], network), make_tensor([2], network)), x_shape_known
  190. )
  191. tshp_known = astensor1d((2, 2), x_shape_known)
  192. tshp_known_unspec = astensor1d((2, -1), x_shape_known)
  193. def check_shape(output, target):
  194. source = output.shape
  195. if isinstance(source, tensor):
  196. source = source.numpy()
  197. np.testing.assert_equal(source, target)
  198. def func(x, target_shape):
  199. return x.reshape(target_shape)
  200. cases = [
  201. {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
  202. {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
  203. {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
  204. {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
  205. {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
  206. {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
  207. ]
  208. opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
  209. if is_varnode:
  210. set_symbolic_shape(saved_symbolic_shape)
  211. @pytest.mark.parametrize("is_varnode", [True, False])
  212. def test_squeeze(is_varnode):
  213. if is_varnode:
  214. network = Network()
  215. saved_symbolic_shape = set_symbolic_shape(False)
  216. else:
  217. network = None
  218. x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
  219. xx = make_tensor(x, network)
  220. for axis in [None, 3, -4, (3, -4)]:
  221. y = np.squeeze(x, axis)
  222. yy = F.squeeze(xx, axis)
  223. np.testing.assert_equal(y, yy.numpy())
  224. if is_varnode:
  225. set_symbolic_shape(saved_symbolic_shape)
  226. @pytest.mark.parametrize("is_varnode", [True, False])
  227. def test_expand_dims(is_varnode):
  228. if is_varnode:
  229. network = Network()
  230. else:
  231. network = None
  232. x = np.arange(6, dtype="float32").reshape(2, 3)
  233. xx = make_tensor(x, network)
  234. for axis in [2, -3, (3, -4), (1, -4)]:
  235. y = np.expand_dims(x, axis)
  236. yy = F.expand_dims(xx, axis)
  237. np.testing.assert_equal(y, yy.numpy())
  238. def test_expand_dims_for_scalar():
  239. x = np.array(1, dtype="float32")
  240. xx = make_tensor(x, None)
  241. for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
  242. y = np.expand_dims(x, axis)
  243. yy = F.expand_dims(xx, axis)
  244. np.testing.assert_equal(y, yy.numpy())
  245. for axis in [1, -2, (1, 2), (-2, -3)]:
  246. np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
  247. np.testing.assert_raises(AssertionError, F.expand_dims, xx, axis)
  248. @pytest.mark.parametrize("is_varnode", [True, False])
  249. def test_elemwise_dtype_promotion(is_varnode):
  250. if is_varnode:
  251. network = Network()
  252. else:
  253. network = None
  254. x = np.random.rand(2, 3).astype("float32")
  255. y = np.random.rand(1, 3).astype("float16")
  256. xx = make_tensor(x, network)
  257. yy = make_tensor(y, network)
  258. z = xx * yy
  259. np.testing.assert_equal(z.numpy(), x * y)
  260. z = xx + y
  261. np.testing.assert_equal(z.numpy(), x + y)
  262. z = x - yy
  263. np.testing.assert_equal(z.numpy(), x - y)
  264. @pytest.mark.parametrize("is_varnode", [True, False])
  265. def test_linspace(is_varnode):
  266. if is_varnode:
  267. network = Network()
  268. else:
  269. network = None
  270. cases = [
  271. {"input": [1, 9, 9]},
  272. {"input": [3, 10, 8]},
  273. ]
  274. opr_test(
  275. cases,
  276. F.linspace,
  277. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  278. network=network,
  279. )
  280. cases = [
  281. {"input": [9, 1, 9]},
  282. {"input": [10, 3, 8]},
  283. ]
  284. opr_test(
  285. cases,
  286. F.linspace,
  287. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  288. network=network,
  289. )
  290. cases = [
  291. {"input": [1, make_tensor(9, network), 9]},
  292. {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
  293. ]
  294. opr_test(
  295. cases,
  296. F.linspace,
  297. ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
  298. network=network,
  299. )
  300. @pytest.mark.parametrize("is_varnode", [True, False])
  301. def test_arange(is_varnode):
  302. if is_varnode:
  303. network = Network()
  304. else:
  305. network = None
  306. cases = [
  307. {"input": [1, 9, 1]},
  308. {"input": [2, 10, 2]},
  309. ]
  310. opr_test(
  311. cases,
  312. F.arange,
  313. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  314. network=network,
  315. )
  316. cases = [
  317. {"input": [9, 1, -1]},
  318. {"input": [10, 2, -2]},
  319. ]
  320. opr_test(
  321. cases,
  322. F.arange,
  323. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  324. network=network,
  325. )
  326. cases = [
  327. {"input": [9.3, 1.2, -0.5]},
  328. {"input": [10.3, 2.1, -1.7]},
  329. ]
  330. opr_test(
  331. cases,
  332. F.arange,
  333. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  334. network=network,
  335. )
  336. @pytest.mark.parametrize("is_varnode", [True, False])
  337. def test_round(is_varnode):
  338. if is_varnode:
  339. network = Network()
  340. else:
  341. network = None
  342. data1_shape = (15,)
  343. data2_shape = (25,)
  344. data1 = np.random.random(data1_shape).astype(np.float32)
  345. data2 = np.random.random(data2_shape).astype(np.float32)
  346. cases = [{"input": data1}, {"input": data2}]
  347. opr_test(cases, F.round, ref_fn=np.round, network=network)
  348. @pytest.mark.parametrize("is_varnode", [True, False])
  349. def test_flatten(is_varnode):
  350. if is_varnode:
  351. network = Network()
  352. else:
  353. network = None
  354. data0_shape = (2, 3, 4, 5)
  355. data1_shape = (4, 5, 6, 7)
  356. data0 = np.random.random(data0_shape).astype(np.float32)
  357. data1 = np.random.random(data1_shape).astype(np.float32)
  358. def compare_fn(x, y):
  359. assert x._tuple_shape[0] == y
  360. output0 = (2 * 3 * 4 * 5,)
  361. output1 = (4 * 5 * 6 * 7,)
  362. cases = [
  363. {"input": data0, "output": output0},
  364. {"input": data1, "output": output1},
  365. ]
  366. opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
  367. output0 = (2, 3 * 4 * 5)
  368. output1 = (4, 5 * 6 * 7)
  369. cases = [
  370. {"input": data0, "output": output0},
  371. {"input": data1, "output": output1},
  372. ]
  373. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
  374. output0 = (2, 3, 4 * 5)
  375. output1 = (4, 5, 6 * 7)
  376. cases = [
  377. {"input": data0, "output": output0},
  378. {"input": data1, "output": output1},
  379. ]
  380. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
  381. output0 = (2, 3 * 4, 5)
  382. output1 = (4, 5 * 6, 7)
  383. cases = [
  384. {"input": data0, "output": output0},
  385. {"input": data1, "output": output1},
  386. ]
  387. opr_test(
  388. cases,
  389. F.flatten,
  390. compare_fn=compare_fn,
  391. start_axis=1,
  392. end_axis=2,
  393. network=network,
  394. )
  395. @pytest.mark.parametrize("is_varnode", [True, False])
  396. def test_broadcast(is_varnode):
  397. if is_varnode:
  398. network = Network()
  399. else:
  400. network = None
  401. input1_shape = (20, 30)
  402. output1_shape = (30, 20, 30)
  403. data1 = np.random.random(input1_shape).astype(np.float32)
  404. input2_shape = (10, 1)
  405. output2_shape = (20, 10, 20)
  406. data2 = np.random.random(input2_shape).astype(np.float32)
  407. input3_shape = (10, 10)
  408. output3_shape = (10, 10)
  409. data3 = np.random.random(input3_shape).astype(np.float32)
  410. def compare_fn(x, y):
  411. assert x._tuple_shape[0] == y
  412. cases = [
  413. {"input": [data1, output1_shape], "output": output1_shape},
  414. {"input": [data2, output2_shape], "output": output2_shape},
  415. {"input": [data3, output3_shape], "output": output3_shape},
  416. ]
  417. opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
  418. x = F.ones((2, 1, 3))
  419. with pytest.raises(RuntimeError):
  420. F.broadcast_to(x, (2, 3, 4))
  421. with pytest.raises(RuntimeError):
  422. F.broadcast_to(x, (4, 1, 3))
  423. with pytest.raises(RuntimeError):
  424. F.broadcast_to(x, (1, 3))
  425. @pytest.mark.parametrize("is_trace", [True, False])
  426. def test_broadcast_on_empty_tensor(is_trace):
  427. input1_shape = (100, 0, 1)
  428. output1_shape = (100, 0, 10)
  429. data1 = tensor(np.random.random(input1_shape).astype(np.float32))
  430. input2_shape = (10, 0)
  431. output2_shape = (10, 10, 0)
  432. data2 = tensor(np.random.random(input2_shape).astype(np.float32))
  433. input3_shape = (0, 0, 1, 10)
  434. output3_shape = (10, 0, 0, 10, 10)
  435. data3 = tensor(np.random.random(input3_shape).astype(np.float32))
  436. def comp(out, target_shp):
  437. assert out._tuple_shape == target_shp
  438. def func(x, shp):
  439. return F.broadcast_to(x, shp)
  440. cases = [
  441. [data1, output1_shape],
  442. [data2, output2_shape],
  443. [data3, output3_shape],
  444. ]
  445. def test(func, inp, comp, target_shp):
  446. out = func(inp, target_shp)
  447. comp(out, target_shp)
  448. if is_trace:
  449. for symbolic in [False, True]:
  450. for inp, target_shp in cases:
  451. func_traced = trace(symbolic=symbolic)(func)
  452. test(func_traced, inp, comp, target_shp)
  453. test(func_traced, inp, comp, target_shp)
  454. test(func_traced, inp, comp, target_shp)
  455. else:
  456. for inp, target_shp in cases:
  457. test(func, inp, comp, target_shp)
  458. @pytest.mark.parametrize("is_varnode", [True, False])
  459. def test_utils_astensor1d(is_varnode):
  460. if is_varnode:
  461. network = Network()
  462. else:
  463. network = None
  464. reference = make_tensor(0, network)
  465. # literal
  466. x = [1, 2, 3]
  467. for dtype in [None, "float32"]:
  468. xx = astensor1d(x, reference, dtype=dtype)
  469. assert isinstance(xx, type(reference))
  470. np.testing.assert_equal(xx.numpy(), x)
  471. # numpy array
  472. x = np.asarray([1, 2, 3], dtype="int32")
  473. for dtype in [None, "float32"]:
  474. xx = astensor1d(x, reference, dtype=dtype)
  475. assert isinstance(xx, type(reference))
  476. np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)
  477. # tensor
  478. x = make_tensor([1, 2, 3], network)
  479. for dtype in [None, "float32"]:
  480. xx = astensor1d(x, reference, dtype=dtype)
  481. assert isinstance(xx, type(reference))
  482. np.testing.assert_equal(xx.numpy(), x.numpy())
  483. # mixed
  484. x = [1, make_tensor(2, network), 3]
  485. for dtype in [None, "float32"]:
  486. xx = astensor1d(x, reference, dtype=dtype)
  487. assert isinstance(xx, type(reference))
  488. np.testing.assert_equal(xx.numpy(), [1, 2, 3])
  489. def test_device():
  490. x = tensor([1, 2, 3], dtype="float32")
  491. y1 = F.eye(x.shape, dtype="float32")
  492. y2 = F.eye(x.shape, dtype="float32", device=None)
  493. np.testing.assert_almost_equal(y1.numpy(), y2.numpy())
  494. y3 = F.eye(x.shape, dtype="float32", device="xpux")
  495. y4 = F.eye(x.shape, dtype="float32", device=x.device)
  496. np.testing.assert_almost_equal(y3.numpy(), y4.numpy())
  497. y5 = F.full((3, 2), 4, device=x.device)
  498. y6 = F.full((3, 2), 4, device="xpux")
  499. np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
  500. @pytest.mark.parametrize("is_varnode", [True, False])
  501. def test_identity(is_varnode):
  502. if is_varnode:
  503. network = Network()
  504. else:
  505. network = None
  506. x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
  507. y = F.copy(x)
  508. np.testing.assert_equal(y.numpy(), x)
  509. def copy_test(dst, src, network):
  510. data = np.random.random((2, 3)).astype(np.float32)
  511. x = make_tensor(data, device=src, network=network)
  512. y = F.copy(x, dst)
  513. assert np.allclose(data, y.numpy())
  514. if network is None:
  515. z = x.to(dst)
  516. assert np.allclose(data, z.numpy())
  517. @pytest.mark.require_ngpu(1)
  518. @pytest.mark.parametrize("is_varnode", [True, False])
  519. def test_copy_h2d(is_varnode):
  520. if is_varnode:
  521. network = Network()
  522. else:
  523. network = None
  524. copy_test("cpu0", "gpu0", network=network)
  525. @pytest.mark.require_ngpu(1)
  526. @pytest.mark.parametrize("is_varnode", [True, False])
  527. def test_copy_d2h(is_varnode):
  528. if is_varnode:
  529. network = Network()
  530. else:
  531. network = None
  532. copy_test("gpu0", "cpu0", network=network)
  533. @pytest.mark.require_ngpu(2)
  534. @pytest.mark.parametrize("is_varnode", [True, False])
  535. def test_copy_d2d(is_varnode):
  536. if is_varnode:
  537. network = Network()
  538. else:
  539. network = None
  540. copy_test("gpu0", "gpu1", network=network)
  541. copy_test("gpu0:0", "gpu0:1", network=network)
  542. @pytest.mark.parametrize(
  543. "shape, repeats, axis",
  544. [
  545. ((2,), 2, 0),
  546. ((2, 3, 4, 5), 3, 0),
  547. ((2, 3, 4, 5), 4, 3),
  548. ((2,), 2, None),
  549. ((2, 3, 4, 5), 3, None),
  550. ((), 1, None),
  551. ((), 10, None),
  552. ],
  553. )
  554. @pytest.mark.parametrize("is_varnode", [True, False])
  555. def test_repeat(shape, repeats, axis, is_varnode):
  556. if is_varnode:
  557. network = Network()
  558. else:
  559. network = None
  560. def repeat_func(inp):
  561. return F.repeat(inp=inp, repeats=repeats, axis=axis)
  562. if shape != ():
  563. cases = [
  564. {"input": np.random.randn(*shape).astype("float32")},
  565. ]
  566. else:
  567. cases = [{"input": np.array(1.23)}]
  568. opr_test(
  569. cases,
  570. repeat_func,
  571. ref_fn=lambda inp: np.repeat(inp, repeats, axis),
  572. network=network,
  573. )
  574. @pytest.mark.parametrize(
  575. "shape, reps",
  576. [
  577. ((2,), (2,)),
  578. ((2, 3, 4, 5), (1, 1, 1, 1)),
  579. ((2, 3, 4, 5), (1, 2, 3, 4)),
  580. ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
  581. ],
  582. )
  583. @pytest.mark.parametrize("is_varnode", [True])
  584. def test_tile(shape, reps, is_varnode):
  585. if is_varnode:
  586. network = Network()
  587. else:
  588. network = None
  589. def tile_func(inp):
  590. return F.tile(inp=inp, reps=reps)
  591. cases = [{"input": np.random.randn(*shape).astype("float32")}]
  592. opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
  593. @pytest.mark.parametrize(
  594. "shape, shifts, axis",
  595. [
  596. ((2, 3), 0, None),
  597. ((2, 3), 1, 0),
  598. ((2, 3, 4, 5), (-1, 1), (0, 1)),
  599. ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
  600. ],
  601. )
  602. @pytest.mark.parametrize("is_varnode", [True, False])
  603. def test_roll(shape, shifts, axis, is_varnode):
  604. if is_varnode:
  605. network = Network()
  606. else:
  607. network = None
  608. inp = np.random.randn(*shape).astype("float32")
  609. def func(inp):
  610. return F.roll(inp, shifts, axis)
  611. cases = [
  612. {"input": inp},
  613. ]
  614. opr_test(
  615. cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
  616. )

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台