You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

record1.cpp 48 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315
  1. /**
  2. * \file test/naive/record1.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "test/naive/fixture.h"
  13. #include "megdnn/oprs.h"
  14. #include "test/common/task_record_check.h"
  15. #include "test/common/adaptive_pooling.h"
  16. #include "test/common/cond_take.h"
  17. #include "test/common/convolution3d.h"
  18. #include "test/common/local.h"
  19. #include "test/common/matrix_mul.h"
  20. #include "test/common/rng.h"
  21. #include "test/common/separable_conv.h"
  22. #include "test/common/warp_affine.h"
  23. #include "test/common/warp_perspective.h"
  24. namespace {
  25. using namespace megdnn;
  26. using namespace test;
  27. class ArgmxxRNG final : public RNG {
  28. public:
  29. void gen(const TensorND& tensor) override {
  30. auto offset = tensor.layout.span().low_elem;
  31. auto nr_elems = tensor.layout.span().dist_elem();
  32. #define cb(DType) \
  33. if (tensor.layout.dtype == DType()) { \
  34. using ctype = typename DTypeTrait<DType>::ctype; \
  35. auto ptr = tensor.ptr<ctype>(); \
  36. for (size_t i = 0; i < nr_elems; ++i) { \
  37. ptr[offset + i] = i; \
  38. } \
  39. COMPAT_RANDOM(ptr + offset, ptr + offset + nr_elems); \
  40. }
  41. MEGDNN_FOREACH_COMPUTING_DTYPE(cb);
  42. #undef cb
  43. }
  44. };
  45. template <typename Argmxx>
  46. void test_argmxx() {
  47. TaskRecordChecker<Argmxx> checker(2);
  48. checker.set_dtype(1, dtype::Int32());
  49. using Param = typename Argmxx::Param;
  50. ArgmxxRNG rng;
  51. checker.set_rng(0, &rng);
  52. for (size_t axis = 0; axis < 4; ++axis) {
  53. Param param;
  54. param.axis = axis;
  55. checker.set_param(param)
  56. .set_dtype(0, dtype::Float32())
  57. .execs({{2, 3, 4, 5}, {}});
  58. checker.set_param(param)
  59. .set_dtype(0, dtype::Float16())
  60. .execs({{2, 3, 4, 5}, {}});
  61. checker.set_param(param).set_dtype(0, dtype::Int32()).execs({{2, 3, 4, 5}, {}});
  62. checker.set_param(param).set_dtype(0, dtype::Int16()).execs({{2, 3, 4, 5}, {}});
  63. checker.set_param(param).set_dtype(0, dtype::Int8()).execs({{2, 3, 4, 5}, {}});
  64. checker.set_param(param).set_dtype(0, dtype::Uint8()).execs({{2, 3, 4, 5}, {}});
  65. }
  66. checker.set_dtype(0, dtype::Float32());
  67. Param param;
  68. param.axis = 1;
  69. checker.set_param(param);
  70. // 1-step
  71. checker.execs({{2, 64, 32}, {}});
  72. // 2-step
  73. checker.execs({{2, 192, 32}, {}});
  74. // 3-step
  75. checker.execs({{2, 4333, 32}, {}});
  76. // single reduce
  77. checker.execs({{2, 1, 1}, {}});
  78. checker.execs({{2, 1 + 1, 1}, {}});
  79. checker.execs({{2, 2048 + 1, 1}, {}});
  80. checker.execs({{2, 2048 * 2048 + 1, 1}, {}});
  81. checker.execs({{2, 1 + 1, 31}, {}});
  82. checker.execs({{2, 16 + 1, 31}, {}});
  83. checker.execs({{2, 16 * 16 + 1, 31}, {}});
  84. checker.execs({{2, 16 * 16 * 16 + 1, 31}, {}});
  85. checker.execs({{2, 16 * 16 * 16 * 16 + 1, 31}, {}});
  86. checker.execs({{3, 256 * 256 + 1, 2}, {}});
  87. checker.execs({{3, 128 * 128 + 1, 3}, {}});
  88. checker.execs({{3, 64 * 64 + 1, 7}, {}});
  89. checker.execs({{3, 32 * 32 + 1, 15}, {}});
  90. checker.execs({{3, 512, 500}, {}});
  91. // very large reduce
  92. checker.execs({{1, 4194304, 1}, {}});
  93. }
  94. class ArgsortRNG final : public RNG {
  95. bool m_rev_order = false;
  96. DType m_dtype;
  97. template <typename T>
  98. void fill(T* ptr, int n) {
  99. if (m_rev_order) {
  100. for (int i = 0; i < n; ++i)
  101. ptr[i] = static_cast<T>(n / 2 - i);
  102. } else {
  103. for (int i = 0; i < n; ++i)
  104. ptr[i] = static_cast<T>(i - n / 2);
  105. COMPAT_RANDOM(ptr, ptr + n);
  106. }
  107. }
  108. void gen(const TensorND& tensor) override {
  109. auto n = tensor.layout.total_nr_elems();
  110. if (m_dtype == dtype::Float32{}) {
  111. fill(tensor.ptr<dt_float32>(), n);
  112. } else {
  113. megdnn_assert(m_dtype == dtype::Int32{});
  114. fill(tensor.ptr<dt_int32>(), n);
  115. }
  116. }
  117. public:
  118. ArgsortRNG(DType dt) : m_dtype{dt} {}
  119. void set_rev_order(bool flag) { m_rev_order = flag; }
  120. };
  121. void run_forward_test(DType dtype) {
  122. TaskRecordChecker<ArgsortForward> checker(2);
  123. using Param = Argsort::Param;
  124. using Order = Param::Order;
  125. ArgsortRNG rng{dtype};
  126. checker.set_dtype(2, dtype::Int32());
  127. checker.set_dtype(0, dtype).set_rng(0, &rng);
  128. for (size_t i = 3; i < 10240; i *= 2) {
  129. Param param;
  130. param.order = Order::ASCENDING;
  131. checker.set_param(param).execs({{3, i + 1}, {}, {}});
  132. param.order = Order::DESCENDING;
  133. checker.set_param(param).execs({{3, i - 1}, {}, {}});
  134. checker.set_param(param).execs({{13, i + 3}, {}, {}});
  135. }
  136. {
  137. // reverse sort large array
  138. constexpr size_t N = 200003;
  139. rng.set_rev_order(true);
  140. Param param;
  141. param.order = Order::ASCENDING;
  142. checker.set_param(param).execs({{1, N}, {}, {}});
  143. }
  144. }
  145. class IdxRng final : public RNG {
  146. void gen(const TensorND& tensor) override {
  147. auto ptr = tensor.ptr<dt_int32>();
  148. auto m = tensor.layout[0], n = tensor.layout[1];
  149. for (size_t i = 0; i < m; ++i) {
  150. for (size_t j = 0; j < n; ++j) {
  151. ptr[j] = j;
  152. }
  153. COMPAT_RANDOM(ptr, ptr + n);
  154. ptr += n;
  155. }
  156. }
  157. };
  158. void run_backward_test(DType dtype) {
  159. IdxRng rng;
  160. TaskRecordChecker<ArgsortBackward> checker(2);
  161. checker.set_dtype(1, dtype::Int32()).set_rng(1, &rng);
  162. checker.set_dtype(0, dtype);
  163. checker.set_dtype(2, dtype);
  164. for (size_t i = 16; i < 4096; i *= 2) {
  165. checker.execs({{3, i}, {3, i}, {3, i}});
  166. checker.execs({{3, i + 3}, {3, i + 3}, {3, i + 3}});
  167. checker.execs({{3, i + 3}, {3, i + 3}, {3, i + 7}});
  168. }
  169. }
  170. } // anonymous namespace
  171. namespace megdnn {
  172. namespace test {
  173. //! adaptive pooling
  174. TEST_F(NAIVE, ADAPTIVE_POOLING_FORWARD_RECORD) {
  175. TaskRecordChecker<AdaptivePooling> checker(2);
  176. auto args = adaptive_pooling::get_args();
  177. using Format = param::AdaptivePooling::Format;
  178. DType dtype = dtype::Float32();
  179. for (auto&& arg : args) {
  180. auto param = arg.param;
  181. auto src = arg.ishape;
  182. auto dst = arg.oshape;
  183. param.format = Format::NCHW;
  184. checker.set_epsilon(1e-2);
  185. checker.set_param(param).set_dtype(0, dtype).set_dtype(1, dtype).exec(
  186. TensorShapeArray{src, dst, {}});
  187. break;
  188. }
  189. }
  190. TEST_F(NAIVE, ADAPTIVE_POOLING_BACKWARD_RECORD) {
  191. TaskRecordChecker<AdaptivePooling> checker(2);
  192. auto args = adaptive_pooling::get_args();
  193. for (auto&& arg : args) {
  194. TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32());
  195. TensorLayout olayout = TensorLayout(arg.oshape, dtype::Float32());
  196. DType dtype = dtype::Float32();
  197. checker.set_dtype(0, dtype)
  198. .set_dtype(1, dtype)
  199. .set_dtype(2, dtype)
  200. .set_dtype(3, dtype)
  201. .set_param(arg.param)
  202. .exec(TensorShapeArray{ilayout, olayout, olayout, ilayout});
  203. break;
  204. }
  205. }
  206. //! add update
  207. TEST_F(NAIVE, ADD_UPDATE_RECORD) {
  208. TaskRecordChecker<AddUpdate> checker(2);
  209. param::AddUpdate p{2, -1, 3};
  210. checker.set_param(p)
  211. .set_dtype(0, dtype::BFloat16())
  212. .set_dtype(1, dtype::BFloat16())
  213. .execs({{2, 2, 3}, {2, 2, 3}});
  214. }
  215. //! argxx
  216. TEST_F(NAIVE, ARGXX_RECORD) {
  217. test_argmxx<Argmax>();
  218. test_argmxx<Argmin>();
  219. }
  220. //! argsort
  221. TEST_F(NAIVE, ARGSORT_FORWARD_RECORD) {
  222. run_forward_test(dtype::Float32{});
  223. run_forward_test(dtype::Int32{});
  224. }
  225. TEST_F(NAIVE, ARGSORT_BACKWARD_RECORD) {
  226. run_backward_test(dtype::Float32{});
  227. run_backward_test(dtype::Int32{});
  228. }
  229. TEST_F(NAIVE, BATCH_CONV_BIAS_QS8_RECORD) {
  230. TaskRecordChecker<BatchConvBiasForward> checker(2);
  231. UniformIntRNG const_rng{1, 1};
  232. UniformIntRNG rng{-5, 5};
  233. UniformIntRNG bias_rng{-50, 50};
  234. checker.set_rng(0, &rng)
  235. .set_rng(1, &rng)
  236. .set_rng(2, &rng)
  237. .set_rng(3, &rng)
  238. .set_dtype(0, dtype::QuantizedS8{1.2f})
  239. .set_dtype(1, dtype::QuantizedS8{1.3f})
  240. .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
  241. .set_dtype(3, dtype::QuantizedS8{1.1f})
  242. .set_dtype(4, dtype::QuantizedS8{1.1f})
  243. .set_epsilon(1 + 1e-3);
  244. param::BatchConvBias param;
  245. param.pad_h = 2, param.pad_w = 1;
  246. param.stride_h = 1, param.stride_w = 2;
  247. param.format = param::BatchConvBias::Format::NCHW4;
  248. checker.set_param(param).execs(
  249. {{32, 4, 24, 24, 4}, {32, 32, 4, 1, 1, 4}, {1, 8, 1, 1, 4}, {}, {}});
  250. }
  251. //! batched_matmul
  252. TEST_F(NAIVE, BATCH_MAT_MUL_RECORD) {
  253. TaskRecordChecker<BatchedMatrixMulForward> checker(2);
  254. using TestArg = matrix_mul::TestArg;
  255. //! return expect if stride == -1, stride otherwise
  256. auto stride_val = [](size_t stride, size_t expect) -> size_t {
  257. if (stride == TestArg::UNSET_STRIDE_VAL) {
  258. return expect;
  259. } else {
  260. return stride;
  261. }
  262. };
  263. using Param = MatrixMul::Param;
  264. std::vector<TestArg> args;
  265. args = matrix_mul::get_batched_matmul_args();
  266. for (auto& arg : args) {
  267. if (arg.b == 1) {
  268. continue;
  269. }
  270. size_t m = arg.m, n = arg.n, k = arg.k;
  271. Param param;
  272. param.transposeA = arg.mask & 0x1;
  273. param.transposeB = arg.mask & 0x2;
  274. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  275. TensorShape A, B;
  276. if (param.transposeA) {
  277. std::swap(A0, A1);
  278. }
  279. if (param.transposeB) {
  280. std::swap(B0, B1);
  281. }
  282. ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
  283. C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
  284. B_batch_stride = arg.B_batch_stride,
  285. C_batch_stride = arg.C_batch_stride;
  286. A_stride = stride_val(A_stride, A1);
  287. B_stride = stride_val(B_stride, B1);
  288. C_stride = stride_val(C_stride, n);
  289. A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
  290. B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
  291. C_batch_stride = stride_val(C_batch_stride, m * C_stride);
  292. checker.set_param(param);
  293. checker.execl(
  294. {TensorLayout{
  295. {arg.b, A0, A1},
  296. {A_batch_stride, A_stride, 1},
  297. dtype::Float32()},
  298. TensorLayout{
  299. {arg.b, B0, B1},
  300. {B_batch_stride, B_stride, 1},
  301. dtype::Float32()},
  302. TensorLayout{
  303. {arg.b, m, n},
  304. {C_batch_stride, C_stride, 1},
  305. dtype::Float32()}});
  306. break;
  307. }
  308. }
  309. //! BN
  310. TEST_F(NAIVE, BN_FORWARD_RECORD) {
  311. TaskRecordChecker<BNForward> checker(2);
  312. checker.set_dtype(0, dtype::Float32())
  313. .set_dtype(1, dtype::Float32())
  314. .set_dtype(2, dtype::Float32())
  315. .set_epsilon(1e-3);
  316. param::BN param;
  317. param.fwd_mode = param::BN::FwdMode::TRAINING;
  318. param.param_dim = param::BN::ParamDim::DIM_1C11;
  319. param.epsilon = 1e-3;
  320. for (size_t n : {1, 2}) {
  321. for (size_t c : {1, 128}) {
  322. for (size_t i : {2, 14}) {
  323. for (float f : {0.5, 1.0}) {
  324. param.avg_factor = f;
  325. checker.set_param(param);
  326. TensorShape src{n, c, i, i};
  327. TensorShape inp{1, c, 1, 1};
  328. checker.execs(
  329. {src, //! src -> input
  330. inp, //! bn_scale -> input
  331. inp, //! bn_bias -> input
  332. inp, //! mean -> output
  333. inp, //! variance -> output
  334. inp, //! batch_mean -> output
  335. inp, //! batch_inv_variance -> output
  336. {}, //! reserve -> output
  337. {}});
  338. }
  339. }
  340. }
  341. }
  342. UniformFloatRNG rng(1.0f, 2.0f);
  343. checker.set_dtype(0, dtype::Float32())
  344. .set_dtype(1, dtype::Float32())
  345. .set_dtype(2, dtype::Float32())
  346. .set_dtype(3, dtype::Float32())
  347. .set_dtype(4, dtype::Float32())
  348. .set_rng(3, &rng)
  349. .set_rng(4, &rng)
  350. .set_epsilon(1e-3);
  351. param.fwd_mode = param::BN::FwdMode::INFERENCE;
  352. param.param_dim = param::BN::ParamDim::DIM_1C11;
  353. param.epsilon = 1e-3;
  354. checker.set_param(param);
  355. for (size_t n : {1, 2}) {
  356. for (size_t c : {1, 128}) {
  357. for (size_t i : {2, 14}) {
  358. TensorShape src{n, c, i, i};
  359. TensorShape inp{1, c, 1, 1};
  360. checker.exec({
  361. src, //! src -> input
  362. inp, //! bn_scale -> input
  363. inp, //! bn_bias -> input
  364. inp, //! mean -> input
  365. inp, //! variance -> input
  366. {}, //! batch_mean -> output[unused]
  367. {}, //! batch_inv_variance -> output[unused]
  368. {}, //! reserve -> output
  369. {} //! dst -> output[shape got by
  370. //! deduced]
  371. });
  372. }
  373. }
  374. }
  375. }
  376. TEST_F(NAIVE, BN_BACKWARD_RECORD) {
  377. TaskRecordChecker<BNBackward> checker(2);
  378. UniformFloatRNG rng(1.0f, 2.0f);
  379. checker.set_dtype(0, dtype::Float32())
  380. .set_dtype(1, dtype::Float32())
  381. .set_dtype(2, dtype::Float32())
  382. .set_dtype(3, dtype::Float32())
  383. .set_dtype(4, dtype::Float32())
  384. .set_rng(3, &rng);
  385. param::BN param;
  386. param.fwd_mode = param::BN::FwdMode::TRAINING;
  387. param.epsilon = 0.0f;
  388. checker.set_param(param);
  389. for (size_t n : {1, 2}) {
  390. for (size_t c : {3, 128}) {
  391. for (size_t i : {2, 14}) {
  392. TensorShape src{n, c, i, i};
  393. TensorShape inp{1, c, 1, 1};
  394. checker.exec({
  395. src, //! x -> input
  396. src, //! dy -> input
  397. inp, //! bn_mean -> input
  398. inp, //! bn_ivar -> input
  399. inp, //! bn_scale -> input
  400. {}, //! reserve -> input
  401. inp, //! d_bn_scale -> output
  402. inp, //! d_bn_bias -> output
  403. src //! dx -> output
  404. });
  405. }
  406. }
  407. }
  408. }
  409. //! concat
  410. TEST_F(NAIVE, CONCAT_RECORD) {
  411. TaskRecordChecker<Concat> checker(2);
  412. using Param = Concat::Param;
  413. for (auto dtype : std::vector<DType>{dtype::Float32(), dtype::Float16()})
  414. for (size_t axis = 0; axis < 4; ++axis) {
  415. Param param;
  416. param.axis = axis;
  417. TensorShapeArray shapes(4, TensorShape({2, 3, 4, 5}));
  418. for (size_t i = 0; i < 4; ++i) {
  419. shapes[i].shape[axis] = i + 1;
  420. }
  421. shapes.emplace_back();
  422. for (size_t i = 0; i < shapes.size(); ++i)
  423. checker.set_dtype(i, dtype);
  424. checker.set_param(param).execs(shapes);
  425. }
  426. }
  427. //! ConvBias
  428. TEST_F(NAIVE, CONV_BIAS_RECORD) {
  429. TaskRecordChecker<ConvBias> checker(2);
  430. ConvBias::Param param;
  431. param.format = ConvBias::Param::Format::NCHW;
  432. checker.set_dtype(0, dtype::QuantizedS8(0.1f))
  433. .set_dtype(1, dtype::QuantizedS8(0.2f))
  434. .set_dtype(2, dtype::QuantizedS32(0.02f))
  435. .set_dtype(3, dtype::QuantizedS32(0.3f))
  436. .set_dtype(4, dtype::QuantizedS32(0.02f));
  437. checker.set_param(param).execs(
  438. {{1, 1, 4, 4}, {3, 1, 3, 3}, {1, 3, 1, 1}, {1, 3, 2, 2}, {}});
  439. }
  440. //! Convolution
  441. TEST_F(NAIVE, CONV_RECORD) {
  442. TaskRecordChecker<Convolution> checker(2);
  443. Convolution::Param param;
  444. param.format = Convolution::Param::Format::NCHW;
  445. checker.set_param(param).execs({{1, 1, 4, 4}, {3, 1, 3, 3}, {}});
  446. }
  447. //! Conv3D
  448. TEST_F(NAIVE, CONV3D_RECORD) {
  449. using TestArg = convolution3d::TestArg;
  450. std::vector<TestArg> args = convolution3d::get_args();
  451. TaskRecordChecker<Convolution3DForward> checker(2);
  452. NormalRNG default_rng;
  453. for (auto&& arg : args) {
  454. float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] *
  455. arg.filter[4]);
  456. UniformFloatRNG rng(scale, 2 * scale);
  457. checker.set_dtype(0, dtype::Float32())
  458. .set_dtype(1, dtype::Float32())
  459. .set_rng(0, &default_rng)
  460. .set_rng(1, &default_rng)
  461. .set_param(arg.param)
  462. .execs({arg.src, arg.filter, {}});
  463. }
  464. }
  465. //! cumsum
  466. TEST_F(NAIVE, CUMSUM_RECORD) {
  467. TaskRecordChecker<Cumsum> checker(2);
  468. struct TestArg {
  469. param::Cumsum param;
  470. TensorShape shape;
  471. TestArg(param::Cumsum param, TensorShape shape) : param(param), shape(shape) {}
  472. };
  473. std::vector<TestArg> args, args_int32;
  474. for (auto shape : TensorShapeArray{{1000}, {330, 33}, {10, 10, 10}, {5, 5, 5, 5}}) {
  475. for (size_t axis = 0; axis < shape.ndim; ++axis) {
  476. args.emplace_back(param::Cumsum(axis, true, true), shape);
  477. args.emplace_back(param::Cumsum(axis, true, false), shape);
  478. args.emplace_back(param::Cumsum(axis, false, true), shape);
  479. args.emplace_back(param::Cumsum(axis, false, false), shape);
  480. }
  481. }
  482. for (auto shape : TensorShapeArray{{1}, {10}, {100}, {1000}, {10000}}) {
  483. args.emplace_back(param::Cumsum(0, true, true), shape);
  484. args.emplace_back(param::Cumsum(0, true, false), shape);
  485. args.emplace_back(param::Cumsum(0, false, true), shape);
  486. args.emplace_back(param::Cumsum(0, false, false), shape);
  487. }
  488. for (auto shape : TensorShapeArray{{1}, {10}, {100}, {1000}, {10000}}) {
  489. args_int32.emplace_back(param::Cumsum(0, true, true), shape);
  490. args_int32.emplace_back(param::Cumsum(0, true, false), shape);
  491. args_int32.emplace_back(param::Cumsum(0, false, true), shape);
  492. args_int32.emplace_back(param::Cumsum(0, false, false), shape);
  493. }
  494. for (auto arg : args) {
  495. checker.set_param(arg.param);
  496. checker.set_epsilon(1e-2);
  497. checker.set_dtype(0, dtype::Float32()).execs({{arg.shape}, {}});
  498. checker.set_dtype(0, dtype::Int16()).execs({{arg.shape}, {}});
  499. checker.set_dtype(0, dtype::Int32()).execs({{arg.shape}, {}});
  500. }
  501. for (auto arg : args_int32) {
  502. checker.set_param(arg.param);
  503. checker.set_epsilon(1e-2);
  504. checker.set_dtype(0, dtype::Int32()).execs({{arg.shape}, {}});
  505. }
  506. }
  507. //! dct
  508. TEST_F(NAIVE, DCT_RECORD) {
  509. TaskRecordChecker<DctChannelSelectForward> checker(2);
  510. DctChannelSelectForward::Param param;
  511. param.format = DctChannelSelectForward::Param::Format::NCHW4;
  512. checker.set_dtype(0, dtype::Uint8()).set_dtype(3, dtype::QuantizedS8(10.f));
  513. checker.set_param(param).execs({{1, 1, 16, 16}, {}, {}, {}});
  514. }
  515. //! deformable_conv
  516. TEST_F(NAIVE, DEFORMABLE_CONV_FWD_RECORD) {
  517. TaskRecordChecker<DeformableConv> checker(2);
  518. DeformableConv::Param param;
  519. UniformIntRNG im_rng{0, 4};
  520. UniformIntRNG filter_rng{0, 4};
  521. UniformIntRNG offset_rng{-2, 2};
  522. UniformIntRNG mask_rng{0, 1};
  523. checker.set_rng(0, &im_rng)
  524. .set_rng(1, &filter_rng)
  525. .set_rng(2, &offset_rng)
  526. .set_rng(3, &mask_rng);
  527. param.pad_h = 1;
  528. param.pad_w = 1;
  529. param.stride_h = 1;
  530. param.stride_w = 1;
  531. param.dilate_h = 1;
  532. param.dilate_w = 1;
  533. param.format = DeformableConv::Param::Format::NCHW;
  534. param.sparse = DeformableConv::Param::Sparse::GROUP;
  535. checker.set_param(param).execs(
  536. {{1, 2, 5, 5},
  537. {2, 1, 1, 3, 3},
  538. {1, 2 * 2 * 3 * 3, 5, 5},
  539. {1, 2 * 3 * 3, 5, 5},
  540. {}});
  541. checker.set_param(param).execs(
  542. {{1, 2, 5, 5},
  543. {2, 1, 1, 3, 3},
  544. {1, 2 * 2 * 3 * 3, 5, 5},
  545. {1, 2 * 3 * 3, 5, 5},
  546. {}});
  547. param.sparse = DeformableConv::Param::Sparse::DENSE;
  548. checker.set_param(param).execs(
  549. {{1, 2, 5, 5},
  550. {2, 2, 3, 3},
  551. {1, 2 * 2 * 3 * 3, 5, 5},
  552. {1, 2 * 3 * 3, 5, 5},
  553. {}});
  554. }
  555. TEST_F(NAIVE, DEFORMABLE_CONV_BWD_FILTER_RECORD) {
  556. TaskRecordChecker<DeformableConvBackwardFilter> checker(2);
  557. DeformableConv::Param param;
  558. UniformIntRNG im_rng{0, 4};
  559. UniformIntRNG offset_rng{-2, 2};
  560. UniformIntRNG mask_rng{0, 1};
  561. UniformIntRNG out_grad_rng{0, 1};
  562. checker.set_rng(0, &im_rng)
  563. .set_rng(1, &offset_rng)
  564. .set_rng(2, &mask_rng)
  565. .set_rng(3, &out_grad_rng);
  566. param.pad_h = 1;
  567. param.pad_w = 1;
  568. param.stride_h = 1;
  569. param.stride_w = 1;
  570. param.dilate_h = 1;
  571. param.dilate_w = 1;
  572. param.format = DeformableConv::Param::Format::NCHW;
  573. param.sparse = DeformableConv::Param::Sparse::GROUP;
  574. checker.set_param(param).execs(
  575. {{1, 2, 5, 5},
  576. {1, 2 * 2 * 3 * 3, 5, 5},
  577. {1, 2 * 3 * 3, 5, 5},
  578. {1, 2, 5, 5},
  579. {2, 1, 1, 3, 3}});
  580. }
  581. TEST_F(NAIVE, DEFORMABLE_CONV_BWD_DATA_RECORD) {
  582. TaskRecordChecker<DeformableConvBackwardData> checker(2);
  583. DeformableConv::Param param;
  584. ConstValue im_rng{1};
  585. ConstValue filter_rng{0.99};
  586. ConstValue offset_rng{1.1};
  587. ConstValue mask_rng{1};
  588. ConstValue out_grad_rng{1};
  589. checker.set_rng(0, &im_rng)
  590. .set_rng(1, &filter_rng)
  591. .set_rng(2, &offset_rng)
  592. .set_rng(3, &mask_rng)
  593. .set_rng(4, &out_grad_rng);
  594. param.pad_h = 1;
  595. param.pad_w = 1;
  596. param.stride_h = 1;
  597. param.stride_w = 1;
  598. param.dilate_h = 1;
  599. param.dilate_w = 1;
  600. param.format = DeformableConv::Param::Format::NCHW;
  601. param.sparse = DeformableConv::Param::Sparse::GROUP;
  602. checker.set_param(param).execs(
  603. {{1, 2, 5, 5},
  604. {2, 1, 1, 3, 3},
  605. {1, 1 * 2 * 3 * 3, 5, 5},
  606. {1, 1 * 3 * 3, 5, 5},
  607. {1, 2, 5, 5},
  608. {1, 2, 5, 5},
  609. {1, 1 * 2 * 3 * 3, 5, 5},
  610. {1, 1 * 3 * 3, 5, 5}});
  611. }
  612. //! elemwise
  613. TEST_F(NAIVE, ELEMWISE_COMMON_RECORD) {
  614. TaskRecordChecker<ElemwiseForward> checker(2);
  615. using Mode = ElemwiseForward::Param::Mode;
  616. auto run_activate = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  617. DType dtype) {
  618. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype);
  619. checker.execs({{N, C, H, W}, {}});
  620. };
  621. auto run_binary = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  622. DType dtype) {
  623. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(
  624. 2, dtype);
  625. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  626. };
  627. auto run_unary = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  628. DType dtype) {
  629. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype);
  630. checker.execs({{N, C, H, W}, {}});
  631. };
  632. #define RUN_ACTIVATE(_dt) \
  633. run_activate(4, 32, 10, 10, Mode::RELU, _dt); \
  634. run_activate(4, 32, 10, 10, Mode::SIGMOID, _dt);
  635. RUN_ACTIVATE(dtype::Float32());
  636. RUN_ACTIVATE(dtype::Float16());
  637. checker.set_epsilon(1e-2);
  638. RUN_ACTIVATE(dtype::BFloat16());
  639. #undef RUN_ACTIVATE
  640. checker.set_epsilon(1e-3);
  641. #define RUN_BINARY(_dt) \
  642. run_binary(4, 32, 10, 10, Mode::ADD, _dt); \
  643. run_binary(4, 32, 10, 10, Mode::SUB, _dt); \
  644. run_binary(4, 32, 10, 10, Mode::MUL, _dt); \
  645. run_binary(4, 32, 10, 10, Mode::MIN, _dt); \
  646. run_binary(4, 32, 10, 10, Mode::MAX, _dt);
  647. RUN_BINARY(dtype::Float32());
  648. RUN_BINARY(dtype::Float16());
  649. RUN_BINARY(dtype::BFloat16());
  650. RUN_BINARY(dtype::Int32());
  651. RUN_BINARY(dtype::Int16());
  652. //! true_div
  653. run_binary(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float32());
  654. RUN_BINARY(dtype::Float16());
  655. checker.set_epsilon(1e-2);
  656. run_binary(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float16());
  657. RUN_BINARY(dtype::BFloat16());
  658. //! FIXME: precision is especially low
  659. checker.set_epsilon(1e-1);
  660. run_binary(4, 32, 10, 10, Mode::TRUE_DIV, dtype::BFloat16());
  661. #undef RUN_BINARY
  662. #define RUN_UNARY(_dt) \
  663. run_unary(4, 32, 10, 10, Mode::ABS, _dt); \
  664. run_unary(4, 32, 10, 10, Mode::SIN, _dt); \
  665. run_unary(4, 32, 10, 10, Mode::COS, _dt); \
  666. run_unary(4, 32, 10, 10, Mode::EXP, _dt); \
  667. run_unary(4, 32, 10, 10, Mode::CEIL, _dt); \
  668. run_unary(4, 32, 10, 10, Mode::TANH, _dt);
  669. RUN_UNARY(dtype::Float32());
  670. RUN_UNARY(dtype::BFloat16());
  671. checker.set_epsilon(1e-2);
  672. RUN_UNARY(dtype::Float16());
  673. //! FLOOR
  674. run_unary(4, 32, 10, 10, Mode::FLOOR, dtype::Float32());
  675. run_unary(4, 32, 10, 10, Mode::FLOOR, dtype::Float16());
  676. //! INT TEST
  677. run_unary(4, 32, 10, 10, Mode::ABS, dtype::Int16());
  678. run_unary(4, 32, 10, 10, Mode::ABS, dtype::Int32());
  679. #undef RUN_UNARY
  680. //! naive impl
  681. run_binary(4, 32, 10, 10, Mode::LT, dtype::Float32());
  682. run_binary(4, 32, 10, 10, Mode::LT, dtype::Int32());
  683. run_binary(4, 32, 10, 10, Mode::LEQ, dtype::Float32());
  684. run_binary(4, 32, 10, 10, Mode::LEQ, dtype::Int32());
  685. run_binary(4, 32, 10, 10, Mode::EQ, dtype::Float32());
  686. run_binary(4, 32, 10, 10, Mode::EQ, dtype::Int32());
  687. auto rng = UniformFloatRNG(0.01, 2.0);
  688. checker.set_rng(0, &rng);
  689. run_unary(4, 32, 10, 10, Mode::LOG, dtype::Float32());
  690. run_unary(4, 32, 10, 10, Mode::LOG, dtype::BFloat16());
  691. checker.set_epsilon(1e-2);
  692. run_unary(4, 32, 10, 10, Mode::LOG, dtype::Float16());
  693. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Float32());
  694. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::BFloat16());
  695. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Float16());
  696. auto rng_int = UniformIntNonZeroRNG(1, 65535);
  697. checker.set_rng(0, &rng_int);
  698. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Int32());
  699. run_unary(4, 32, 10, 10, Mode::NEGATE, dtype::Int16());
  700. }
  701. TEST_F(NAIVE, ELEMWISE_BROADCAST_RECORD) {
  702. TaskRecordChecker<ElemwiseForward> checker(2);
  703. using Mode = ElemwiseForward::Param::Mode;
  704. //! do broadcast test
  705. auto run_binary_broadcast = [&](size_t N, size_t C, size_t H, size_t W, Mode mode,
  706. DType dtype) {
  707. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype);
  708. checker.execs({{N, C, H, W}, {N, C, 1, 1}, {}});
  709. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {}});
  710. checker.execs({{N, C, H, W}, {1}, {}});
  711. checker.execs({{1}, {N, C, H, W}, {}});
  712. checker.execs({{N, C, H, W}, {1, C, H, W}, {}});
  713. checker.execs({{1, C, H, W}, {N, C, H, W}, {}});
  714. };
  715. #define RUN_BINARY(_dt) \
  716. run_binary_broadcast(4, 32, 10, 10, Mode::ADD, _dt); \
  717. run_binary_broadcast(4, 32, 10, 10, Mode::SUB, _dt); \
  718. run_binary_broadcast(4, 32, 10, 10, Mode::MUL, _dt); \
  719. run_binary_broadcast(4, 32, 10, 10, Mode::MIN, _dt); \
  720. run_binary_broadcast(4, 32, 10, 10, Mode::MAX, _dt);
  721. RUN_BINARY(dtype::Float32());
  722. run_binary_broadcast(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float32());
  723. RUN_BINARY(dtype::Float16());
  724. checker.set_epsilon(1e-2);
  725. run_binary_broadcast(4, 32, 10, 10, Mode::TRUE_DIV, dtype::Float16());
  726. RUN_BINARY(dtype::BFloat16());
  727. //! FIXME: precision is especially low
  728. checker.set_epsilon(1e-1);
  729. run_binary_broadcast(4, 32, 10, 10, Mode::TRUE_DIV, dtype::BFloat16());
  730. RUN_BINARY(dtype::Int16());
  731. RUN_BINARY(dtype::Int32());
  732. #undef RUN_BINARY
  733. }
  734. TEST_F(NAIVE, ELEMWISE_FUSE_MUL_ADD3_RECORD) {
  735. TaskRecordChecker<ElemwiseForward> checker(2);
  736. using Mode = ElemwiseForward::Param::Mode;
  737. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  738. checker.set_param(Mode::FUSE_MUL_ADD3)
  739. .set_dtype(0, dtype)
  740. .set_dtype(1, dtype)
  741. .set_dtype(2, dtype);
  742. checker.execs({{1}, {N, C, H, W}, {1}, {}});
  743. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {1}, {}});
  744. checker.execs({{N, C, H, W}, {N, C, H, W}, {1}, {}});
  745. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {N, C, 1, 1}, {}});
  746. };
  747. run_mul_add(4, 32, 10, 10, dtype::Float32());
  748. checker.set_epsilon(1e-2);
  749. run_mul_add(4, 32, 10, 10, dtype::Float16());
  750. //! FIXME: precision is especially low
  751. checker.set_epsilon(1e-1);
  752. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  753. run_mul_add(4, 32, 10, 10, dtype::Int16());
  754. run_mul_add(4, 32, 10, 10, dtype::Int32());
  755. }
  756. TEST_F(NAIVE, ELEMWISE_FUSE_MUL_ADD4_RECORD) {
  757. TaskRecordChecker<ElemwiseForward> checker(2);
  758. using Mode = ElemwiseForward::Param::Mode;
  759. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  760. checker.set_param(Mode::FUSE_MUL_ADD4)
  761. .set_dtype(0, dtype)
  762. .set_dtype(1, dtype)
  763. .set_dtype(2, dtype)
  764. .set_dtype(3, dtype)
  765. .set_dtype(4, dtype);
  766. checker.execs({{1}, {N, C, H, W}, {1}, {N, C, H, W}, {}});
  767. checker.execs({{1}, {N, C, H, W}, {N, C, H, W}, {1}, {}});
  768. checker.execs({{N, C, 1, 1}, {N, C, H, W}, {N, C, 1, 1}, {N, C, H, W}, {}});
  769. checker.execs({{N, C, H, W}, {N, C, H, W}, {N, C, H, W}, {N, C, H, W}, {}});
  770. };
  771. run_mul_add(4, 32, 10, 10, dtype::Float32());
  772. checker.set_epsilon(1e-2);
  773. run_mul_add(4, 32, 10, 10, dtype::Float16());
  774. //! FIXME: precision is especially low
  775. checker.set_epsilon(1e-1);
  776. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  777. run_mul_add(4, 32, 10, 10, dtype::Int16());
  778. run_mul_add(4, 32, 10, 10, dtype::Int32());
  779. }
  780. TEST_F(NAIVE, ELEMWISE_FUSE_ADD_RELU_RECORD) {
  781. TaskRecordChecker<ElemwiseForward> checker(2);
  782. using Mode = ElemwiseForward::Param::Mode;
  783. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  784. checker.set_param(Mode::FUSE_ADD_RELU)
  785. .set_dtype(0, dtype)
  786. .set_dtype(1, dtype)
  787. .set_dtype(2, dtype);
  788. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  789. };
  790. run_mul_add(4, 32, 10, 10, dtype::Float32());
  791. checker.set_epsilon(1e-2);
  792. run_mul_add(4, 32, 10, 10, dtype::Float16());
  793. //! FIXME: precision is especially low
  794. checker.set_epsilon(1e-1);
  795. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  796. }
  797. TEST_F(NAIVE, ELEMWISE_FUSE_ADD_SIGMOID_RECORD) {
  798. TaskRecordChecker<ElemwiseForward> checker(2);
  799. using Mode = ElemwiseForward::Param::Mode;
  800. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  801. checker.set_param(Mode::FUSE_ADD_SIGMOID)
  802. .set_dtype(0, dtype)
  803. .set_dtype(1, dtype)
  804. .set_dtype(2, dtype);
  805. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  806. };
  807. run_mul_add(4, 32, 10, 10, dtype::Float32());
  808. checker.set_epsilon(1e-2);
  809. run_mul_add(4, 32, 10, 10, dtype::Float16());
  810. //! FIXME: precision is especially low
  811. checker.set_epsilon(1e-1);
  812. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  813. }
  814. TEST_F(NAIVE, ELEMWISE_FUSE_ADD_TANH_RECORD) {
  815. TaskRecordChecker<ElemwiseForward> checker(2);
  816. using Mode = ElemwiseForward::Param::Mode;
  817. auto run_mul_add = [&](size_t N, size_t C, size_t H, size_t W, DType dtype) {
  818. checker.set_param(Mode::FUSE_ADD_TANH)
  819. .set_dtype(0, dtype)
  820. .set_dtype(1, dtype)
  821. .set_dtype(2, dtype);
  822. checker.execs({{N, C, H, W}, {N, C, H, W}, {}});
  823. };
  824. run_mul_add(4, 32, 10, 10, dtype::Float32());
  825. checker.set_epsilon(1e-2);
  826. run_mul_add(4, 32, 10, 10, dtype::Float16());
  827. //! FIXME: precision is especially low
  828. checker.set_epsilon(1e-1);
  829. run_mul_add(4, 32, 10, 10, dtype::BFloat16());
  830. }
  831. TEST_F(NAIVE, ELEMWISE_VECTOR_RECORD) {
  832. TaskRecordChecker<ElemwiseForward> checker(2);
  833. using Mode = ElemwiseForward::Param::Mode;
  834. auto run_vector = [&](size_t N, DType dtype, Mode mode) {
  835. checker.set_param(mode).set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(
  836. 2, dtype);
  837. checker.execs({{N}, {1, N}, {}});
  838. checker.execs({{1, N}, {N}, {}});
  839. checker.execs({{N}, {1}, {}});
  840. checker.execs({{1}, {N}, {}});
  841. checker.execs({{1}, {1, 1}, {}});
  842. checker.execs({{1, 1, 1}, {1}, {}});
  843. };
  844. run_vector(1000, dtype::Float32(), Mode::ADD);
  845. run_vector(1000, dtype::Float32(), Mode::MUL);
  846. checker.set_epsilon(1e-2);
  847. run_vector(1000, dtype::Float16(), Mode::ADD);
  848. run_vector(1000, dtype::Float16(), Mode::MUL);
  849. //! FIXME: precision is especially low
  850. checker.set_epsilon(1e-1);
  851. run_vector(1000, dtype::BFloat16(), Mode::ADD);
  852. run_vector(1000, dtype::BFloat16(), Mode::MUL);
  853. }
  854. //! EYE
  855. TEST_F(NAIVE, EYE_RECORD) {
  856. TaskRecordChecker<Eye> checker(2);
  857. for (DType dtype :
  858. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()})
  859. for (int k = -20; k < 20; ++k) {
  860. checker.set_param({k, dtype.enumv()});
  861. checker.set_dtype(0, dtype);
  862. checker.execs(TensorShapeArray{{3, 4}});
  863. checker.execs(TensorShapeArray{{4, 3}});
  864. }
  865. }
  866. //! FILL
  867. TEST_F(NAIVE, FILL_RECORD) {
  868. TaskRecordChecker<Fill> checker(2);
  869. for (DType dtype :
  870. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()})
  871. for (float value : {-1.23, 0.0, 0.001, 234.0, 2021.072}) {
  872. checker.set_param({value});
  873. checker.set_dtype(0, dtype);
  874. checker.exec(TensorShapeArray{{1, 1}});
  875. checker.exec(TensorShapeArray{{2, 3, 4}});
  876. }
  877. }
  878. //! LINSPACE
  879. TEST_F(NAIVE, LINSPACE_RECORD) {
  880. TaskRecordChecker<Linspace> checker(2);
  881. Linspace::Param param;
  882. param.start = 0.5;
  883. param.stop = 1.5;
  884. param.endpoint = true;
  885. for (DType dtype :
  886. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()}) {
  887. checker.set_dtype(0, dtype).set_param(param).exec(TensorShapeArray{{11}});
  888. }
  889. param.endpoint = false;
  890. for (DType dtype :
  891. std::vector<DType>{dtype::Float16(), dtype::Int32(), dtype::Float32()}) {
  892. checker.set_dtype(0, dtype).set_param(param).exec(TensorShapeArray{{11}});
  893. }
  894. }
  895. //! LOCAL
  896. TEST_F(NAIVE, LOCAL_FORWARD_RECORD) {
  897. auto args = local::get_args_for_cuda();
  898. for (size_t i = 0; i < 2; ++i) {
  899. auto&& arg = args[i];
  900. TaskRecordChecker<LocalForward> checker(2);
  901. checker.set_param(arg.param).exec(
  902. TensorShapeArray{arg.sshape(), arg.fshape(), arg.dshape()});
  903. }
  904. }
  905. TEST_F(NAIVE, LOCAL_BACKWARD_DATA_RECORD) {
  906. using namespace local;
  907. auto args = local::get_args_bwd_data_for_cuda();
  908. for (size_t i = 0; i < 2; ++i) {
  909. auto&& arg = args[i];
  910. TaskRecordChecker<LocalBackwardData> checker(2);
  911. checker.set_param(arg.param).exec(
  912. TensorShapeArray{arg.fshape(), arg.dshape(), arg.sshape()});
  913. }
  914. }
  915. TEST_F(NAIVE, LOCAL_BACKWARD_FILTER_RECORD) {
  916. using namespace local;
  917. auto args = local::get_args_bwd_filter_for_cuda();
  918. for (size_t i = 0; i < 2; ++i) {
  919. auto&& arg = args[i];
  920. TaskRecordChecker<LocalBackwardFilter> checker(2);
  921. checker.set_param(arg.param).exec(
  922. TensorShapeArray{arg.sshape(), arg.dshape(), arg.fshape()});
  923. }
  924. }
  925. //! matrix inverse
  926. TEST_F(NAIVE, MATRIX_INVERSE_RECORD) {
  927. TaskRecordChecker<MatrixInverse> checker(2);
  928. checker.exec({{10, 20, 20}, {}});
  929. }
  930. //! matmul
  931. TEST_F(NAIVE, MATRIX_MUL_RECORD) {
  932. TaskRecordChecker<MatrixMul> checker(2);
  933. MatrixMul::Param param;
  934. param.transposeA = false;
  935. param.transposeB = false;
  936. checker.set_dtype(0, dtype::Quantized8Asymm(0.1f, (uint8_t)128))
  937. .set_dtype(1, dtype::Quantized8Asymm(0.2f, (uint8_t)233))
  938. .set_dtype(2, dtype::QuantizedS32(0.1f * 0.2f));
  939. checker.set_param(param).exec({{4, 7}, {7, 5}, {}});
  940. param.transposeA = true;
  941. checker.set_dtype(0, dtype::Quantized8Asymm(0.7f, (uint8_t)128))
  942. .set_dtype(1, dtype::Quantized8Asymm(0.4f, (uint8_t)128))
  943. .set_dtype(2, dtype::QuantizedS32(0.7f * 0.4f));
  944. checker.set_param(param).exec({{2, 1}, {2, 1}, {}});
  945. }
  946. //! pooling
  947. TEST_F(NAIVE, POOLING_QUANTIZED_RECORD) {
  948. using Mode = Pooling::Param::Mode;
  949. TaskRecordChecker<Pooling> checker(2);
  950. Pooling::Param param{Mode::MAX, 1, 1, 2, 2, 2, 2};
  951. auto dt = dtype::Quantized8Asymm(0.1f, (uint8_t)128);
  952. checker.set_dtype(0, dt).set_dtype(1, dt);
  953. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  954. param = {Mode::AVERAGE, 1, 1, 2, 2, 2, 2};
  955. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  956. param = {Mode::AVERAGE_COUNT_EXCLUDE_PADDING, 1, 1, 2, 2, 2, 2};
  957. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  958. auto dt32 = dtype::QuantizedS32(0.233f);
  959. checker.set_dtype(0, dt32).set_dtype(1, dt32);
  960. param = {Mode::MAX, 1, 1, 2, 2, 2, 2};
  961. checker.set_param(param).exec({{1, 1, 3, 3}, {}});
  962. }
  963. TEST_F(NAIVE, REDUCE_QUANTIZED_RECORD) {
  964. using Mode = Reduce::Param::Mode;
  965. TaskRecordChecker<Reduce> checker(2);
  966. Reduce::Param param;
  967. param.mode = Mode::SUM;
  968. param.data_type = param::Reduce::DataType::QUINT_I8xO32;
  969. param.axis = 0;
  970. checker.set_dtype(0, dtype::Quantized8Asymm(0.1f, (uint8_t)128))
  971. .set_dtype(1, dtype::QuantizedS32(0.1f));
  972. checker.set_param(param).exec({{3, 4}, {}});
  973. param.data_type = param::Reduce::DataType::DEFAULT;
  974. param.mode = Mode::MEAN;
  975. checker.set_dtype(0, dtype::Quantized8Asymm(1.f, (uint8_t)128))
  976. .set_dtype(1, dtype::Quantized8Asymm(1.f, (uint8_t)128));
  977. checker.set_param(param).exec({{3, 4}, {}});
  978. checker.set_dtype(0, dtype::Quantized8Asymm(0.00233f, (uint8_t)128))
  979. .set_dtype(1, dtype::Quantized8Asymm(0.00233f, (uint8_t)128));
  980. checker.set_param(param).exec({{3, 4}, {}});
  981. checker.set_dtype(0, dtype::Quantized8Asymm(7e-10f, (uint8_t)45))
  982. .set_dtype(1, dtype::Quantized8Asymm(7e-10f, (uint8_t)45));
  983. checker.set_param(param).exec({{3, 4}, {}});
  984. }
  985. //! relayout format
  986. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW4_NCHW_RECORD) {
  987. TaskRecordChecker<RelayoutFormat> checker(2);
  988. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW};
  989. checker.set_param(param).exec({{1, 2, 1, 2, 4}, {}});
  990. param.oc = 7;
  991. checker.set_param(param).exec({{1, 2, 1, 2, 4}, {}});
  992. param.oc = 6;
  993. param.group = 2;
  994. checker.set_param(param).exec({{1, 2, 1, 2, 4}, {}});
  995. }
  996. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4_WEIGHT_RECORD) {
  997. TaskRecordChecker<RelayoutFormat> checker(2);
  998. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT};
  999. checker.set_param(param);
  1000. checker.exec({{2, 2, 2, 2}, {}});
  1001. checker.exec({{2, 2, 1, 2, 2}, {}});
  1002. }
  1003. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4_RECORD) {
  1004. TaskRecordChecker<RelayoutFormat> checker(2);
  1005. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4};
  1006. checker.set_param(param).exec({{1, 8, 1, 2}, {}});
  1007. param.group = 4;
  1008. checker.set_param(param).exec({{1, 8, 1, 2}, {}});
  1009. param.group = 2;
  1010. checker.set_param(param).exec({{1, 6, 1, 2}, {}});
  1011. }
  1012. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_RECORD) {
  1013. TaskRecordChecker<RelayoutFormat> checker(2);
  1014. {
  1015. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW88};
  1016. checker.set_param(param);
  1017. checker.exec({{1, 8, 1, 2}, {}});
  1018. checker.exec({{2, 8, 1, 2}, {}});
  1019. checker.exec({{2, 4, 1, 2}, {}});
  1020. checker.exec({{1, 3, 64, 64}, {}});
  1021. }
  1022. {
  1023. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW88_NCHW};
  1024. checker.set_param(param).exec({{1, 1, 1, 2, 8}, {}});
  1025. }
  1026. }
  1027. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_DENSE_RECORD) {
  1028. TaskRecordChecker<RelayoutFormat> checker(2);
  1029. RelayoutFormat::Param param{
  1030. RelayoutFormat::Param::Mode::NCHW_NCHW88_CONV_DENSE_WEIGHT};
  1031. checker.set_param(param);
  1032. checker.exec({{8, 8, 1, 1}, {}});
  1033. checker.exec({{8, 2, 1, 1}, {}});
  1034. }
  1035. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_CHAIN_RECORD) {
  1036. TaskRecordChecker<RelayoutFormat> checker(2);
  1037. RelayoutFormat::Param param{
  1038. RelayoutFormat::Param::Mode::NCHW_NCHW88_CONV_CHAN_WEIGHT};
  1039. checker.set_param(param);
  1040. checker.exec({{8, 1, 1, 1, 2}, {}});
  1041. checker.exec({{2, 1, 1, 1, 2}, {}});
  1042. }
  1043. TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88_GROUP_RECORD) {
  1044. TaskRecordChecker<RelayoutFormat> checker(2);
  1045. {
  1046. RelayoutFormat::Param param{
  1047. RelayoutFormat::Param::Mode::NCHW_NCHW88_CONV_GROUP_WEIGHT};
  1048. checker.set_param(param);
  1049. checker.exec({{1, 8, 8, 1, 1}, {}});
  1050. checker.exec({{1, 8, 2, 1, 1}, {}});
  1051. }
  1052. {
  1053. RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW88_NCHW};
  1054. checker.set_param(param).exec({TensorShape{1, 8, 64, 64, 8}, {}});
  1055. }
  1056. }
  1057. //! separable conv
  1058. TEST_F(NAIVE, SEPARABLE_CONV_RECORD) {
  1059. using TestArg = megdnn::test::separable_conv::TestArg;
  1060. std::vector<TestArg> args = separable_conv::get_args();
  1061. TaskRecordChecker<SeparableConvForward> checker(2);
  1062. for (auto&& arg : args) {
  1063. checker.set_param(arg.param).execs({arg.src, arg.filter_x, arg.filter_y, {}});
  1064. }
  1065. }
  1066. //! warp affine
  1067. TEST_F(NAIVE, WARP_AFFINE_RECORD) {
  1068. TaskRecordChecker<WarpAffine> checker(2);
  1069. WarpAffine::Param param;
  1070. param.border_mode = WarpAffine::Param::BorderMode::BORDER_REFLECT;
  1071. param.imode = WarpAffine::Param::InterpolationMode::LINEAR;
  1072. param.format = WarpAffine::Param::Format::NCHW;
  1073. checker.set_dtype(0, dtype::Uint8{})
  1074. .set_dtype(1, dtype::Float32{})
  1075. .set_dtype(2, dtype::Uint8{});
  1076. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 2, 3}, {1, 1, 2, 2}});
  1077. checker.set_dtype(0, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)})
  1078. .set_dtype(1, dtype::Float32{})
  1079. .set_dtype(2, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)});
  1080. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 2, 3}, {1, 1, 2, 2}});
  1081. }
  1082. TEST_F(NAIVE, WARP_AFFINE_CV_RECORD) {
  1083. using TestArg = warp_affine::TestArg;
  1084. std::vector<TestArg> args = warp_affine::get_cv_args();
  1085. TaskRecordChecker<WarpAffine> checker(2);
  1086. for (auto&& arg : args) {
  1087. checker.set_param(arg.param)
  1088. .set_dtype(0, dtype::Uint8())
  1089. .set_dtype(1, dtype::Float32())
  1090. .set_dtype(2, dtype::Uint8())
  1091. .execs({arg.src, arg.trans, arg.dst});
  1092. }
  1093. for (auto&& arg : args) {
  1094. checker.set_param(arg.param)
  1095. .set_dtype(0, dtype::Float32())
  1096. .set_dtype(1, dtype::Float32())
  1097. .set_dtype(2, dtype::Float32())
  1098. .execs({arg.src, arg.trans, arg.dst});
  1099. }
  1100. }
  1101. //! warp perspective
  1102. TEST_F(NAIVE, WARP_PERSPECTIVE_RECORD) {
  1103. TaskRecordChecker<WarpPerspective> checker(2);
  1104. WarpPerspective::Param param;
  1105. param.bmode = WarpPerspective::Param::BorderMode::BORDER_REFLECT;
  1106. param.imode = WarpPerspective::Param::InterpolationMode::LINEAR;
  1107. param.format = WarpPerspective::Param::Format::NCHW;
  1108. checker.set_dtype(0, dtype::Uint8{})
  1109. .set_dtype(1, dtype::Float32{})
  1110. .set_dtype(2, dtype::Uint8{});
  1111. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1112. checker.set_dtype(0, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)})
  1113. .set_dtype(1, dtype::Float32{})
  1114. .set_dtype(2, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)});
  1115. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1116. }
  1117. TEST_F(NAIVE, WARP_PERSPECTIVE_NCHW4_RECORD) {
  1118. using Param = WarpPerspective::Param;
  1119. WarpPerspective::Param param;
  1120. TaskRecordChecker<WarpPerspectiveForward> checker(2);
  1121. WarpPerspectiveMatRNG rng;
  1122. checker.set_rng(1, &rng);
  1123. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  1124. checker.set_dtype(2, dtype::QuantizedS8(0.1f));
  1125. for (auto bmode :
  1126. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  1127. WarpPerspective::BorderMode::REPLICATE,
  1128. WarpPerspective::BorderMode::CONSTANT}) {
  1129. param.border_val = 0.3f;
  1130. param.bmode = bmode;
  1131. param.imode = Param::InterpolationMode::LINEAR;
  1132. param.format = Param::Format::NCHW4;
  1133. checker.set_param(param);
  1134. checker.execs({{2, 1, 10, 11, 4}, {2, 3, 3}, {2, 1, 11, 12, 4}});
  1135. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 25, 510, 4}});
  1136. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 51, 51, 4}});
  1137. checker.execs({{1, 25, 51, 51, 4}, {1, 3, 3}, {1, 25, 25, 25, 4}});
  1138. }
  1139. }
  1140. TEST_F(NAIVE_MULTI_THREADS, WARP_PERSPECTIVE_RECORD) {
  1141. TaskRecordChecker<WarpPerspective> checker(2);
  1142. WarpPerspective::Param param;
  1143. param.bmode = WarpPerspective::Param::BorderMode::BORDER_REFLECT;
  1144. param.imode = WarpPerspective::Param::InterpolationMode::LINEAR;
  1145. param.format = WarpPerspective::Param::Format::NCHW;
  1146. checker.set_dtype(0, dtype::Uint8{})
  1147. .set_dtype(1, dtype::Float32{})
  1148. .set_dtype(2, dtype::Uint8{});
  1149. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1150. checker.set_dtype(0, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)})
  1151. .set_dtype(1, dtype::Float32{})
  1152. .set_dtype(2, dtype::Quantized8Asymm{1.4f, static_cast<uint8_t>(127)});
  1153. checker.set_param(param).exec({{1, 1, 3, 3}, {1, 3, 3}, {1, 1, 2, 2}});
  1154. }
  1155. TEST_F(NAIVE_MULTI_THREADS, WARP_PERSPECTIVE_NCHW4_RECORD) {
  1156. using Param = WarpPerspective::Param;
  1157. WarpPerspective::Param param;
  1158. TaskRecordChecker<WarpPerspectiveForward> checker(2);
  1159. WarpPerspectiveMatRNG rng;
  1160. checker.set_rng(1, &rng);
  1161. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  1162. checker.set_dtype(2, dtype::QuantizedS8(0.1f));
  1163. for (auto bmode :
  1164. {WarpPerspective::BorderMode::WRAP, WarpPerspective::BorderMode::REFLECT,
  1165. WarpPerspective::BorderMode::REPLICATE,
  1166. WarpPerspective::BorderMode::CONSTANT}) {
  1167. param.border_val = 0.3f;
  1168. param.bmode = bmode;
  1169. param.imode = Param::InterpolationMode::LINEAR;
  1170. param.format = Param::Format::NCHW4;
  1171. checker.set_param(param);
  1172. checker.execs({{2, 1, 10, 11, 4}, {2, 3, 3}, {2, 1, 11, 12, 4}});
  1173. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 25, 510, 4}});
  1174. checker.execs({{1, 25, 25, 25, 4}, {1, 3, 3}, {1, 25, 51, 51, 4}});
  1175. checker.execs({{1, 25, 51, 51, 4}, {1, 3, 3}, {1, 25, 25, 25, 4}});
  1176. }
  1177. }
  1178. } // namespace test
  1179. } // namespace megdnn
  1180. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}