You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.h 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /**
  2. * \file dnn/test/common/checker.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "megdnn/basic_types.h"
  14. #include "megdnn/tensor_iter.h"
  15. #include "test/common/opr_algo_proxy.h"
  16. #include "test/common/opr_proxy.h"
  17. #include "test/common/rng.h"
  18. #include <gtest/gtest.h>
  19. #include <memory>
  20. #include <regex>
  21. #include <unordered_map>
  22. // clang-format off
  23. #if defined(__has_feature)
  24. #if __has_feature(address_sanitizer)
  25. #define MEGDNN_TEST_ASAN 1
  26. #else
  27. #define MEGDNN_TEST_ASAN 0
  28. #endif
  29. #elif defined(__SANITIZE_ADDRESS__)
  30. #define MEGDNN_TEST_ASAN 1
  31. #else
  32. #define MEGDNN_TEST_ASAN 0
  33. #endif
  34. // clang-format on
  35. namespace megdnn {
  36. namespace test {
  37. class CheckerHelper {
  38. // TensorLayoutArray and TensorValueArray should be protected in theory;
  39. // but g++-4.9 bugs handle access privilege wrongfully, so we change it
  40. // to public.
  41. public:
  42. using TensorValueArray = TensorNDArray;
  43. using TensorsConstriant = std::function<void(TensorValueArray& tensors)>;
  44. using ExtraOprImpl = std::function<void(const TensorNDArray&)>;
  45. using OutputCanonizer = std::function<void(const TensorValueArray&)>;
  46. static std::shared_ptr<TensorValueArray> alloc_tensors(
  47. Handle* handle, const TensorLayoutArray& layouts, size_t offset);
  48. Handle* handle() const { return m_handle_cur; }
  49. protected:
  50. //! whether to use physically contiguous (i.e. default layout) for naive
  51. //! impl
  52. bool m_enable_contig_naive = false;
  53. bool m_prev_succ = true;
  54. const char* m_input_tensors_fpath = nullptr;
  55. thin_function<void()> m_expect_exec_fail;
  56. std::unique_ptr<Handle> m_handle_naive;
  57. Handle* m_handle_cur;
  58. std::unique_ptr<RNG> m_default_rng;
  59. std::unordered_map<size_t, RNG*> m_rng;
  60. std::unordered_map<size_t, DType> m_dtype;
  61. std::unordered_map<size_t, TensorFormat> m_fmt;
  62. float_t m_epsilon = 1e-3, m_max_avg_error = 1e-3,
  63. m_max_avg_biased_error = 1e-3;
  64. float_t m_perf_check_threshold = -1;
  65. bool m_perf_check = false;
  66. ExtraOprImpl m_extra_opr_impl;
  67. OutputCanonizer m_output_canonizer;
  68. TensorsConstriant m_tensor_constraint;
  69. bool no_naive_and_check = false;
  70. /**
  71. * the offset from the start of malloc memory
  72. *
  73. * \note alloc \p m_offset more memory when alloc memory for a tensor,
  74. * the start of tensor just begin at \p m_offset.
  75. * \warning current only used for opencl
  76. */
  77. size_t m_offset = 0;
  78. CheckerHelper(Handle* handle, bool check_dispatch = true);
  79. ~CheckerHelper() noexcept;
  80. using OprExec = std::function<void(const TensorValueArray&)>;
  81. void do_exec_with_testcases(const TensorValueArray& testcase_in,
  82. const TensorValueArray& testcase_out,
  83. const OprExec& exec_opr);
  84. void do_exec(const TensorLayoutArray& user_layouts,
  85. const TensorLayoutArray& deduced_layouts,
  86. const OprExec& exec_naive, const OprExec& exec_opr);
  87. void enable_contig_naive() { m_enable_contig_naive = true; }
  88. void copy_tensors_to_device(const TensorValueArray& dest,
  89. const TensorValueArray& src);
  90. void copy_tensors_from_device(const TensorValueArray& dest,
  91. const TensorValueArray& src);
  92. private:
  93. std::shared_ptr<TensorValueArray> m_tensors_naive;
  94. void init_naive_values();
  95. void check_tensors(const TensorValueArray& expected,
  96. const TensorValueArray& computed);
  97. };
  98. template <typename Opr, typename Proxy = OprProxy<Opr>>
  99. class Checker : public CheckerHelper {
  100. public:
  101. using Param = typename Opr::Param;
  102. using BeforeExecCallback =
  103. std::function<void(Opr*, const TensorValueArray&)>;
  104. Checker(Handle* handle, bool check_dispatch = true)
  105. : CheckerHelper(handle, check_dispatch), m_param(Param()) {}
  106. TensorLayoutArray make_layouts(const TensorShapeArray& shapes) {
  107. TensorLayoutArray layouts(shapes.size());
  108. for (size_t i = 0; i < shapes.size(); ++i) {
  109. DType dt = (m_dtype.find(i) != m_dtype.end() ? m_dtype[i]
  110. : dtype::Float32());
  111. if (m_fmt.find(i) == m_fmt.end()) {
  112. layouts[i] = TensorLayout(shapes[i], dt);
  113. layouts[i].init_contiguous_stride();
  114. } else
  115. layouts[i] = TensorLayout(shapes[i], dt, m_fmt[i]);
  116. }
  117. return layouts;
  118. }
  119. /*!
  120. * \brief execute opr on current param/dtype/rng config
  121. * \param shapes input/output shapes, which would be passed as
  122. * arguments to Opr::deduce_layout
  123. *
  124. * Checker would construct TensorLayout vectors from shapes and dtypes,
  125. * and call exec(TensorLayoutArray &).
  126. */
  127. Checker& exec(const TensorShapeArray& shapes) {
  128. exec(make_layouts(shapes));
  129. return *this;
  130. }
  131. void exec(TensorLayoutArray layouts);
  132. //! explicitly require argument to be TensorShape
  133. Checker& execs(const TensorShapeArray& shapes) { return exec(shapes); }
  134. //! explicitly require argument to be TensorLayout
  135. Checker& execl(const TensorLayoutArray& layouts) {
  136. exec(layouts);
  137. return *this;
  138. }
  139. Checker& exect(const TensorValueArray& testcase_in,
  140. const TensorValueArray& testcase_out);
  141. Checker& set_param(Param param) {
  142. m_param = param;
  143. opr()->param() = param;
  144. return *this;
  145. }
  146. Checker& set_dtype(size_t idx, DType dtype) {
  147. m_dtype[idx] = dtype;
  148. return *this;
  149. }
  150. Checker& set_fmt(size_t idx, TensorFormat fmt) {
  151. m_fmt[idx] = fmt;
  152. return *this;
  153. }
  154. Checker& set_rng(size_t idx, RNG* rng) {
  155. m_rng[idx] = rng;
  156. return *this;
  157. }
  158. //! max error of a single element
  159. Checker& set_epsilon(dt_float32 epsilon) {
  160. m_epsilon = epsilon;
  161. m_max_avg_error = epsilon;
  162. m_max_avg_biased_error = epsilon;
  163. return *this;
  164. }
  165. //! max average error; defaults to epsilon
  166. Checker& set_max_avg_error(dt_float32 error) {
  167. m_max_avg_error = error;
  168. return *this;
  169. }
  170. //! max average biased error; defaults to epsilon
  171. Checker& set_max_avg_biased_error(dt_float32 error) {
  172. m_max_avg_biased_error = error;
  173. return *this;
  174. }
  175. Checker& set_offset(size_t offset) {
  176. m_offset = offset;
  177. return *this;
  178. }
  179. Checker& set_proxy(const Proxy& proxy) {
  180. m_naive_proxy = proxy;
  181. m_cur_proxy = proxy;
  182. return *this;
  183. }
  184. //! set_perf_check and set_perf_check_threshold control the
  185. //! performance checking behavior.
  186. //!
  187. //! If perf_check is on (default to off), the running time of the
  188. //! current operator and the naive operator would be measured and
  189. //! checked when calling exec.
  190. //! The accelerating ratio should be larger than perf_check_threshold,
  191. //! otherwise errors would be reported.
  192. //! perf_check_threshold must be set in advance since the default value
  193. //! (which is negative) is invalid.
  194. Checker& set_perf_check(bool perf_check) {
  195. m_perf_check = perf_check;
  196. return *this;
  197. }
  198. Checker& set_perf_check_threshold(float perf_check_threshold) {
  199. m_perf_check_threshold = perf_check_threshold;
  200. return *this;
  201. }
  202. //! load input tensors from file for next run
  203. Checker& load_input_tensors(const char* fpath) {
  204. m_input_tensors_fpath = fpath;
  205. return *this;
  206. }
  207. //! add another checker to ensure naive implementation is correct
  208. Checker& set_extra_opr_impl(const ExtraOprImpl& chk) {
  209. m_extra_opr_impl = chk;
  210. return *this;
  211. }
  212. //! set a callback to be invoked before executing the operator
  213. Checker& set_before_exec_callback(const BeforeExecCallback& cb) {
  214. m_before_exec_callback = cb;
  215. return *this;
  216. }
  217. Checker& reset_before_exec_callback() {
  218. m_before_exec_callback = nullptr;
  219. return *this;
  220. }
  221. //! set a tensors constraints function, for the purpose of manipulating
  222. //! tensors when testing.
  223. Checker& set_tensors_constraint(
  224. const TensorsConstriant& tensor_constraint) {
  225. m_tensor_constraint = tensor_constraint;
  226. return *this;
  227. }
  228. /*!
  229. * \brief set that exec() on opr should fail, so naive is not called and
  230. * exec() returns directly after opr is called.
  231. *
  232. * This is only valid for next exec() call. It is usually used for
  233. * testing megcore::AsyncErrorInfo.
  234. *
  235. * \param cb callback to be invoked after opr exec (so error would not
  236. * be passed to destructor)
  237. */
  238. Checker& set_expect_exec_fail(const thin_function<void()>& cb) {
  239. m_expect_exec_fail = cb;
  240. return *this;
  241. }
  242. /*!
  243. * \brief set a function to canonize the outputs
  244. *
  245. * For some oprs maybe multiple outputs can be accepted; we can use a
  246. * function to transform them into a canonized form before comparing.
  247. *
  248. * The arguments are tensors on CPU and should be modified in-place.
  249. */
  250. Checker& set_output_canonizer(OutputCanonizer canonizer) {
  251. m_output_canonizer = std::move(canonizer);
  252. return *this;
  253. }
  254. //! get the opr impl so setting other than param() can be modified
  255. Opr* opr() {
  256. if (!m_opr_cur) {
  257. m_opr_cur = m_handle_cur->create_operator<Opr>();
  258. }
  259. return m_opr_cur.get();
  260. }
  261. //! whether previous exec succeeds
  262. bool prev_succ() const { return m_prev_succ; }
  263. private:
  264. BeforeExecCallback m_before_exec_callback;
  265. Param m_param;
  266. Proxy m_naive_proxy, m_cur_proxy;
  267. std::unique_ptr<Opr> m_opr_cur;
  268. };
  269. ::testing::AssertionResult __assert_tensor_eq(
  270. const char* expr0, const char* expr1, const char* expr_maxerr,
  271. const char* expr_maxerr_avg, const char* expr_maxerr_avg_biased,
  272. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  273. float maxerr_avg_biased);
  274. #define MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr_avg, \
  275. maxerr_avg_biased) \
  276. ASSERT_PRED_FORMAT5(::megdnn::test::__assert_tensor_eq, v0, v1, maxerr, \
  277. maxerr_avg, maxerr_avg_biased)
  278. #define MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, maxerr) \
  279. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr, maxerr)
  280. #define MEGDNN_ASSERT_TENSOR_EQ(v0, v1) \
  281. MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, 1e-3)
  282. template <typename Opr, typename Proxy>
  283. void Checker<Opr, Proxy>::exec(TensorLayoutArray layouts) {
  284. auto opr_naive = m_handle_naive->create_operator<Opr>();
  285. auto opr_relayout = m_handle_naive->create_operator<RelayoutForward>();
  286. auto opr_cur = this->opr();
  287. opr_naive->param() = m_param;
  288. opr_cur->param() = m_param;
  289. m_naive_proxy.deduce_layout(opr_naive.get(), layouts);
  290. auto exec_naive = [this, &opr_naive, &layouts,
  291. &opr_relayout](const TensorValueArray& values) {
  292. TensorValueArray contig_values = values;
  293. TensorValueArray real_values = values;
  294. std::shared_ptr<TensorValueArray> tensors_naive_contig_storage;
  295. if (m_enable_contig_naive) {
  296. TensorLayoutArray contig_layouts;
  297. for (auto&& layout : layouts) {
  298. contig_layouts.emplace_back(TensorLayout{
  299. static_cast<const TensorShape&>(layout), layout.dtype});
  300. }
  301. m_naive_proxy.deduce_layout(opr_naive.get(), contig_layouts);
  302. tensors_naive_contig_storage = alloc_tensors(
  303. m_handle_naive.get(), contig_layouts, m_offset);
  304. contig_values = *tensors_naive_contig_storage;
  305. //! relayout value to the contig_values
  306. for (size_t i = 0; i < contig_values.size(); ++i) {
  307. if (real_values[i].layout.ndim == 0)
  308. continue;
  309. real_values[i].layout.format = {};
  310. opr_relayout->exec(real_values[i], contig_values[i],
  311. m_handle_naive.get());
  312. }
  313. }
  314. m_naive_proxy.exec(opr_naive.get(), contig_values);
  315. if (m_enable_contig_naive) {
  316. //! relayout to the values
  317. for (size_t i = 0; i < contig_values.size(); ++i) {
  318. if (real_values[i].layout.ndim == 0)
  319. continue;
  320. opr_relayout->exec(contig_values[i], real_values[i],
  321. m_handle_naive.get());
  322. }
  323. }
  324. };
  325. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  326. if (m_before_exec_callback) {
  327. m_before_exec_callback(opr_cur, values);
  328. }
  329. m_cur_proxy.exec(opr_cur, values);
  330. };
  331. auto user_layouts = layouts;
  332. do_exec(user_layouts, layouts, exec_naive, exec_opr);
  333. }
  334. template <typename Opr, typename Proxy>
  335. Checker<Opr, Proxy>& Checker<Opr, Proxy>::exect(
  336. const TensorValueArray& testcase_in,
  337. const TensorValueArray& testcase_out) {
  338. auto opr_cur = this->opr();
  339. opr_cur->param() = m_param;
  340. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  341. if (m_before_exec_callback) {
  342. m_before_exec_callback(opr_cur, values);
  343. }
  344. m_cur_proxy.exec(opr_cur, values);
  345. };
  346. do_exec_with_testcases(testcase_in, testcase_out, exec_opr);
  347. return *this;
  348. }
  349. template <typename T, typename U>
  350. TensorND TensorValue(const TensorShape& shape, T dtype,
  351. std::initializer_list<U> values) {
  352. TensorND tensor;
  353. tensor.layout = {shape, dtype};
  354. tensor.raw_ptr =
  355. static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  356. megdnn_assert(values.size() == tensor.layout.total_nr_elems(), "%zu == %zu",
  357. values.size(), tensor.layout.total_nr_elems());
  358. auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
  359. for (const auto& v : values) {
  360. *ptr++ = typename DTypeTrait<T>::ctype(v);
  361. }
  362. return tensor;
  363. }
  364. template <typename T, typename U>
  365. TensorND TensorValueLowbit4(const TensorShape& shape, T dtype,
  366. std::vector<U> values) {
  367. TensorND tensor;
  368. tensor.layout = {shape, dtype};
  369. tensor.raw_ptr =
  370. static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  371. megdnn_assert(values.size() == tensor.layout.total_nr_elems());
  372. auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
  373. auto layout = tensor.layout;
  374. auto dim_in = shape[layout.ndim - 1];
  375. auto elems = tensor.layout.total_nr_elems();
  376. auto dim_out = elems / dim_in;
  377. auto stride_out = div_ceil(dim_in, 2_z);
  378. size_t in_offset = 0;
  379. for (size_t i = 0; i < dim_out; ++i) {
  380. for (size_t j = 0; j < dim_in; j += 2) {
  381. U a = values[in_offset + j];
  382. U b = 0;
  383. if (j + 1 < dim_in)
  384. b = values[in_offset + j + 1];
  385. megdnn_assert(a >= DTypeTrait<T>::min());
  386. megdnn_assert(a <= DTypeTrait<T>::max());
  387. megdnn_assert(b >= DTypeTrait<T>::min());
  388. megdnn_assert(b <= DTypeTrait<T>::max());
  389. ptr[j / 2] = (a & 0xF) | (b << 4);
  390. }
  391. in_offset += dim_in;
  392. ptr += stride_out;
  393. }
  394. return tensor;
  395. }
  396. class Testcase : public SmallVector<TensorND> {
  397. public:
  398. using SmallVector<TensorND>::SmallVector;
  399. ~Testcase() {
  400. // Suicide
  401. for (const auto& tensor : *this) {
  402. if (tensor.raw_ptr) {
  403. free(tensor.raw_ptr);
  404. }
  405. }
  406. }
  407. Testcase(const Testcase&) = delete;
  408. Testcase operator=(const Testcase&) = delete;
  409. };
  410. struct ExecutionPolicyAlgoName {
  411. std::string name;
  412. std::vector<ExecutionPolicyAlgoName> sub_policy_names;
  413. ExecutionPolicyAlgoName(const char* name) : name{name} {}
  414. ExecutionPolicyAlgoName(
  415. const char* name,
  416. const std::vector<ExecutionPolicyAlgoName>& sub_policy)
  417. : name{name}, sub_policy_names{sub_policy} {}
  418. };
  419. /*!
  420. * \brief a callable to check that given algorithm is used for heuristic
  421. * \param require_algo if its value is true, then requires
  422. * get_algorithm_heuristic() to return the expected algo; otherwise the
  423. * expected algo must exist in get_all_algorithms() and it would be set to
  424. * be used
  425. */
  426. template <class Opr, typename OprAlgoProxy = OprAlgoProxy<Opr>>
  427. class AlgoChecker {
  428. public:
  429. AlgoChecker(ExecutionPolicyAlgoName name, bool* require_algo = nullptr)
  430. : m_policy_name{name}, m_require_algo{require_algo} {}
  431. AlgoChecker(ExecutionPolicy policy, bool* require_algo = nullptr)
  432. : m_policy{policy}, m_require_algo{require_algo} {}
  433. static ExecutionPolicy construct_execution_policy_from_name(
  434. const ExecutionPolicyAlgoName& policy_name,
  435. const TensorLayoutArray& layouts, const std::string& param,
  436. Handle* handle) {
  437. ExecutionPolicy ret;
  438. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  439. auto opr = handle->create_operator<Opr>();
  440. opr->param() =
  441. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  442. for (auto algo_info :
  443. AlgoProxy<Opr, OprTrait<Opr>::arity>::get_all_algorithms_info(
  444. opr.get(), layouts)) {
  445. if (std::regex_match(
  446. algo_info.desc.name,
  447. std::regex("(" + policy_name.name + ")(.*)"))) {
  448. ret.algo = algo_info.desc;
  449. } else {
  450. continue;
  451. }
  452. Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
  453. std::vector<Algorithm::SearchItem>&& sub_items =
  454. algo->get_subopr_list(layouts, opr.get());
  455. if (sub_items.size() != policy_name.sub_policy_names.size()) {
  456. printf("Invalid sub_policy_names in %s, expected %zu but got "
  457. "%zu\n",
  458. algo_info.desc.name.c_str(), sub_items.size(),
  459. policy_name.sub_policy_names.size());
  460. return {};
  461. }
  462. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  463. ExecutionPolicy policy =
  464. AlgoChecker<_Opr>::construct_execution_policy_from_name(
  465. policy_name.sub_policy_names[_item_idx],
  466. _item.layouts, _item.param, handle);
  467. ret.sub_policy.push_back(policy);
  468. });
  469. return ret;
  470. }
  471. return ret;
  472. }
  473. void operator()(Opr* opr, const CheckerHelper::TensorValueArray& arr) {
  474. TensorLayoutArray layouts;
  475. for (auto&& val : arr) {
  476. layouts.push_back(val.layout);
  477. }
  478. if (!m_policy_name.name.empty()) {
  479. std::string param_str;
  480. Algorithm::serialize_write_pod(opr->param(), param_str);
  481. m_policy = construct_execution_policy_from_name(
  482. m_policy_name, layouts, param_str, opr->handle());
  483. ASSERT_TRUE(m_policy.algo.valid())
  484. << "algorithm " << m_policy_name.name << " not found";
  485. }
  486. if (m_require_algo && *m_require_algo) {
  487. auto algo =
  488. OprAlgoProxy::get_algorithm_info_heuristic(opr, layouts);
  489. ASSERT_STREQ(opr->get_algorithm_from_desc(m_policy.algo)->name(),
  490. algo.desc.name.c_str());
  491. } else {
  492. opr->execution_policy() = m_policy;
  493. }
  494. }
  495. private:
  496. ExecutionPolicyAlgoName m_policy_name;
  497. ExecutionPolicy m_policy;
  498. bool* m_require_algo;
  499. };
  500. template <typename Opr>
  501. void construct_sub_execution_policy_heuristic(ExecutionPolicy& policy,
  502. const TensorLayoutArray& layouts,
  503. const std::string& param,
  504. Handle* handle) {
  505. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  506. auto opr = handle->create_operator<Opr>();
  507. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  508. if (!policy.algo.valid()) {
  509. policy.algo = AlgoProxy<Opr, OprTrait<Opr>::arity>::
  510. get_algorithm_info_heuristic(opr.get(), layouts)
  511. .desc;
  512. }
  513. Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
  514. std::vector<Algorithm::SearchItem>&& sub_items =
  515. algo->get_subopr_list(layouts, opr.get());
  516. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  517. policy.sub_policy.push_back(ExecutionPolicy{});
  518. construct_sub_execution_policy_heuristic<_Opr>(
  519. policy.sub_policy.back(), _item.layouts, _item.param, handle);
  520. });
  521. }
  522. } // namespace test
  523. } // namespace megdnn
  524. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台